Algal remodeling in a ubiquitous planktonic photosymbiosis

TitleAlgal remodeling in a ubiquitous planktonic photosymbiosis
Publication TypeJournal Article
Year of Publication2019
AuthorsDecelle J, Stryhanyuk H, Gallet B, Veronesi G, Schmidt M, Balzano S, Marro S, Uwizeye C, Jouneau P-H, Lupette J, Jouhet J, Maréchal É, Schwab Y, Schieber NL, Tucoulou R, Richnow H, Finazzi G, Musat N
JournalCurrent Biology
Volume29
Pagination968–978.e4
Date Publishedmar
ISSN0960-9822
KeywordsRCC1719
Abstract

Photosymbiosis between single-celled hosts and microalgae is common in oceanic plankton, especially in oligotrophic surface waters. However, the functioning of this ecologically important cell-cell interaction and the subcellular mechanisms allowing the host to accommodate and benefit from its microalgae remain enigmatic. Here, using a combination of quantitative single-cell structural and chemical imaging techniques (FIB-SEM, nanoSIMS, Synchrotron X-ray fluorescence), we show that the structural organization, physiology, and trophic status of the algal symbionts (the haptophyte Phaeocystis) significantly change within their acantharian hosts compared to their free-living phase in culture. In symbiosis, algal cell division is blocked, photosynthesis is enhanced, and cell volume is increased by up to 10-fold with a higher number of plastids (from 2 to up to 30) and thylakoid membranes. The multiplication of plastids can lead to a 38-fold increase of the total plastid volume in a cell. Subcellular mapping of nutrients (nitrogen and phosphorous) and their stoichiometric ratios shows that symbiotic algae are impoverished in phosphorous and suggests a higher investment in energy-acquisition machinery rather than in growth. Nanoscale imaging also showed that the host supplies a substantial amount of trace metals (e.g., iron and cobalt), which are stored in algal vacuoles at high concentrations (up to 660 ppm). Sulfur mapping reveals a high concentration in algal vacuoles that may be a source of antioxidant molecules. Overall, this study unveils an unprecedented morphological and metabolic transformation of microalgae following their integration into a host, and it suggests that this widespread symbiosis is a farming strategy wherein the host engulfs and exploits microalgae.

URLhttps://www.sciencedirect.com/science/article/abs/pii/S0960982219301320#undfig1
DOI10.1016/J.CUB.2019.01.073