%0 Journal Article %J Frontiers in Microbiology %D 2022 %T Comparative Thermophysiology of Marine Synechococcus CRD1 Strains Isolated From Different Thermal Niches in Iron-Depleted Areas %A Ferrieux, Mathilde %A Dufour, Louison %A Doré, Hugo %A Ratin, Morgane %A Guéneuguès, Audrey %A Chasselin, Léo %A Marie, Dominique %A Rigaut-jalabert, Fabienne %A Le Gall, Florence %A Sciandra, Théo %A Monier, Garance %A Hoebeke, Mark %A Corre, Erwan %A Xia, Xiaomin %A Liu, Hongbin %A Scanlan, David J. %A Partensky, Frédéric %A Garczarek, Laurence %K RCC2374 %K RCC2385 %K RCC2533 %K RCC2534 %K RCC2571 %K RCC515 %K rcc539 %K rcc791 %X Marine Synechococcus cyanobacteria are ubiquitous in the ocean, a feature likely related to their extensive genetic diversity. Amongst the major lineages, clades I and IV preferentially thrive in temperate and cold, nutrient-rich waters, whilst clades II and III prefer warm, nitrogen or phosphorus-depleted waters. The existence of such cold (I/IV) and warm (II/III) thermotypes is corroborated by physiological characterization of representative strains. A fifth clade, CRD1, was recently shown to dominate the Synechococcus community in iron-depleted areas of the world ocean and to encompass three distinct ecologically significant taxonomic units (ESTUs CRD1A-C) occupying different thermal niches, suggesting that distinct thermotypes could also occur within this clade. Here, using comparative thermophysiology of strains representative of these three CRD1 ESTUs we show that the CRD1A strain MITS9220 is a warm thermotype, the CRD1B strain BIOS-U3-1 a cold temperate thermotype, and the CRD1C strain BIOS-E4-1 a warm temperate stenotherm. Curiously, the CRD1B thermotype lacks traits and/or genomic features typical of cold thermotypes. In contrast, we found specific physiological traits of the CRD1 strains compared to their clade I, II, III, and IV counterparts, including a lower growth rate and photosystem II maximal quantum yield at most temperatures and a higher turnover rate of the D1 protein. Together, our data suggests that the CRD1 clade prioritizes adaptation to low-iron conditions over temperature adaptation, even though the occurrence of several CRD1 thermotypes likely explains why the CRD1 clade as a whole occupies most iron-limited waters. %B Frontiers in Microbiology %V 13 %G eng %U https://www.frontiersin.org/article/10.3389/fmicb.2022.893413 %R 10.3389/fmicb.2022.893413 %0 Journal Article %J Journal of Phycology %D 2021 %T No evidence of Phago-mixotropy in Micromonas polaris (Mamiellophyceae), the Dominant Picophytoplankton Species in the Arctic %A Jimenez, Valeria %A Burns, John A. %A Le Gall, Florence %A Not, Fabrice %A Vaulot, Daniel %K Arctic %K Micromonas %K phago-mixotrophy %K phytoplankton %K rcc %K RCC21 %K RCC2288 %K RCC2306 %K RCC4298 %X In the Arctic Ocean, the small green alga Micromonas polaris dominates picophytoplankton during the summer months but is also present in winter. It has been previously hypothesized to be phago-mixotrophic (capable of bacteria ingestion) based on laboratory and field experiments. Prey uptake was analyzed in several M. polaris strains isolated from different regions and depths of the Arctic Ocean and in Ochromonas triangulata, a known phago-mixotroph used as a control. Measuring ingestion of either fluorescent beads or fluorescently labeled bacteria by flow cytometry, we found no evidence of phago-mixotrophy in any M. polaris strain while O. triangulata was ingesting both beads and bacteria. In addition, in silico predictions revealed that members of the genus Micromonas lack a genetic signature of phagocytotic capacity. %B Journal of Phycology %V 57 %P 435–446 %G eng %U https://onlinelibrary.wiley.com/doi/abs/10.1111/jpy.13125 %R 10.1111/jpy.13125 %0 Journal Article %J Elementa: Science of the Anthropocene %D 2020 %T Culturable diversity of Arctic phytoplankton during pack ice melting %A Ribeiro, Catherine Gérikas %A dos Santos, Adriana Lopes %A Gourvil, Priscillia %A Le Gall, Florence %A Marie, Dominique %A Tragin, Margot %A Probert, Ian %A Vaulot, Daniel %K RCC5197 %K RCC5198 %K RCC5199 %K RCC5200 %K RCC5201 %K RCC5202 %K RCC5203 %K RCC5204 %K RCC5205 %K RCC5206 %K RCC5207 %K RCC5208 %K RCC5209 %K RCC5210 %K RCC5211 %K RCC5212 %K RCC5213 %K RCC5214 %K RCC5215 %K RCC5216 %K RCC5217 %K RCC5218 %K RCC5219 %K RCC5220 %K RCC5221 %K RCC5222 %K RCC5223 %K RCC5224 %K RCC5225 %K RCC5226 %K RCC5227 %K RCC5228 %K RCC5229 %K RCC5230 %K RCC5231 %K RCC5232 %K RCC5233 %K RCC5234 %K RCC5235 %K RCC5236 %K RCC5237 %K RCC5238 %K RCC5239 %K RCC5240 %K RCC5241 %K RCC5242 %K RCC5243 %K RCC5244 %K RCC5245 %K RCC5246 %K RCC5247 %K RCC5248 %K RCC5249 %K RCC5250 %K RCC5251 %K RCC5252 %K RCC5253 %K RCC5254 %K RCC5255 %K RCC5256 %K RCC5257 %K RCC5258 %K RCC5259 %K RCC5260 %K RCC5261 %K RCC5262 %K RCC5263 %K RCC5264 %K RCC5265 %K RCC5266 %K RCC5267 %K RCC5268 %K RCC5269 %K RCC5270 %K RCC5271 %K RCC5272 %K RCC5273 %K RCC5274 %K RCC5275 %K RCC5276 %K RCC5277 %K RCC5278 %K RCC5279 %K RCC5280 %K RCC5281 %K RCC5282 %K RCC5283 %K RCC5284 %K RCC5285 %K RCC5286 %K RCC5287 %K RCC5288 %K RCC5289 %K RCC5290 %K RCC5291 %K RCC5292 %K RCC5293 %K RCC5294 %K RCC5295 %K RCC5296 %K RCC5297 %K RCC5298 %K RCC5299 %K RCC5300 %K RCC5301 %K RCC5302 %K RCC5303 %K RCC5304 %K RCC5305 %K RCC5306 %K RCC5307 %K RCC5308 %K RCC5309 %K RCC5310 %K RCC5311 %K RCC5312 %K RCC5313 %K RCC5314 %K RCC5315 %K RCC5316 %K RCC5317 %K RCC5318 %K RCC5319 %K RCC5320 %K RCC5321 %K RCC5322 %K RCC5323 %K RCC5324 %K RCC5325 %K RCC5326 %K RCC5327 %K RCC5328 %K RCC5329 %K RCC5330 %K RCC5331 %K RCC5332 %K RCC5333 %K RCC5334 %K RCC5335 %K RCC5336 %K RCC5337 %K RCC5338 %K RCC5339 %K RCC5340 %K RCC5341 %K RCC5342 %K RCC5343 %K RCC5344 %K RCC5345 %K RCC5346 %K RCC5347 %K RCC5348 %K RCC5349 %K RCC5350 %K RCC5351 %K RCC5352 %K RCC5353 %K RCC5354 %K RCC5355 %K RCC5356 %K RCC5357 %K RCC5358 %K RCC5359 %K RCC5360 %K RCC5361 %K RCC5362 %K RCC5363 %K RCC5364 %K RCC5365 %K RCC5366 %K RCC5367 %K RCC5368 %K RCC5369 %K RCC5370 %K RCC5371 %K RCC5372 %K RCC5373 %K RCC5374 %K RCC5375 %K RCC5376 %K RCC5377 %K RCC5378 %K RCC5379 %K RCC5380 %K RCC5381 %K RCC5382 %K RCC5383 %K RCC5384 %K RCC5385 %K RCC5386 %K RCC5387 %K RCC5388 %K RCC5389 %K RCC5390 %K RCC5391 %K RCC5392 %K RCC5393 %K RCC5394 %K RCC5395 %K RCC5396 %K RCC5397 %K RCC5398 %K RCC5399 %K RCC5400 %K RCC5401 %K RCC5402 %K RCC5403 %K RCC5404 %K RCC5405 %K RCC5406 %K RCC5407 %K RCC5408 %K RCC5409 %K RCC5410 %K RCC5411 %K RCC5412 %K RCC5413 %K RCC5414 %K RCC5415 %K RCC5416 %K RCC5417 %K RCC5418 %K RCC5419 %K RCC5420 %K RCC5421 %K RCC5422 %K RCC5423 %K RCC5424 %K RCC5425 %K RCC5426 %K RCC5427 %K RCC5428 %K RCC5429 %K RCC5430 %K RCC5431 %K RCC5432 %K RCC5433 %K RCC5434 %K RCC5435 %K RCC5436 %K RCC5437 %K RCC5438 %K RCC5439 %K RCC5440 %K RCC5441 %K RCC5442 %K RCC5443 %K RCC5444 %K RCC5445 %K RCC5446 %K RCC5447 %K RCC5448 %K RCC5449 %K RCC5450 %K RCC5451 %K RCC5452 %K RCC5453 %K RCC5454 %K RCC5455 %K RCC5456 %K RCC5457 %K RCC5458 %K RCC5459 %K RCC5460 %K RCC5461 %K RCC5462 %K RCC5463 %K RCC5464 %K RCC5465 %K RCC5466 %K RCC5467 %K RCC5468 %K RCC5469 %K RCC5470 %K RCC5471 %K RCC5472 %K RCC5473 %K RCC5474 %K RCC5475 %K RCC5476 %K RCC5477 %K RCC5478 %K RCC5479 %K RCC5480 %K RCC5481 %K RCC5482 %K RCC5483 %K RCC5484 %K RCC5485 %K RCC5486 %K RCC5487 %K RCC5488 %K RCC5489 %K RCC5490 %K RCC5491 %K RCC5492 %K RCC5493 %K RCC5494 %K RCC5495 %K RCC5496 %K RCC5497 %K RCC5498 %K RCC5499 %K RCC5500 %K RCC5501 %K RCC5502 %K RCC5503 %K RCC5504 %K RCC5505 %K RCC5506 %K RCC5507 %K RCC5508 %K RCC5509 %K RCC5510 %K RCC5511 %K RCC5512 %K RCC5513 %K RCC5514 %K RCC5515 %K RCC5516 %K RCC5517 %K RCC5518 %K RCC5519 %K RCC5520 %K RCC5521 %K RCC5522 %K RCC5523 %K RCC5524 %K RCC5525 %K RCC5526 %K RCC5527 %K RCC5528 %K RCC5529 %K RCC5530 %K RCC5531 %K RCC5532 %K RCC5533 %K RCC5534 %K RCC5535 %K RCC5536 %K RCC5537 %K RCC5538 %K RCC5539 %K RCC5540 %K RCC5541 %K RCC5542 %K RCC5543 %K RCC5544 %K RCC5545 %K RCC5546 %K RCC5547 %K RCC5548 %K RCC5549 %K RCC5550 %K RCC5551 %K RCC5552 %K RCC5553 %K RCC5554 %K RCC5555 %K RCC5556 %K RCC5557 %K RCC5558 %K RCC5559 %K RCC5560 %K RCC5561 %K RCC5562 %K RCC5563 %K RCC5564 %K RCC5565 %K RCC5566 %K RCC5567 %K RCC5568 %K RCC5569 %K RCC5570 %K RCC5571 %K RCC5572 %K RCC5573 %K RCC5574 %K RCC5575 %K RCC5576 %K RCC5577 %K RCC5578 %K RCC5579 %K RCC5580 %K RCC5581 %K RCC5582 %K RCC5583 %K RCC5584 %K RCC5585 %K RCC5586 %K RCC5587 %K RCC5588 %K RCC5589 %K RCC5590 %K RCC5591 %K RCC5592 %K RCC5593 %K RCC5594 %K RCC5595 %K RCC5596 %K RCC5597 %K RCC5598 %K RCC5599 %K RCC5600 %K RCC5601 %K RCC5602 %K RCC5603 %K RCC5604 %K RCC5605 %K RCC5606 %K RCC5607 %K RCC5608 %K RCC5609 %K RCC5610 %K RCC5611 %K RCC5612 %X Massive phytoplankton blooms develop at the Arctic ice edge, sometimes extending far under the pack ice. An extensive culturing effort was conducted before and during a phytoplankton bloom in Baffin Bay between April and July 2016. Different isolation strategies were applied, including flow cytometry cell sorting, manual single cell pipetting and serial dilution. Although all three techniques yielded the most common organisms, each technique retrieved specific taxa, highlighting the importance of using several methods to maximize the number and diversity of isolated strains. More than 1,000 cultures were obtained, characterized by 18S rRNA sequencing and optical microscopy and de-replicated to a subset of 276 strains presented in this work. Strains grouped into 57 genotypes defined by 100% 18S rRNA sequence similarity. These genotypes spread across five divisions: Heterokontophyta, Chlorophyta, Cryptophyta, Haptophyta and Dinophyta. Diatoms were the most abundant group (193 strains), mostly represented by the genera Chaetoceros and Attheya. The genera Rhodomonas and Pyramimonas were the most abundant non-diatom nanoplankton strains, while Micromonas polaris dominated the picoplankton. Diversity at the class level was higher during the peak of the bloom. Potentially new species were isolated, in particular within the genera Navicula, Nitzschia, Coscinodiscus, Thalassiosira, Pyramimonas, Mantoniella and Isochrysis. %B Elementa: Science of the Anthropocene %V 8 %P 6 %8 feb %G eng %U https://www.biorxiv.org/content/10.1101/642264v1 https://www.elementascience.org/article/10.1525/elementa.401/ %R 10.1525/elementa.401 %0 Journal Article %J The ISME Journal %D 2020 %T Diversity and dynamics of relevant nanoplanktonic diatoms in the Western English Channel %A Arsenieff, Laure %A Le Gall, Florence %A Rigaut-jalabert, Fabienne %A Mahé, Frédéric %A Sarno, Diana %A Gouhier, Léna %A Baudoux, Anne-claire %A Simon, Nathalie %K RCC4657 %K RCC4658 %K RCC4659 %K RCC4660 %K RCC4661 %K RCC4662 %K RCC4663 %K RCC4664 %K RCC4665 %K RCC4666 %K RCC5154 %K RCC5839 %K RCC5840 %K RCC5841 %K RCC5842 %K RCC5843 %K RCC5844 %K RCC5845 %K RCC5846 %K RCC5847 %K RCC5848 %K RCC5849 %K RCC5850 %K RCC5851 %K RCC5852 %K RCC5853 %K RCC5854 %K RCC5855 %K RCC5856 %K RCC5857 %K RCC5859 %K RCC5860 %K RCC5861 %K RCC5862 %K RCC5863 %K RCC5864 %K RCC5865 %K RCC5866 %K RCC5867 %K RCC5868 %K RCC5869 %K RCC5870 %K RCC5871 %K RCC5872 %K RCC5873 %K RCC5875 %K RCC5876 %K RCC5877 %K RCC5878 %K RCC5879 %K RCC5880 %K RCC5881 %K RCC5882 %K RCC5883 %K RCC5884 %K RCC5885 %K RCC5886 %K RCC5887 %K RCC5921 %B The ISME Journal %8 apr %G eng %U http://dx.doi.org/10.1038/s41396-020-0659-6 http://www.nature.com/articles/s41396-020-0659-6 %R 10.1038/s41396-020-0659-6 %0 Journal Article %J Frontiers in Microbiology %D 2019 %T First viruses infecting the marine diatom guinardia delicatula %A Arsenieff, Laure %A Simon, Nathalie %A Rigaut-jalabert, Fabienne %A Le Gall, Florence %A Chaffron, Samuel %A Corre, Erwan %A Com, Emmanuelle %A Bigeard, Estelle %A Baudoux, Anne-claire %K diatoms %K genomics %K host-virus dynamics %K RCC1000 %K RCC2023 %K RCC3046 %K RCC3083 %K RCC3093 %K RCC3101 %K RCC4657 %K RCC4659 %K RCC4660 %K RCC4667 %K RCC4834 %K RCC5154 %K RCC5777 %K RCC5778 %K RCC5779 %K RCC5780 %K RCC5781 %K RCC5782 %K RCC5783 %K RCC5784 %K RCC5785 %K RCC5787 %K RCC5788 %K RCC5789 %K RCC5790 %K RCC5792 %K RCC5793 %K RCC5794 %K RCC80 %K single-stranded RNA viruses %K Western English Channel %B Frontiers in Microbiology %V 9 %8 jan %G eng %U https://www.frontiersin.org/article/10.3389/fmicb.2018.03235/full %R 10.3389/fmicb.2018.03235 %0 Journal Article %J Journal of Phycology %D 2017 %T Improvement of phytoplankton culture isolation using single cell sorting by flow cytometry %A Marie, Dominique %A Le Gall, Florence %A Edern, Roseline %A Gourvil, Priscillia %A Vaulot, Daniel %E Valentin, K. %K 2016 %K RCC1008 %K RCC299 %K RCC350 %K RCC4108 %K RCC4548 %K RCC4549 %K RCC4550 %K RCC4551 %K RCC4552 %K RCC4553 %K RCC4554 %K RCC4555 %K RCC4556 %K RCC4557 %K RCC4558 %K RCC4559 %K RCC4560 %K RCC4561 %K RCC4562 %K RCC4563 %K RCC4564 %K RCC4565 %K RCC4566 %K RCC4567 %K RCC4568 %K RCC4569 %K RCC4570 %K RCC4571 %K RCC4572 %K RCC4573 %K RCC4574 %K RCC4575 %K RCC4576 %K RCC4577 %K RCC4578 %K RCC4579 %K RCC4657 %K RCC4658 %K RCC4659 %K RCC4660 %K RCC4661 %K RCC4662 %K RCC4663 %K RCC4664 %K RCC4665 %K RCC4666 %K RCC90 %B Journal of Phycology %V 53 %P 271–282 %8 apr %G eng %U http://doi.wiley.com/10.1111/jpy.12495 %R 10.1111/jpy.12495 %0 Journal Article %J Protist %D 2017 %T Revision of the genus micromonas manton et parke (chlorophyta, mamiellophyceae), of the type species m. pusilla (butcher) manton & parke and of the species m. commoda van baren, bachy and worden and description of two new species based on the genetic %A Simon, Nathalie %A Foulon, Elodie %A Grulois, Daphne %A Six, Christophe %A Desdevises, Yves %A Latimier, Marie %A Le Gall, Florence %A Tragin, Margot %A Houdan, Aude %A Derelle, Evelyne %A Jouenne, Fabien %A Marie, Dominique %A Le Panse, Sophie %A Vaulot, Daniel %A Marin, Birger %K 2017 %K ASSEMBLE %K rcc %K RCC1109 %K RCC114 %K RCC2306 %K RCC2308 %K RCC299 %K RCC372 %K RCC373 %K RCC418 %K RCC434 %K RCC447 %K RCC448 %K RCC449 %K RCC450 %K RCC451 %K RCC461 %K RCC465 %K RCC472 %K RCC497 %K RCC498 %K RCC570 %K RCC629 %K RCC647 %K RCC658 %K RCC676 %K RCC692 %K RCC746 %K RCC803 %K RCC804 %K RCC805 %K RCC806 %K RCC807 %K RCC808 %K RCC828 %K RCC829 %K RCC830 %K RCC831 %K RCC833 %K RCC834 %K RCC835 %K RCC836 %K SBR$_\textrmP$hyto$_\textrmD$IPO %K SBR$_\textrmP$hyto$_\textrmP$PM %K sbr?hyto$_\textrmd$ipo %B Protist %V 168 %P 612–635 %8 nov %G eng %U http://linkinghub.elsevier.com/retrieve/pii/S1434461017300780 %R 10.1016/j.protis.2017.09.002 %0 Journal Article %J Molecular Ecology Resources %D 2015 %T PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy %A Decelle, Johan %A Romac, Sarah %A Stern, Rowena F. %A Bendif, El Mahdi %A Zingone, Adriana %A Audic, Stéphane %A Guiry, Michael D. %A Guillou, Laure %A Tessier, Désiré %A Le Gall, Florence %A Gourvil, Priscillia %A dos Santos, Adriana Lopes %A Probert, Ian %A Vaulot, Daniel %A de Vargas, Colomban %A Christen, Richard %K 2015 %K MACUMBA %K rcc %K RCC?o?dd %K SBR$_\textrmP$hyto$_\textrmD$IPO %K SBR$_\textrmP$hyto$_\textrmE$PPO %K sbr?hyto$_\textrmd$ipo %K sbr?hyto?ppo %X Photosynthetic eukaryotes have a critical role as the main producers in most ecosystems of the biosphere. The ongo- ing environmental metabarcoding revolution opens the perspective for holistic ecosystems biological studies of these organisms, in particular the unicellular microalgae that often lack distinctive morphological characters and have complex life cycles. To interpret environmental sequences, metabarcoding necessarily relies on taxonomically curated databases containing reference sequences of the targeted gene (or barcode) from identified organisms. To date, no such reference framework exists for photosynthetic eukaryotes. In this study, we built the PhytoREF data- base that contains 6490 plastidial 16S rDNA reference sequences that originate from a large diversity of eukaryotes representing all known major photosynthetic lineages. We compiled 3333 amplicon sequences available from public databases and 879 sequences extracted from plastidial genomes, and generated 411 novel sequences from cultured marine microalgal strains belonging to different eukaryotic lineages. A total of 1867 environmental Sanger 16S rDNA sequences were also included in the database. Stringent quality filtering and a phylogeny-based taxonomic classifica- tion were applied for each 16S rDNA sequence. The database mainly focuses on marine microalgae, but sequences from land plants (representing half of the PhytoREF sequences) and freshwater taxa were also included to broaden the applicability of PhytoREF to different aquatic and terrestrial habitats. PhytoREF, accessible via a web interface (http://phytoref.fr), is a new resource in molecular ecology to foster the discovery, assessment and monitoring of the diversity of photosynthetic eukaryotes using high-throughput sequencing. %B Molecular Ecology Resources %V 15 %P 1435–1445 %G eng %U http://doi.wiley.com/10.1111/1755-0998.12401 %R 10.1111/1755-0998.12401