Diel patterns of growth and division in marine picoplankton in culture

TitleDiel patterns of growth and division in marine picoplankton in culture
Publication TypeJournal Article
Year of Publication2001
AuthorsJacquet S, Partensky F, Lennon JF, Vaulot D
JournalJournal of Phycology
Volume37
Pagination357–369
Keywords2001, Cell Division, Cyanobacteria Synechococcus, Dividing Cells, Equatorial Pacific, flow cytometry, Mediterranean Sea, Natural Populations, North Pacific Ocean, Photosynthetic Picoplankton, Picophytoplankton Dynamics, rcc, SBR$_\textrmP$hyto, sbr?hyto
Abstract

{The effect of a 12:12-h light:dark (LD) cycle on the phasing of several cell parameters was explored in a variety of marine picophytoplanktonic strains. These included the photosynthetic prokaryotes Pro-chlorococcus (strains MED 4, PCC 9511, and SS 120) and Synechococcus (strains ALMO 03, ROS 04, WH 7803, and WH 8103) and five picoeukaryotes (Bathycoccus prasinos Eikrem et Throndsen, Bolidomonas pacifica Guillou et Chretiennot-Dinet, Micromonas pusilla Manton et Parke, Pelagomonas calceolata Andersen et Saunders, and Pycnococcus provasolii Guillard et al.). Flow cytometric analysis was used to determine the relationship between cell light scatter, pigment fluorescence, DNA (when possible), and the LD cycle in these organisms. Asexpected, growth and division were tightly coupled to the LD cycle for all of these strains. For both Prochlorococcus and picoeukaryotes, chi and intracellular carbon increased throughout the light period as estimated by chi fluorescence and light scatter, respectively. In response to cell division, these parameters decreased regularly during the early part of the dark period, a decrease that either continued throughout the dark period or stopped for the second half of the dark period. For Synechococcus, the decrease of chi and scatter occurred earlier (in the middle of the light period), and for some strains these cellular parameters remained constant throughout the dark period. The timing of division was very similar for all picoeukaryotes and occurred just before the subjective dusk, whereas it was more variable between the different Prochlorococcus and Synechococcus strains. The burst of division for Prochlorococcus SS 120 and PCC 9511 was recorded at the subjective dusk, whereas the MED 4 strain divided later at night. Synechococcus ALMO 03, ROS 04, and WH 7803, which have a low phycourobilin to phycoerythrobilin (PUB:PEB) ratio, divided earlier, and their division was restricted to the light period. In contrast, the high PUB:PEB Synechococcus strain WH 8103 divided preferentially at night. There was a weak linear relationship between the FALS(max):FALS(min) ratio and growth rate calculated from cell counts (r = 0.83

DOI10.1046/j.1529-8817.2001.037003357.x