@article {arin_taxonomic_2022, title = {Taxonomic relationship between two small-sized Chaetoceros species (Bacillariophyta): C. tenuissimus and C. salsugineus , and comparison with C. olympicus sp. nov. from Catalan coastal waters (NW Mediterranean)}, journal = {European Journal of Phycology}, volume = {57}, number = {3}, year = {2022}, pages = {277{\textendash}296}, abstract = {

The majority of species of the highly diverse genus Chaetoceros are described as chain-forming, although several species are described as strictly solitary (such as C. tenuissimus) or having an alternate solitary and a chain-forming phase during their life history (such as C. salsugineus). In this study, the diversity of small forms of Chaetoceros from the NW Mediterranean coastal waters was explored through the morphological and molecular characterization of four different strains belonging to two distinct species. Based on their morphology, three of the strains were identified as C. salsugineus (Takano, 1983). The SSU and LSU rDNA sequences represented the first available for well-characterized C. salsugineus strains and were 96.6{\textendash}100\% similar to publicly available C. tenuissimus (Meunier, 1913) sequences. Both species share the same morphological features, such as setae and ultrastructure of the valves, as well as the rimoportula characteristics. In addition, the morphology of the solitary form of C. salsugineus matched with that of C. tenuissimus. Here, we propose the two species as synonyms (the name C. tenuissimus prevailing as it has priority for this taxon), emend the original description and designate an epitype. The fourth strain was identified as C. olympicus sp. nov., a new species, which alternates solitary and chain-forming forms within its life history. The main differential characteristics of this species are the absence of rimoportula both in terminal and intercalary valves, the setae ultrastructure, which is thin and circular in cross-section with a few, slightly twisted, rows of small rectangular poroids and some spirally arranged spines, and the morphology of the resting spores, with primary valve vaulted and covered with short to medium-sized spines, and secondary valve smaller, rounded and smooth. A comparison of C. tenuissimus and C. olympicus with other species as well as information on their life cycle and ecology is also provided.

}, keywords = {RCC3007, RCC3008, RCC5795}, issn = {0967-0262, 1469-4433}, doi = {10.1080/09670262.2021.1966838}, url = {https://www.tandfonline.com/doi/full/10.1080/09670262.2021.1966838}, author = {Arin, Laura and Re{\~n}{\'e}, Albert and Gallisai, Rachele and Sarno, Diana and Garc{\'e}s, Esther and Estrada, Marta} } @article {Arsenieff2020, title = {Diversity and dynamics of relevant nanoplanktonic diatoms in the Western English Channel}, journal = {The ISME Journal}, year = {2020}, note = {Publisher: Springer US tex.mendeley-tags: RCC4657,RCC4658,RCC4659,RCC4660,RCC4661,RCC4662,RCC4663,RCC4664,RCC4665,RCC4666,RCC5154,RCC5839,RCC5840,RCC5841,RCC5842,RCC5843,RCC5844,RCC5845,RCC5846,RCC5847,RCC5848,RCC5849,RCC5850,RCC5851,RCC5852,RCC5853,RCC5854,RCC5855,RCC5856,RCC5857,RCC5859,RCC5860,RCC5861,RCC5862,RCC5863,RCC5864,RCC5865,RCC5866,RCC5867,RCC5868,RCC5869,RCC5870,RCC5871,RCC5872,RCC5873,RCC5875,RCC5876,RCC5877,RCC5878,RCC5879,RCC5880,RCC5881,RCC5882,RCC5883,RCC5884,RCC5885,RCC5886,RCC5887,RCC5921}, month = {apr}, keywords = {RCC4657, RCC4658, RCC4659, RCC4660, RCC4661, RCC4662, RCC4663, RCC4664, RCC4665, RCC4666, RCC5154, RCC5839, RCC5840, RCC5841, RCC5842, RCC5843, RCC5844, RCC5845, RCC5846, RCC5847, RCC5848, RCC5849, RCC5850, RCC5851, RCC5852, RCC5853, RCC5854, RCC5855, RCC5856, RCC5857, RCC5859, RCC5860, RCC5861, RCC5862, RCC5863, RCC5864, RCC5865, RCC5866, RCC5867, RCC5868, RCC5869, RCC5870, RCC5871, RCC5872, RCC5873, RCC5875, RCC5876, RCC5877, RCC5878, RCC5879, RCC5880, RCC5881, RCC5882, RCC5883, RCC5884, RCC5885, RCC5886, RCC5887, RCC5921}, issn = {1751-7362}, doi = {10.1038/s41396-020-0659-6}, url = {http://dx.doi.org/10.1038/s41396-020-0659-6 http://www.nature.com/articles/s41396-020-0659-6}, author = {Arsenieff, Laure and Le Gall, Florence and Rigaut-jalabert, Fabienne and Mah{\'e}, Fr{\'e}d{\'e}ric and Sarno, Diana and Gouhier, L{\'e}na and Baudoux, Anne-claire and Simon, Nathalie} } @article {Gu2017, title = {Adenoides sinensis , a new sand-dwelling dinoflagellate species from China and reexamination of A. eludens from an Atlantic strain}, journal = {Phycologia}, volume = {57}, number = {October}, year = {2017}, note = {tex.mendeley-tags: 2017,RCC1982,rcc,sbr?hyto$_\textrmd$ipo}, pages = {1{\textendash}13}, abstract = {The sand-dwelling?1dinoflagellate generaAdenoidesandPseudadenoidesare morphologically very close butdistinct in their molecular phylogeny. We established three cultures by isolating single cells from sand samples collected inintertidal zones of Qingdao (Yellow Sea), Dongshan (South China Sea) and Brittany (English Channel, North Atlantic,France). Strain morphology was examined with light and scanning electron microscopy, and both large subunitribosomal DNA (LSU rDNA) and small subunit ribosomal DNA (SSU rDNA) sequences were amplified. Molecularphylogeny, corroborated by morphological examination showing the existence of a ventral pore, confirmed theidentification of the French strain (RCC1982) asAdenoides eludens. The Chinese strains differed fromAdenoides eludensin two additional posterior intercalary plates and differed fromPseudadenoidesin one additional apical plate having theplate formula of Po, Cp, X, 50,600, 4S, 5000, 5p, 10000or alternatively Po, Cp, X, 50,600, 5S, 5000, 3p, 20000. Maximumlikelihood and Bayesian inference carried out with concatenated LSU and SSU sequences demonstrated that the Chinesestrains were closely related but different fromA. eludensand, in corroboration with morphological evidence, supportedtheir classification as a distinct species,Adenoides sinensis sp. nov. Morphological and molecular results confirmed theclose relationship between the two generaAdenoidesandPseudadenoides.}, keywords = {2017, rcc, RCC1982, sbr?hyto$_\textrmd$ipo}, doi = {10.2216/17-76.1}, author = {Gu, Haifeng and Li, Xintian and Chom{\'e}rat, Nicolas and Luo, Zhaohe and Sarno, Diana and Gourvil, Priscillia and Balzano, Sergio and Siano, Raffaele} } @article {Balzano2017c, title = {Morphological and genetic diversity of Beaufort Sea diatoms with high contributions from the Chaetoceros neogracilis species complex}, journal = {Journal of Phycology}, volume = {53}, number = {1}, year = {2017}, note = {tex.mendeley-tags: RCC1984,RCC1985,RCC1986,RCC1988,RCC1989,RCC1990,RCC1991,RCC1992,RCC1993,RCC1995,RCC1997,RCC1999,RCC2000,RCC2002,RCC2003,RCC2004,RCC2005,RCC2006,RCC2008,RCC2010,RCC2011,RCC2012,RCC2014,RCC2016,RCC2017,RCC2021,RCC2037,RCC2038,RCC2039,RCC2042,RCC2043,RCC2261,RCC2262,RCC2263,RCC2264,RCC2265,RCC2266,RCC2267,RCC2268,RCC2269,RCC2270,RCC2272,RCC2273,RCC2274,RCC2275,RCC2276,RCC2277,RCC2278,RCC2279,RCC2280,RCC2281,RCC2282,RCC2318,RCC2506,RCC2517,RCC2520,RCC2521,RCC2522}, month = {feb}, pages = {161{\textendash}187}, abstract = {Seventy-five diatom strains isolated from the Beaufort Sea (Canadian Arctic) in the summer of 2009 were characterized by light and electron microscopy (SEM and TEM), as well as 18S and 28S rRNA gene sequencing. These strains group into 20 genotypes and 17 morphotypes and are affiliated with the genera Arcocellulus, Attheya, Chaetoceros, Cylindrotheca, Eucampia, Nitzschia, Porosira, Pseudo-nitzschia, Shionodiscus, Thalassiosira, and Synedropsis. Most of the species have a distribution confined to the northern/polar area. Chaetoceros neogracilis and Chaetoceros gelidus were the most represented taxa. Strains of C. neogracilis were morphologically similar and shared identical 18S rRNA gene sequences, but belonged to four distinct genetic clades based on 28S rRNA, ITS-1 and ITS-2 phylogenies. Secondary structure prediction revealed that these four clades differ in hemi-compensatory base changes (HCBCs) in paired positions of the ITS-2, suggesting their inability to interbreed. Reproductively isolated C. neogracilis genotypes can thus co-occur in summer phytoplankton communities in the Beaufort Sea. C. neogracilis generally occurred as single cells but also formed short colonies. It is phylogenetically distinct from an Antarctic species, erroneously identified in some previous studies as C. neogracilis, but named here as Chaetoceros sp. This work provides taxonomically validated sequences for 20 Arctic diatom taxa, which will facilitate future metabarcoding studies on phytoplankton in this region.}, keywords = {RCC1984, RCC1985, RCC1986, RCC1988, RCC1989, RCC1990, RCC1991, RCC1992, RCC1993, RCC1995, RCC1997, RCC1999, RCC2000, RCC2002, RCC2003, RCC2004, RCC2005, RCC2006, RCC2008, RCC2010, RCC2011, RCC2012, RCC2014, RCC2016, RCC2017, RCC2021, RCC2037, RCC2038, RCC2039, RCC2042, RCC2043, RCC2261, RCC2262, RCC2263, RCC2264, RCC2265, RCC2266, RCC2267, RCC2268, RCC2269, RCC2270, RCC2272, RCC2273, RCC2274, RCC2275, RCC2276, RCC2277, RCC2278, RCC2279, RCC2280, RCC2281, RCC2282, RCC2318, RCC2506, RCC2517, RCC2520, RCC2521, RCC2522}, issn = {00223646}, doi = {10.1111/jpy.12489}, url = {http://doi.wiley.com/10.1111/jpy.12489}, author = {Balzano, Sergio and Percopo, Isabella and Siano, Raffaele and Gourvil, Priscillia and Chanoine, M{\'e}lanie and Marie, Dominique and Vaulot, Daniel and Sarno, Diana}, editor = {Wood, M.} } @article {Percopo2016b, title = {Pseudo-nitzschia arctica sp. nov., a new cold-water cryptic Pseudo-nitzschia species within the P. pseudodelicatissima complex}, journal = {Journal of Phycology}, volume = {52}, number = {2}, year = {2016}, note = {tex.mendeley-tags: RCC2002,RCC2004,RCC2005,RCC2517}, month = {apr}, pages = {184{\textendash}199}, abstract = {A new nontoxic Pseudo-nitzschia species belonging to the P. pseudodelicatissima complex, P. arctica, was isolated from different areas of the Arctic. The erection of P. arctica is mainly supported by molecular data, since the species shares identical ultrastructure with another species in the complex, P. fryxelliana, and represents a new case of crypticity within the genus. Despite their morphological similarity, the two species are not closely related in phylogenies based on LSU, ITS and rbcL. Interestingly, P. arctica is phylogenetically most closely related to P. granii and P. subcurvata, from which the species is, however, morphologically different. P. granii and P. subcurvata lack the central larger interspace which is one of the defining features of the P. pseudodelicatissima complex. The close genetic relationship between P. arctica and the two species P. granii and P. subcurvata is demonstrated by analysis of the secondary structure of ITS2 which revealed no compensatory base changes, two hemi-compensatory base changes, and two deletions in P. arctica with respect to the other two species. These findings emphasize that rates of morphological differentiation, molecular evolution and speciation are often incongruent for Pseudo-nitzschia species, resulting in a restricted phylogenetic value for taxonomic characters used to discriminate species. The description of a new cryptic species, widely distributed in the Arctic and potentially representing an endemic component of the Arctic diatom flora, reinforces the idea of the existence of noncosmopolitan Pseudo-nitzschia species and highlights the need for combined morphological and molecular analyses to assess the distributional patterns of phytoplankton species.}, keywords = {RCC2002, RCC2004, RCC2005, RCC2517}, issn = {00223646}, doi = {10.1111/jpy.12395}, url = {http://doi.wiley.com/10.1111/jpy.12395}, author = {Percopo, Isabella and Ruggiero, Maria Valeria and Balzano, Sergio and Gourvil, Priscillia and Lundholm, Nina and Siano, Raffaele and Tammilehto, Anna and Vaulot, Daniel and Sarno, Diana}, editor = {Mock, T.} } @article {Balzano2012a, title = {Diversity of cultured photosynthetic flagellates in the North East Pacific and Arctic Oceans in summer}, journal = {Biogeosciences}, volume = {9}, year = {2012}, note = {tex.mendeley-tags: 2012,macumba,rcc,sbr?hyto$_\textrmd$ipo}, pages = {4553{\textendash}4571}, keywords = {2012, ASSEMBLE, MACUMBA, MALINA, rcc, SBR$_\textrmP$hyto$_\textrmD$PO, sbr?hyto$_\textrmd$ipo}, doi = {10.5194/bg-9-4553-2012}, author = {Balzano, Sergio and Gourvil, Priscillia and Siano, Raffaele and Chanoine, M{\'e}lanie and Marie, Dominique and Lessard, Sylvie and Sarno, Diana and Vaulot, Daniel} }