%0 Journal Article %J Nature Communications %D 2016 %T A role for diatom-like silicon transporters in calcifying coccolithophores %A Durak, Grazyna M %A Taylor, Alison R %A Probert, Ian %A de Vargas, Colomban %A Audic, Stéphane %A Schroeder, Declan C %A Brownlee, Colin %A Wheeler, Glen L %K (RCC1130 %K (RCC1456) %K 2016 %K biomineralisation %K coccolithophores %K Gephyrocapsa oceanica (RCC1303) and Scyphosphaera %K haptophytes %K RCC1130 %K RCC1303 %K RCC1453 %K RCC1456 %K RCC3432 %K silica %K TMR5 (RCC3432—Sea of Japan) and PZ241 (RCC1453—Med %X Biomineralisation by marine phytoplankton, such as the silicifying diatoms and calcifying coccolithophores, plays an important role in carbon and nutrient cycling in the oceans. Silicification and calcification are distinct cellular processes with no known common mechanisms. As a result, it is thought that coccolithophores are able to outcompete diatoms in Si-depleted waters, which can contribute to the formation of coccolithophore blooms. Here, we show that an expanded family of diatom-like silicon transporters (SITs) are present in both silicifying and calcifying haptophyte phytoplankton, including some coccolithophores of global ecological importance. We find an essential role for Si in calcification in these coccolithophores, indicating that Si uptake contributes to the very different forms of biomineralisation in diatoms and coccolithophores. However, SITs and the requirement for Si are significantly absent from the highly abundant bloom-forming coccolithophores, such as Emiliania huxleyi. These very different requirements for Si in coccolithophores are likely to have major influence on their competitive interactions with diatoms and other siliceous phytoplankton. %B Nature Communications %V 7 %P 10543 %G eng %R 10.1038/ncomms10543