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Synergism between the Black 
Queen effect and the proteomic 
constraint on genome size 
reduction in the photosynthetic 
picoeukaryotes
D. Derilus1, M. Z. Rahman2, F. Pinero3 & S. E. Massey2 ✉

The photosynthetic picoeukaryotes (PPEs) comprise a rare example of free-living eukaryotes that 
have undergone genome reduction. Here, we examine a duality in the process; the proposed driver of 
genome reduction (the Black Queen hypothesis, BQH), and the resultant impact of genome information 
loss (the Proteomic Constraint hypothesis, PCH). The BQH predicts that some metabolites may be 
shared in the open ocean, thus driving loss of redundant metabolic pathways in individual genomes. In 
contrast, the PCH predicts that as the information content of a genome is reduced, the total mutation 
load is also reduced, leading to loss of DNA repair genes due to the resulting reduction in selective 
constraint. Consistent with the BQH, we observe that biosynthetic pathways involved with soluble 
metabolites such as amino acids and carotenoids are preferentially lost from the PPEs, in contrast 
to biosynthetic pathways involved with insoluble metabolites, such as lipids, which are retained. 
Consistent with the PCH, a correlation between proteome size and the number of DNA repair genes, 
and numerous other informational categories, is observed. While elevated mutation rates resulting 
from the loss of DNA repair genes have been linked to reduced effective population sizes in intracellular 
bacteria, this remains to be established. This study shows that in microbial species with large population 
sizes, an underlying factor in modulating their DNA repair capacity appears to be information content.

Photosynthetic picoeukaryotes (PPEs) are single celled eukaryotic algae of cell size less than 3 µm in diameter1. 
Their individual cell size is much reduced compared to other eukaryotes, and comparable to Prochlorococcus and 
Synechococcus picocyanobacteria, which have also undergone cell size reduction (cell size <2 µm2,). They are typ-
ically motile and found in the oceanic euphotic zone3,4. Molecular5 and metagenomic6–9 analyses show that PPEs 
possess a global distribution. While factors which affect the distribution of PPEs are not well understood3, tem-
perature and dissolved oxygen appear to have a role8. There is evidence of the importance of PPEs in biogeochem-
ical processes such as carbon fixation6,10, despite their low numerical abundance compared to cyanobacteria10.

The reduction in cell size of both marine PPEs and picocyanobacteria has occurred concomitantly with a 
reduction in genome size. These two groups of photosynthetic microbes represent rare examples of free-living 
organisms that have undergone reduction in genome size, however the evolutionary forces and environmental 
factors leading to genome reduction in these two lineages are not well understood11,12. While these forces may be 
similar given their common habitat, it is unclear if they represent a case of convergent evolution, until the imper-
atives behind cell and genome size reduction have been determined in both groups. One potential explanation 
is that the cell surface/volume ratio is increased upon reduction in cell size, which enhances nutrient uptake13. 
This is consistent with the high proportion of membrane transporters in SAR11 picocyanobacterial genomes14.

Alternatively, the Black Queen Hypothesis (BQH) proposes that genome reduction in the picocyanobacteria is 
driven by the evolution of dependencies between microbes, with some gene products, and their metabolites, leak-
ing into the aquatic medium and acting as public goods11. Public goods are defined as publicly available resources 
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that are non-excludable and non-rivalous. This means that individuals cannot be excluded from using them, 
and use by one individual does not reduce availability to others, respectively. Presumably metabolites and gene 
products present in ocean water are non-rivalous, given that they are unlikely to be depleted due to the volume in 
which they reside, which implies they are not susceptible to over-exploitation by cheaters. The BQH proposes that 
the presence of such compounds in the aquatic medium may facilitate adaptive gene loss from some microbial 
lineages, as they no longer to synthesize the compound if they are able to scavenge it.

The BQH proposes that in the picocyanobacteria such compounds include catalase-peroxidase 
cross-protection, fixed nitrogen, iron carrying siderophores and reduced sulfur (dimethylsulfoniopropionate)11. 
The concentration of the compound in the aquatic medium needs to be high enough so that a microbe that has 
undergone gene loss may be able to effectively use it; this appears true of reduced sulfur15, iron carrying sidero-
phores16 and fixed nitrogen in the form of ammonia17. Specialized membrane transporters may help to address 
the problem of those compounds that are present in the aquatic medium at low concentration. Particularly, spe-
cific siderophores require specific uptake transporters, and this means that they only appear to act as a public 
good amongst strains of the same genotype18. In the case of PPEs, a fundamental prediction consistent with the 
BQH is that genes for the biosynthesis of soluble metabolites should be preferentially lost, as opposed to those for 
insoluble metabolites, which cannot be easily shared in an aqueous medium. In addition, such soluble metabolites 
should be present at sufficient concentration in the open ocean that they can compensate for gene loss.

Sanctioning promotes cooperation in public goods games19, and so it may be proposed that forms of sanc-
tioning at the microbial level may help to promote the fair use of microbial public goods. This can include 
Hamiltonian spite20, a sanctioning behavior that has a negative impact on both actor and recipient, who are 
unrelated21,22. Game theoretic approaches inspired by economics have been brought to bear on the freeloading 
problem of microbial public goods23, and contract theory has also been explored in the context of organismal 
mutualism24–26. However, adhering to the strict definition of public goods that they are non-rivalrous means they 
are not susceptible to freeloading/cheating behaviors, as they cannot be over-exploited. This is likely the case with 
metabolites and other gene products present in the open ocean.

The Proteomic Constraint Hypothesis (PCH) proposes that a secondary effect of a reduction in genome size 
is the concomitant reduction in the selective constraint that maintains genes involved in informational fidelity27. 
This is because an effect of genome reduction is to reduce the amount of coding information, and so the size of the 
mutational target. This means that the overall mutational load will decrease, thus any primary genome reduction 
would be expected to loosen the selective constraint on DNA repair genes, and other genes involved in maintain-
ing informational fidelity, leading to their secondary loss. This leads to the prediction that the numbers of DNA 
repair genes, which reflects the DNA repair capacity, should correlate with proteome size. Such a correlation is 
observed in bacteria28,29, archaea and DNA viruses30, but has not yet been examined in eukaryotes.

Lastly, intracellular bacteria have undergone a reduction in genome size, which has been linked to a reduc-
tion in population size and a resulting increase in genetic drift. Gene loss in these lineages is postulated to result 
from the reduction in selection pressure that results from an increase in genetic drift31, however this remains to 
be established. Presumably, enhanced drift is not a factor in gene loss in the PPEs, which are likely to have large 
population sizes due to their oceanic distribution, and for which there is some genomic evidence32. In this work, 
we test the potential effects of these three different scenarios on genome size reduction, using a comparison of 16 
unicellular eukaryotic algal genomes.

Methods
Collection of proteome and genome sequences.  Genome and proteome sequence data for all 16 uni-
cellular photosynthetic algae available at the start of the analysis were downloaded from the National Center for 
Biotechnology Information (NCBI) (July 2018). N.gaditana has a low number of genes, it remains to be estab-
lished if this is due to incomplete gene identification and annotation. The selected species were divided in two 
groups based on their genome and cell size: 1) the photosynthetic picoeukaryotes (PPEs) with cell size lower than 
3 µm (n = 7), and 2) the photosynthetic micro-algae (PMA) with cell size higher than 3 µm (n = 9). PPE genome 
size varies between 12 Mb (Ostreococcus tauri) to 15 Mb (Bathycoccus prasinos), and PMA genome size varies 
from 23 Mb (Auxenochlorella protothecoides) to 137 Mb (Volvox carteri). The standard used to select an organism 
for this survey required the complete genome annotation and publicly available experimental references. The 
key genomic and proteomic features of the 16 unicellular photosynthetic algae species used for the analysis are 
supplied in Table 1.

Orthogroup inference.  An orthogroup (OG) is a set of genes that descended from a single ancestral gene 
for a group of species. Hence an orthogroup, which contains both orthologs and paralogs, is considered a basic 
unit for this comparative genomics survey, and due to common ancestry consists of genes of related function. 
Orthofinder version 2.2.633 was used to identify OGs in the 16 genomes. OGs were inferred by the following 
Orthofinder command line: /orthofinder -f proteomes/ -M msa. The -M msa parameter was used to infer max-
imum likelihood trees from multiple sequence alignment (MSA) methods. The OG inference produces a set of 
files describing orthologs, paralogs, OGs, gene trees, ortholog alignment, gene duplication events, and additional 
comparative genomics statistics for all the species analyzed.

Functional annotation of the orthogroups.  We developed a multi-species approach to functionally 
annotate the identified OGs. This approach involves two steps: (i) KEGG Orthology (KO) annotation of each 
genome separately, followed by (ii) KO mapping of the annotated genes to the entire OGs for all 16 species.

KEGG Orthology (KO) annotation.  The KEGG Orthology (KO) assignment was conducted for each individ-
ual genome separately. This was done by a Blastp search of the protein *fasta file for each species against the 
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non-redundant protein NCBI database, with an e-value cut-off of 1e−10. From this blast output, the gene ID and 
Genbank ID numbers (GI) were retrieved and sorted. The resulting GI numbers were converted to UniProt and 
then to K numbers subsequently using an in-house ID mapping python script that can be obtained from github.
com/dieunelderilus/picoeukaryotes/blob/master/gi_kO_mapper.py. Briefly, this script takes as input a table with 
gene ID and GI numbers for the considered species and outputs a comma separated table which links each indi-
vidual gene ID to its corresponding UniProt and K number respectively (GeneID→GI→UniProt ID→K).

Mapping of KO annotation to orthogroups.  The unicellular eukaryotic algae are not well annotated in KEGG. To 
improve the annotation, the file linking Gene ID to K number for each individual species was used to perform a 
KO assignment to the orthologous genes found in the ‘Orthogroups.tsv’ file generated by the Orthofinder analy-
sis. The ‘Orthogroups.tsv’ is a tab separated file that displays the OGs identified. The idea of our ID mapping strat-
egy is that any K number assignment for one gene ID of a set of homologous genes (from the same orthogroup), 
could be extended to all the genes in this OG (for the 16 species) that failed to be annotated in the first round of 
ID mapping.

After successful KO assignment of the OGs for all 16 species, the most common K number was selected and 
assigned to all the homologous genes that belonged to the considered OG. This approach improves significantly 
the functional mapping efficiency, which is a common problem in functional comparative genomic studies. The 
efficiency of the single species Method 1 (M1) compared to our multiple species annotation Method 2 (M2) is 
shown in Supplementary Fig. 1, where we show that M2 significantly improves ID mapping efficiency. The result-
ing functional orthologs found for different species were quantified by mapping them against the OG inventory 
found in ‘Orthogroups.GeneCount.csv (orthofinder output) file, which contains the number of genes in each OG 
for each species.

Mapping K numbers to KEGG pathways.  After assigning K numbers to individual genes and OGs for all 
the genomes, the relative abundance of genes in different categories of metabolic pathway were determined. These 
were mapped against the KEGG pathways database which was downloaded from www.kegg.jp (Last updated: 
August 21, 2018) and reformatted with an in-house python script. The ID mapping output constitutes a key piece 
of data facilitating study of the metabolic diversity found within the single-celled algal genomes, specifically with 
regard to genome size reduction, and concomitant changes in metabolic functionality.

Phylogenomic analysis.  In order to determine the phylogenetic relationship of the 16 species, phylog-
enomic analysis was conducted using 548 core orthogroups, which are the set of OGs containing at least one gene 
copy from each of the 16 genomes analyzed. Our gene clustering analysis pipeline generated a Multiple Sequence 
Alignment (MSA) for each individual OG. The resulting MSA for the core OGs was processed as follows: (1) 
duplicate sequences were removed in each individual MSA; (2) poorly aligned regions were removed using the 
–gappyout option of trimAl v1.434. The trimming option selects the best threshold, based on the combination of 
gap and similarity scores; (3) the number of reads for each MSA was confirmed to be 16, which corresponds to the 
number of species and (4) all MSAs comprising the core proteome were concatenated using AMAS35.

This produced a nexus file containing 208426 amino acid sites, 184449 (88%) variables sites, 150691 (72%) 
parsimony informative sites and 3334816 matrix cells with 517089 (15%) undetermined characters. The initial 
alignment was further trimmed using Gblocks (Version 0.91b)36 with stringent selection parameters. This final 

Species
Genome 
size (Mb)

Minimum 
size (µm)

Maximum 
size (µm) Category Reference

NCBI assembly 
accession number

Auxenochlorella protothecoides 23 4 8 PMA 76 GCA_000733215.1

Bathycoccus prasinos 15 1.5 2.5 PPE 77 GCA_002220235.1

Chlamydomonas reinhardtii 120 NF 10 PMA 78 GCA_000002595.2

Chlorella variabilis 46 2 10 PMA 79 GCA_000147415.1

Chrysochromulina sp CCMP291 59 NF 4 PMA 80 GCA_001275005.1

Coccomyxa subellipsoidea 49 3 9 PMA 81 GCA_000258705.1

Micromonas commoda 21 1 2 PPE 82 GCA_000090985.2

Micromonas pusilla 22 1 3 PPE 3 GCA_000151265.1

Monoraphidium neglectum 70 10 20 PMA 83 GCA_000611645.1

Nannochloropsis gaditana 34 2 4 PPE 3 GCA_000240725.1

Ostreococcus lucimarinus 13 0.8 1.1 PPE 3 GCA_000092065.1

Ostreococcus sp RCC809 13 0.8 1.1 PPE 3 OstRCC809_2*

Ostreococcus tauri 12 0.8 1.1 PPE 3,84 GCA_000214015.2

Thalassiosira oceanica 92 3 12 PMA 3 GCA_000296195.2

Thalassiosira pseudonana 32 2.3 5.5 PMA 3 GCA_000149405.2

Volvox carteri 137 FD 500 PMA 85 GCA_000143455.1

Table 1.  Key genomic and physical features as well as the assembly accession number of the unicellular algal 
species included in the comparative genomic analysis. All species with average cell size less than 3 µm were 
grouped as PPE (photosynthetic picoeukaryote) and those with cell size higher than 3 µm were grouped as PMA 
(photosynthetic microalga). *JGI identifier, NF: minimum cell size not found in the literature.
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filtering step resulted in a concatenated alignment containing 28713 amino acid sites, 23243 (81%) variables sites, 
18843 (66%) parsimony informative sites and 4549408 matrix cells with 25 (0.005%) undetermined characters. 
This final alignment was used for the phylogenomic construction of the PPEs and PMAs.

Construction of the phylogeny.  Using Modelfinder37 according to the Bayesian Information Criterion 
(BIC), the most appropriate protein substitution model was identified as LG + F + R538. Markov Chain Monte 
Carlo (MCMC) simulation was performed in MrBayes v3.2.539 for the phylogenomic analysis. The analysis was 
conducted for a total of 300000 generations and a sample frequency of 30. These parameter values ensure that at 
least one hundred thousand (100000) samples formed the posterior probability distribution. Next, a consensus 
tree was generated after discarding 25% (2500) of the initial run as burn in, producing a cladogram with the pos-
terior probabilities for each split and a phylogram with mean branch lengths.

To test the consistency of the tree topology, maximum likelihood (ML) analysis was performed in RaxML v 
8.2.1240. First, 20 ML trees were generated using the command line raxmlHPC -m PROTGAMMALG -p 12345 
-# 20 -s concatenated_prototein.py -n T1, and the tree with the best likelihood saved to a file called RAxML_best-
Tree_T1. Secondly, to obtain support values a bootstrapping (n = 100 replicates) was performed using the com-
mand raxmlHPC -m PROTGAMMALG -p 12345 -b 12345 -# 100 -s concatenated_prototein.py -n T2, which 
prints bootstrap replicate trees to RAxML bootstrap.T2. Thirdly and finally, the ML best-fit and the bootstrapped 
trees were used to generate the bipartition trees with the following command: raxmlHPC -m PROTGAMMALG 
-p 12345 -f b -t RAxML_bestTree.T13 -z RAxML bootstrap. T14 -n T3. This last step generated a bipartition tree 
(with support values assigned to branch and nodes), which was displayed in Mega741, for comparison with the 
tree generated by MrBayes39. The tree was used for phylogenetic independent contrasts (PIC) correction42 of cor-
relations between proteome and genome size, and differing categories of orthgroups, based on their K numbers.

Network tree construction.  Metabolic networks were generated for each of the 16 genomes, as follows. 
The annotated genes of each individual genome were assigned to KEGG Orthology (KO) as described above. This 
resulted in a list of K numbers for each species which were converted into reaction numbers (rn). Subsequently, 
the rn numbers were converted into an edge list linking two or more compounds with biological functions (cpd) 
via a mapping file (containing KEGG objects that are associated with genes, proteins, small molecules, reactions, 
pathways, diseases and drugs) obtained from the KEGG database (www.genome.jp/kegg/). The metabolic net-
work for each individual genome was visualized in Gephi43, and the relative abundance of enzymes responsible 
for different reactions is reflected in the edge width between cpd nodes. The following network similarity indices 
were used:

Unweighted Jaccard Index. If I and J are sets then the unweighted Jaccard index of the similarity between I and 
J is
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Canberra Distance. If x and y are vectors of real numbers of the same length, the Canberra distance between 
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The biggest difference between the weighted Jaccard index and the Canberra distance is that the Canberra dis-
tance computes the similarity of terms xi and yi first and then sums the overall similarities, whereas the weighted 
Jaccard index finds the number of common elements to both x and y, and the number of elements in either x 
or y first and division is performed last. An example illustrating the differences between the distance measures 
is provided in Supplementary Material. Distances generated using the above measures were used as input into 
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Phylip44 to construct a tree of metabolic networks, using the neighbor joining method45. Congruence with the 
phylogenomic topology was calculated using comparePhylo {ape} R package46.

Population size estimation using MSMC.  Genome wide SNPs were generated for O.tauri strain 
RCC1116 using the reference genome sequence (Genbank Assembly ID GCA_000214015.2) and raw sequencing 
reads (accession number SRR4026808) obtained from the NCBI. The complete pipeline used to generate the 
SNPs from the raw reads can be found at github.com/dieunelderilus/picoeukaryotes/blob/master/SNP_calling.sh. 
Briefly, the raw reads were filtered using fastp47, then mapped to the reference genome using BBMap (sourceforge.
net/projects/bbmap/). The resulting sam files were converted to bam, and sorted using samtools48, before dupli-
cate removal using Picard (broadinstitute.github.io/picard/), and indel realignment using GATK49. SNP calling 
was conducted using bcftools mpileup48, with filtration parameters of Q ≥ 20 and depth of coverage (DP) ≥ 5. The 
SNP calling procedure generates a similar number of SNPs (54527) to those reported in the literature for O.tauri 
strain RCC1110 (47502), using a related SNP calling procedure50.

MSMC251 was run with the option -p 1*2+15*1+1*2, which takes into account reduced genome size. A spon-
taneous mutation rate of 4.80E-10 mutations per nucleotide per generation52 and a generation time of 11.3 hours53 
were used to estimate the effective population size of O.tauri. The population size estimate was taken from the 
midpoint of the simulation which corresponds to 14000 generations.

Results and Discussion
Orthogroup analysis.  The OG analysis resulted in a total of 14651 OGs, distributed amongst the 16 species 
(Fig. 1). Out of a total of 190314 genes, 145163 (76.3%) were contained in OGs. The remaining 23.7% unassigned 
genes may be considered as species-specific genes. The average OG size was 10 genes, while 4004 (27%) of the 
total OGs consist of only two genes. The OG size ranged from 2 to 1700 genes per OG. A total of 14651 OGs was 
inventoried for the 16 species (the pangenome), from which the core genome (554 OGs that are found in all 16 
species), shared genes (5187 OGs that are found in more than one but not in all species), and unique genes (309 
OGs, considered as species-specific genes) was determined (Supplementary Table 1, Supplementary Fig. 2).

No statistical difference was found in the number of OGs between PPE and PMA genomes, despite greater 
gene loss from PPE genomes (Supplementary Fig. 3). This indicates that during the genome reduction of PPEs, 
there may have been an advantage in maintaining gene family diversity at the expense of gene family size, by the 
preferential loss of paralogs, consistent with54. The Black Queen effect and loss of redundant genetic factors may 
act synergistically to drive the genome reduction of PPEs.

Phylogenomic analysis.  The phylogenomic approach tends to produce a better approximation to the true 
species tree than when using a single gene for tree reconstruction. To determine the broader evolutionary his-
tory of PPEs and their phylogenetic relationships, we constructed Bayesian and ML phylogenies, using the core 
genome identified from the OG analysis (Table 1). After trimming and filtering, a final alignment was obtained of 
28713 amino acid sites, which consisted of 23243 (81%) variables sites, 18843 (66%) parsimony informative sites 
and 4549408 matrix cells with 25 (0.005%) undetermined characters. The MrBayes analysis reached convergence 
after 300000 generations. We found that the topologies produced under Bayesian and ML methods were identi-
cal, and all nodes received bootstrap support of 100% (ML) and posterior probabilities of 1.0 (Bayesian) (Fig. 2).

From our phylogenomic analysis two major clades were identified: 1) a strongly supported clade of 12 spe-
cies and distributed through three main classes (Trebouxiophyceae, Chlorophyceae and Mamiellophyceae) and 
one phylum (Chlorophyta); 2) a second clade of 3 species spread over two classes (Coscinodiscophyceae and 
Eustigmatophyceae) and one phylum (Heterokonta). The species Chrysochromulina sp CCMP29 which belongs to 

Figure 1.  Orthogroup analysis results. Bar plot presenting (A) the number of genes for each species, and 
the number genes assigned to orthogroups (OGs). (B) the number of OGs for each species emphasizing the 
contribution the contribution of core OGs (found in all the 16 species), shared OGs (assigned to more than one 
but not all 16 species) and unique OGs (species specific OGs).
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the class Coccolithophyceae and phylum Haptophyta, was used as an outgroup to the rest of the species analyzed, 
consistent with its basal nature3.

The phylogenomic analysis reveals a sister relationship between the Trebouxiophyceae and Chlorophyceae 
clades, consistent with a previous chloroplast phylogenomic tree55. Members of the class Mamiellaceae formed a 
sister group with the Chlorophyceae/Trebouxiophyceae clade, in agreement with previous phylogenetic analysis 
based on single 18S rRNA gene sequences3,56 and concatenated gene sequences57. Within the Mamiellaceae class, 
Micromonas sp. were basal, followed by Bathycoccus sp., consistent with a phylogenetic analysis that used 16 con-
catenated plastid genes58. The branching pattern of Ostreococcus sp. is inconsistent with a phylogenetic analysis 
that used the rRNA operon59. In the latter study, the statistical support was 0.88 (posterior probability), while in 
our study the branching pattern is strongly supported. Taken together, the phylogenomic analysis supports poly-
phyly of the PPEs between the Mamiellophyceae and Eustigmatophyceae. The polyphyly of the PPEs suggests that 
genome reduction occurred more than once independently and can be observed in Fig. 2.

Network tree analysis.  Network tree analysis is a new approach for examining relationships between 
empirical networks4,60,61. In the context of this study, the approach may help to reveal the dynamics of pathway 
loss during genome reduction. We generated a cpd list (compounds with biological function) for each individ-
ual species. After redundancy removal, the number of cpd nodes shared between each pair of networks was 
calculated (Supplementary Table 2). Sampling bias is minimized due to our sequence based OG identification 
approach, which relies on the accurate determination of protein coding gene presence/absence from all of the 16 
genomes. Protein coding gene identification approaches are typically accurate, and so the identified proteins from 
each genome should be comparable.

A distance matrix was generated using our previously described network alignment approach that utilizes the 
Jaccard Similarity Index61 and used as input to generate a neighbour joining tree. The overall topology of the met-
abolic network tree is largely inconsistent with the topology of the phylogenomic tree, showing only 6% shared 
nodes (Supplementary Fig. 5A). When the weighted Jaccard Similarity Index was used for tree construction 
(Supplementary Fig. 5B), an improvement was observed of 25% shared nodes with the phylogenomic topology.

Near congruence is observed between the network tree generated using the Adkins Canberra distance (Fig. 3) 
and the phylogenomic tree (80% shared nodes), despite the low annotation of the picoeukaryotes genomes ana-
lysed in KEGG database. On the network tree, the position of Nannochloropsis gaditana is basal to the chloro-
phytic algae, which is incongruent with the phylogenomic tree. On the network tree the N.gaditana displays 
a long branch, resulting from its extreme genome reduction, which helps to explain its incongruence with the 
species tree. The position of Monoraphidium neglectum (Chlorophyceae) is also incongruent with the phylog-
enomic tree, being basal to both Chlorophyceae and Trebouxiophyceae in the network tree. The reason for this 

Figure 2.  Phylogenomic tree of 16 unicellular photosynthetic algae, highlighting the phylogenetic position 
of the photosynthetic picoeukaryotes (PPEs). The tree was inferred using MrBayes using the core proteome 
(comprised of core orthogroups) of the 16 algal species. Solid black circles indicate nodes supported with 
posterior probabilities of 1. The tree topologies produced under Bayesian and ML (not shown) methods were 
identical, and all nodes received bootstrap support of 100% (ML) and posterior probabilities of 1.0 (Bayesian). 
Different branch colors indicate different classes which are indicated by brackets to the right. The position of the 
PPE species is highlighted with an asterisk. The outgroup consists of ‘Chrysochromulina sp CCMP29’, a member 
of the Coccolithophyceae.
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is unclear but indicates a significant metabolic deviation from the other members of the Chlorophyceae and 
Trebouxiophyceae.

The higher overall level of congruence observed when the Adkins Canberra distance is used indicates that 
it is a superior measure of network similarity. The near congruence with the phylogenomic tree implies that the 
genome-scale metabolic networks are influenced by phylogenetic inertia, reflecting the influence of gene gain and 
loss events in common ancestral lineages. The position of lineages with reduced genome and proteome sizes on 
the metabolic network tree are displayed in Supplementary Fig. 5.

The placement of N.gaditana on the metabolic network tree separate from the other PPEs, which form a 
single clade, indicates that it represents a distinct ecophysiotype, and that metabolically it is not convergent with 
PPEs that belong to the Mamiellophyceae. Thus, the analysis reveals at least two distinct ecophysiotypes within 
the PPEs, and additional ecophysiotypes may be characterized when additional PPE genomes are sequenced. It 
is likely that PPEs from distinct phylogenetic lineages represent distinct ecophysiotypes. While taxa from these 
lineages will likely have undergone genome reduction, the analysis implies that functional metabolic convergence 
may not be observed between different PPE groups.

Correlation between proteome size and metabolic capacity, and other cellular functions.  
Genes annotated in the genomes of the 16 unicellular chlorophytic algae belonged to 249 KEGG functional 
categories, of which 83 (33%) exhibit significant positive correlations with proteome size after PIC correction 
(R > 0.5, p < 0.0.05) (Supplementary Table 2). Interestingly, several of these categories are involved in the pro-
duction of soluble metabolites, these include arginine biosynthesis (KO00220), lysine biosynthesis (KO00300), 
phenylalanine, tyrosine and tryptophan biosynthesis (KO00400), valine, leucine and isoleucine biosynthesis 
(KO0290), carotenoid biosynthesis (KO00906), ubiquinone biosynthesis (KO00130) and monoterpenoid bio-
synthesis (KO00902).

However, functional categories related to the biosynthesis of water-insoluble metabolites were not significantly 
correlated with proteome size (Supplementary Table 3). These include fatty acid biosynthesis (KO00061), lipid 
biosynthesis (KO01004), lipopolysaccharide biosynthesis (KO01005), glycosphingolipid biosynthesis (KO00603), 
steroid biosynthesis (KO00100), and cutin, suberin and wax biosynthesis (KO00073). The correlations between 
the number of genes involved in amino acid (water-soluble) and lipid (water-insoluble) biosynthesis with pro-
teome size are shown in Fig. 4A,B, respectively (in Fig. 4B, the species with the largest proteome size (T.oceanica) 

Figure 3.  Neighbor joining tree of 16 genomic metabolic networks belonging to the PPEs. The tree was 
generated in Phylip with a lower-triangular data matrix which contained the Adkins Canberra distance between 
each pair of networks. 3D meta-metabolic networks are shown for each species, to the left of the species name, 
and the PPE species are highlighted with an asterisk.
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has an unusually low number of genes in the differing categories, which may have the effect of reducing the 
gradient of the slope. Due to the limited number of genomes available from unicellular algae, it is unclear if 
T.oceanica is representative of its taxonomic group in terms of gene numbers). These observations are consist-
ent with the BQH, which implies that insoluble metabolites should be retained, as they cannot be shared in the 
aquatic medium. In microalgae, a conspicuous nutritional deficiency in numerous taxa is that of62, however the 
corresponding KEGG categories (KO00730 and KO00780, respectively) did not show a relationship with pro-
teome size.

A strong positive correlation (R = 0.76, p < 0.001) was observed between proteome size and DNA repair 
pathways (KO03400, Fig. 5), indicating that genes for DNA repair are lost as genome size reduces. This might 
be expected to lead to an accelerated evolutionary rate, reflected in elongated branch lengths on a phylogenomic 
tree. However, no correlation was found between proteome size and phylogenomic tree branch length (the branch 
length was measured from the ancestral node of all species, to the branch tip for each lineage, Supplementary 
Fig. 6). This result contrasts with qualitative observations made in lineages of intracellular bacteria and micro-
sporidia, which have accelerated evolutionary rates associated with genome reduction, reflected in relatively 
long branch lengths on phylogenetic trees63–67. However, phylogenetic trees measure substitution rates which are 
influenced by both underlying mutation rate and replication rate. Since replication rate is hard to measure, this 
complicates attempts tto attribute accelerated evolutionary rates to loss of DNA repair genes.

Figure 4.  Correlation between the number of genes involved in amino acid (A) and lipid (B) biosynthesis 
pathways, with proteome size. After PIC correction, a significant positive correlation was observed between 
proteome size and the number of functional genes involved in amino acid biosynthesis, which are considered 
as water soluble products. However, no significant correlations were observed between proteome size and genes 
involved in biosynthesis of lipids, which are insoluble.

Figure 5.  Correlation of the number of genes involved in DNA repair and recombination with proteome size, 
after PIC correction.
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With a reduction in proteome size, numerous additional categories associated with informational processes 
lost OGs, consistent with the predictions of the PCH27. These categories include translation factors (KO03012), 
ribosome biogenesis (KO03009), spliceosome (KO03041), transfer RNA biogenesis (KO03016), aminoacyl-tRNA 
biosynthesis (KO00970), chaperones and folding catalysts (KO03110) and messenger RNA biogenesis (KO03019). 
Strong and significant positive correlation between proteome size and the number of genes associated with 
genetic information processing is depicted in Fig. 6.

Additional categories that have lost OGs as proteome size has reduced include transporters (KO02000) and 
peroxisome proteins (KO04146). The loss of peroxisome proteins is consistent with the BQH, which explains the 
independent loss of the catalase-peroxidase gene (katG) from several lineages of cyanobacteria11, by proposing 
that catalase-peroxidase is released into the marine medium after lysis of cells that possess the enzyme, how-
ever experimental evidence for this is currently lacking. The correlation strength (R) and significance (p-value) 
between all biosynthesis and biogenesis pathways (n = 40), and proteome size, are supplied in Supplementary 
Table 4. In addition, the degree of reduction in number of genes from the largest proteome size to the smallest 
proteome size was calculated, using the best-fit line as reference. The number of complete genomes used in the 
analysis is limited. As such, some data points may have an influence on the overall slope of the best fit lines, and R 
values. Additional complete genome sequences will help to clarify the results reported here.

Genome reduction, differential gene loss and the Black Queen.  Despite an improvement in ID 
mapping efficiency due to our procedure described in Methods, the overall efficiency was 32% of all genes in the 
16 genomes assigned a K number. Thus, we only assessed a proportion of the total number of genes present, for 
the effects of genome reduction. However, correlations within this subset are meaningful as they represent a sub-
sample and reveal important information regarding the dynamics of genome reduction. While the subset is not 
random but biased towards genes that have had a greater research impetus to be annotated, an argument can be 
made that these genes are more likely to have functional significance in the genomes examined.

An alternative explanation to the BQH for differential gene loss, is that PPEs form tight syntrophic interac-
tions with bacteria, which provide the nutrients corresponding to pathways lost from PPE genomes. This has 
been postulated as a solution to the freeloading of bacterial metabolites that are exchanged in syntrophic bacterial 
interactions68. However, microscopic evidence for such physical associations between the PPEs and syntrophic 
bacteria is currently lacking69, although there is some sequence evidence for an association70. According to the 
BQH, cell lysis constitutes the distribution mechanism of donors. Presumably, transporters would need to evolve 
in the recipient species to benefit from the metabolites, but these show a positive correlation with proteome size 
in the PPEs, and so are reduced in numbers in smaller proteomes.

Figure 6.  Correlation between the number of genes involved in genetic information processing and proteome 
size. After PIC correction, we found strong and significant positive correlation between proteome size and 
genes involved in mRNA (R = 0.7, p < 0.05), and ribosome (R = 0.6, p < 0.5) biogenesis (A). The number of 
functional genes associated with mitochondrial and transfer RNA biogenesis was also significantly correlated to 
proteome size (R = 0.7, p < 0.05) (B).
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Lastly, a reduced Ne has been posited as the cause of genome reduction in intracellular bacteria via gene loss 
by drift, and so this factor was examined in O.tauri. The MSMC analysis uses the expectation-maximization 
algorithm for parameter estimation; convergence was achieved at i = 100 (Supplementary Fig. 7). The analysis 
indicates that the Ne of O.tauri is large (1.01 × 108). The large estimate is consistent with a previous study, which 
calculated an Ne of 1.2 ×107 in O.tauri50 and provides further evidence that reduced Ne as a cause of genome 
reduction is unlikely in this representative species.

Reduction of genome information content and DNA repair.  The positive relationship between pro-
teome size and number of DNA repair pathways is not a prediction of the BQH, but may be explained by the 
concept of a proteomic constraint on DNA repair27. The relationship has been observed in DNA viruses and 
prokaryotes30, and in picocyanobacteria71, but this is the first demonstration of a statistical relationship in eukar-
yotes, although a qualitative link between loss of DNA repair and reduced genome size has been noted in the 
microsporidia72.

The amount of information in a genome (approximated to the proteome size, P) is expected to be related to 
the mutation rate (µ) as follows30:

µ π= −k N s P(2 ) (1)e
1

where Ne is the effective population size, s  is the average selection coefficient of a mutation (which will be delete-
rious on average), π is the genomic heterozygosity (per bp), P is the proteome size (in amino acids) and k is a 
proportionality constant. Both heterozygosity and selection coefficient are expected to be affected by population 
size: π is expected to be inversely related to population size73, while s is positively related to population size74. 
Hence, these two factors will have a tendency to cancel each other out, given a change in population size. This is 
because, while Ne may reduce the average selection coefficient (s), it will increase the mutation load (πP).

The loss of genes involved in informational pathways in addition to DNA repair was observed, and may also 
be explained by the PCH, if such genes are involved in informational fidelity. Each step of genetic information 
transfer, be it replication, or gene expression, involves molecular mechanisms that maintain the fidelity of genetic 
information. Such fidelity-maintaining mechanisms would experience loosened selection under a reduced pro-
teomic constraint, as the mutational load, whether the mutations are genotypic (at the level of DNA), or pheno-
typic (at the level of mRNA or protein75), would be less if the mutational target is smaller. Thus, a reduction in 
the number of genes involved in informational pathways is expected as proteome size reduces, as a result of the 
reduction in the quantity of coding information present.

Conclusion
We have conducted a comparative genomic analysis to test the effect of Black Queen, Proteomic Constraint and 
genetic drift on genome reduction of PPEs. The study provides data consistent with gene loss proposed by the 
BQH. Further work might entail experimental measurement of the metabolites produced by some of the biosyn-
thetic genes lost from the PPEs. When additional PPE genomes from diverse lineages are sequenced, then some 
convergence should be observed in the genes that are lost, if they are influenced by the metabolites present in 
ocean water. The BQH implies that membrane transporters should diversify in order to scavenge external metab-
olites, as biosynthetic genes are lost from the genome. However, an overall increase in membrane transporters 
was not observed as proteome size reduces in the PPEs. A potential explanation is that existing transporters fulfil 
this function without undergoing duplication and divergence. A range of informational genes are lost as genome 
size reduces, which is difficult to explain under a public goods framework. The PCH provides an explanation for 
the loss of informational genes, which is expected as a secondary consequence of genome reduction, as the size 
of the mutational target is also reduced. Furthermore, this study revealed a relatively large Ne for O.tauri, which 
is the smallest free-living eukaryotes yet described and a model organism for the study of biological processes in 
photosynthetic eukaryotes. This suggests that genetic drift (caused by reduced Ne) as a cause of genome reduction 
is unlikely in PPEs.
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