RCC references

Export 140 results:
Author [ Title(Desc)] Year
Filters: First Letter Of Last Name is W  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Bestion E, Barton S, García FC, Warfield R, Yvon-Durocher G.  2020.  Abrupt declines in marine phytoplankton production driven by warming and biodiversity loss in a microcosm experiment. Ecology Letters. 23:457–466.PDF icon Bestion et al_2020_Abrupt declines in marine phytoplankton production driven by warming and.pdf (1.26 MB)
Simmons MP, Sudek S, Monier A, Limardo AJ, Jimenez V, Perle CR, Elrod VA, J. Pennington T, Worden AZ.  2016.  Abundance and biogeography of picoprasinophyte ecotypes and other phytoplankton in the eastern north pacific ocean. Applied and Environmental Microbiology. 82:1693–1705.PDF icon Simmons et al_2016_Abundance and biogeography of picoprasinophyte ecotypes and other phytoplankton.pdf (2.44 MB)
Helliwell KE, Chrachri A, Koester JA, Wharam S, Verret F, Taylor AR, Wheeler GL, Brownlee C.  2019.  Alternative mechanisms for fast na + /ca 2+ signaling in eukaryotes via a novel class of single-domain voltage-gated channels. Current Biology. 29:1503–1511.e6.PDF icon Helliwell et al_2019_Alternative mechanisms for fast na + -ca 2+ signaling in eukaryotes via a novel.pdf (2.62 MB)
Helliwell KE, Chrachri A, Koester JA, Wharam S, Verret F, Taylor AR, Wheeler GL, Brownlee C.  2019.  Alternative mechanisms for fast na + /ca 2+ signaling in eukaryotes via a novel class of single-domain voltage-gated channels. Current Biology. 29:1503–1511.e6.PDF icon Helliwell et al_2019_Alternative mechanisms for fast na + -ca 2+ signaling in eukaryotes via a novel.pdf (2.62 MB)
Meng A, Corre E, Probert I, Gutierrez-Rodriguez A, Siano R, Annamale A, Alberti A, Da Silva C, Wincker P, Le Crom S et al..  2018.  Analysis of the genomic basis of functional diversity in dinoflagellates using a transcriptome-based sequence similarity network. Molecular Ecology. :0–2.PDF icon Meng et al_2018_Analysis of the genomic basis of functional diversity in dinoflagellates using.pdf (1.42 MB)
Wink ALavenant.  2023.  Application of Flow Cytometry and Membrane Inlet Mass Spectrometry as Tools to Assess Dimethyl Sulfide Produced in Emiliania huxleyi (CHC108) Cultures. PDF icon Wink - Application of Flow Cytometry and Membrane Inlet M.pdf (7.53 MB)
Nissimov JI, Campbell CN, Probert I, Wilson WH.  2020.  Aquatic virus culture collection: an absent (but necessary) safety net for environmental microbiologists. Applied Phycology. 00:1–15.PDF icon Nissimov et al_2020_Aquatic virus culture collection.pdf (1.66 MB)
B
Pollara SB, Becker JW, Nunn BL, Boiteau R, Repeta D, Mudge MC, Downing G, Chase D, Harvey EL, Whalen KE.  2021.  Bacterial Quorum-Sensing Signal Arrests Phytoplankton Cell Division and Impacts Virus-Induced Mortality. mSphere. 6:e00009–21,/msphere/6/3/mSph.00009–21.atom.PDF icon Pollara et al. - 2021 - Bacterial Quorum-Sensing Signal Arrests Phytoplank.pdf (1.49 MB)
Strauss J, Choi CJae, Grone J, Wittmers F, Jimenez V, Makareviciute-Fichtner K, Bachy C, Jaeger GSpiro, Poirier C, Eckmann C et al..  2023.  The Bay of Bengal exposes abundant photosynthetic picoplankton and newfound diversity along salinity-driven gradients. Environmental Microbiology. PDF icon Strauss et al_2023_The Bay of Bengal exposes abundant photosynthetic picoplankton and newfound.pdf (7.31 MB)
Strauss J, Choi CJae, Grone J, Wittmers F, Jimenez V, Makareviciute-Fichtner K, Bachy C, Jaeger GSpiro, Poirier C, Eckmann C et al..  2023.  The Bay of Bengal exposes abundant photosynthetic picoplankton and newfound diversity along salinity-driven gradients. Environmental Microbiology. PDF icon Strauss et al_2023_The Bay of Bengal exposes abundant photosynthetic picoplankton and newfound.pdf (7.31 MB)
Annunziata R, Ritter A, Fortunato AEmidio, Cheminant-Navarro S, Agier N, Huysman MJJ, Winge P, Bones A, Bouget F-Y, Lagomarsino MCosentino et al..  2018.  A bHLH-PAS protein regulates light-dependent rhythmic processes in the marine diatom Phaeodactylum tricornutum. bioRxiv. :271445.PDF icon Annunziata et al_2018_A bHLH-PAS protein regulates light-dependent rhythmic processes in the marine.pdf (2.83 MB)
Everroad C, Six C, Partensky F, Thomas JC, Holtzendorff J, Wood AM.  2006.  Biochemical bases of Type IV chromatic adaptation in marine Synechococcus spp.. Journal of Bacteriology. 188:3345–3356.PDF icon Everroad et al_2006_Biochemical bases of Type IV chromatic adaptation in marine Synechococcus spp.pdf (559.03 KB)
Waterbury JB, Watson SW, Valois FW, Franks DG.  1986.  Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. Photosynthetic picoplankton. 214:71–120.
Waterbury JB, Watson SW, Valois FW, Franks DG.  1986.  Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. Photosynthetic picoplankton. 214:71–120.
C
Liao S, Yao Y, Wang L, Wang KJ, Amaral-Zettler L, Longo WM, Huang Y.  2020.  C41 methyl and C42 ethyl alkenones are biomarkers for Group II Isochrysidales. Organic Geochemistry. 147:104081.
Liao S, Yao Y, Wang L, Wang KJ, Amaral-Zettler L, Longo WM, Huang Y.  2020.  C41 methyl and C42 ethyl alkenones are biomarkers for Group II Isochrysidales. Organic Geochemistry. 147:104081.
Phelps SR, Hennon GMM, Dyhrman ST, Limón MDHernán, Williamson OM, Polissar PJ.  2021.  Carbon Isotope Fractionation in Noelaerhabdaceae Algae in Culture and a Critical Evaluation of the Alkenone Paleobarometer. Geochemistry, Geophysics, Geosystems. 22:e2021GC009657.PDF icon Phelps et al. - 2021 - Carbon Isotope Fractionation in Noelaerhabdaceae A.pdf (807.47 KB)
Frada M, Probert I, Allen MJ, Wilson WH, de Vargas C.  2008.  The “Cheshire Cat” escape strategy of the coccolithophore Emiliania huxleyi in response to viral infection. Proceedings of the National Academy of Sciences of the United States of America. 105:15944–15949.PDF icon Frada et al_2008_The “Cheshire Cat” escape strategy of the coccolithophore Emiliania huxleyi in.pdf (886.03 KB)
West NJ, Schonhuber WA, Fuller NJ, Amann RI, Rippka R, Post AF, Scanlan DJ.  2001.  Closely related Prochlorococcus genotypes show remarkably different depth distributions in two oceanic regions as revealed by in situ hybridization using 16S rRNA-targeted oligonucleotides. Microbiology - UK. 147:1731–1744.PDF icon West et al_2001_Closely related Prochlorococcus genotypes show remarkably different depth.pdf (1.97 MB)
Zimmerman AE, Bachy C, Ma X, Roux S, Bin Jang H, Sullivan MB, Waldbauer JR, Worden AZ.  2019.  Closely related viruses of the marine picoeukaryotic alga Ostreococcus lucimarinus exhibit different ecological strategies. Environmental Microbiology. 00PDF icon Zimmerman et al_2019_Closely related viruses of the marine picoeukaryotic alga Ostreococcus.pdf (2.23 MB)
Zimmerman AE, Bachy C, Ma X, Roux S, Bin Jang H, Sullivan MB, Waldbauer JR, Worden AZ.  2019.  Closely related viruses of the marine picoeukaryotic alga Ostreococcus lucimarinus exhibit different ecological strategies. Environmental Microbiology. 00PDF icon Zimmerman et al_2019_Closely related viruses of the marine picoeukaryotic alga Ostreococcus.pdf (2.23 MB)
Suchéras-Marx B, Viseur S, Walker CE, Beaufort L, Probert I, Bolton C.  2022.  Coccolith size rules – What controls the size of coccoliths during coccolithogenesis? Marine Micropaleontology. 170:102080.
Reid EL, Worthy CA, Probert I, Ali ST, Love J, Napier J, Littlechild JA, Somerfield PJ, Allen MJ.  2011.  Coccolithophores: Functional biodiversity, enzymes and bioprospecting. Marine Drugs. 9:586–602.PDF icon Reid et al_2011_Coccolithophores.pdf (369.69 KB)
Satjarak A, Graham LE.  2017.  Comparative DNA sequence analyses of Pyramimonas parkeae (Prasinophyceae) chloroplast genomes. Journal of Phycology. 53:415–424.PDF icon Satjarak_Graham_2017_Comparative DNA sequence analyses of Pyramimonas parkeae (Prasinophyceae).pdf (762.37 KB)

Pages