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ABSTRACT

Phytoplankton are ecologically significant as primary producers and as
regulators of the biogeochemical cycle. However, some may form harmful algal blooms
that are a global problem due to the production of toxins that pose a risk to public
health, the environment, and our economy. Climate change poses a serious threat to
phytoplankton communities. It is, therefore, crucial to advance our knowledge on how
they respond to the changes in temperature that is projected to increase in the next
decades. The main aim of this thesis is to investigate how temperature limits
biogeography, growth, toxin production, and competition in marine phytoplankton. To
achieve this aim, the thesis presents a series of chapters with independent objectives.
In Chapter 2, | analysed a global dataset of species occurrence data to examine the
global patterns in the realised thermal niche and geographic range of marine
phytoplankton. In Chapter 3, | investigated the global patterns of thermal traits, thermal
sensitivity, and exposure and vulnerability to warming in marine phytoplankton. In
Chapter 4 and 5, | conducted laboratory experiments to examine the temperature
dependence of growth and toxin production in marine dinoflagellates. In Chapter 6, |
also conducted laboratory experiments to test the effect of increased temperature on
growth and competition in marine phytoplankton using dinoflagellates as test
organisms. The key results of this thesis are as follows: (1) the current distribution of
marine phytoplankton is limited by temperature, (2) their thermal traits are contingent on
their biogeography and phylogeny, (3) their growth and toxin production is affected by
temperature, and (4) interspecific competition in dinoflagellates is altered by increasing
temperature. The findings of this thesis advance our current predictive understanding of

the ecological responses of marine phytoplankton to climate change.
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critical thermal maximum (CTmax), and fundamental thermal
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between the thermal traits, i.e. thermal optimum (Top), critical
thermal minimum (CTmin), critical thermal maximum (CTmax),
and fundamental thermal niche (FTN) (A — D, respectively) in
marine phytoplankton and the ambient temperatures (mean,
minimum, maximum, and range of sea surface temperature
(SST), respectively) they experienced in their local habitat.
Circles indicate the mean estimates of the traits in non-toxic
(blue) and potentially toxic (red) strains with error bars
representing the standard error of the mean. Generalised
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Figure 4.12 Scatter plots showing the critical thermal maximum (CTmax) of

non-toxic (blue) and potentially toxic (red) marine
phytoplankton strains in relation to their habitat’s maximum
sea surface temperate (SST) projected in 2050 and 2100 at
different climate scenarios (RCP 2.6 and RCP 2.8). The points
above the threshold (broken line) indicates that the projected
SST exceeds the CTmax.

Figure 4.13 Scatter plot of the sensitivity to cold (Smin) and sensitivity to

warm (Smax) temperatures in non-toxic (blue) and potentially
toxic (red) marine phytoplankton strains. This plot is divided
into four quadrants, categorising the strains that are safe and
vulnerable to warming and/or cooling in the present climate
scenario.

Figure 4.14 Variation in thermal sensitivity and vulnerability between

Figure 5.1

toxicity in marine phytoplankton. Box plots show the
distribution of thermal sensitivity to cold and warm temperature
(Smin and Smax, respectively; A and B, respectively) and
vulnerability to warming at RCP 2.6, RCP 2.6, RCP 2.6, and
RCP 2.6 climate scenarios (V26, V45, V6.0, and Vgs,
respectively; C — F, respectively) in non-toxic (blue) and
potentially toxic (red) strains from the combined present and
published experimental data. Outliers are indicated as grey
crosses. Traits in strains (S2 — S3 refers to non-toxic strains of
P. micans, and A. tamutum, respectively; whilst S5 — S6 refers
to potentially toxic strains of P. lima, and A. minutum,
respectively) used in this present study are labelled and
indicated as black circles. Data for Prorocentrum sp. (S1) and
P. minimum (S4) were not available.
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viii

123

124

126

151



Figure 5.2

Figure 5.3

Figure 5.4

(DTX1 and DTX2) in Prorocentrum lima CCAP 1136/11 strain
were fitted against cell density in a linear regression (A — C,
respecitvely). Blue and red circles represent the toxin
concentration estimated in the tube-based experiments without
and with stepwise acclimatisation, respectively. The solid lines
represent the linear fit with 95% confidence interval in grey
shading.

Temperature dependence of the concentration and cellular
content of toxins. The mean concentration of okadaic acid
(OA) and dinophysistoxins (DTX1 and DTX2) in Prorocentrum
lima CCAP 1136/11 strain across the temperature gradient in
the tube-based experiments without and with stepwise
acclimatisation (colored blue and red, respectively) are
presented (A — C) as circles with error bars that represents the
standard error of the mean. The mean cellular content of OA,
DTX1 and DTX2 (D — F) and their relative proportion (G — 1)
across the assay temperatures in the culture experiments are
also presented.

Temperature dependence of toxin production and growth rate
and their relationship. The mean rates of production (solid
circles connected with solid lines) of okadaic acid (OA) and
dinophysistoxins (DTX7 and DTX2) and the mean growth rate
(open circles connected with dashed lines) in Prorocentrum
lima CCAP 1136/11 strain across the temperature gradient in
the first tube-based experiments are presented (A — C) with
error bars representing the standard error of the mean. Toxin
production rates were fitted against the log of growth rates in a
linear regression (D — F). The solid lines represent the linear fit
with 95% confidence interval in grey shading.

Inter-strain variability of cellular toxin content in Prorocentrum
lima observed in this present study and in literature. The
circles indicate the reported estimates or the observed mean
estimates of cell toxin content with error bars representing the
standard error. The red solid line indicates the
reported/observed range. Enclosed in the bracket is the
isolation location followed the assayed temperature in °C. This
data is also summarised in Supplementary Table 5.1.
[Abbreviations: (na) not available/acquired; (a) within 1 — 15
days incubation; (b) after 34 days of incubation; (c) cultured
cells; (d) natural cells]

Figure 6.1 Schematic representation of the experimental designs to

Figure 6.2

examine effect of temperature on the competition in marine
phytoplankton.

Workflow of high throughput microscopy and image processing
and analysis. The samples in the 96-well microplate were
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Figure 6.3

Figure 6.4

Figure 6.5

Figure 6.6

Figure 6.7

examined under a Leica DMI6000B inverted light microscope
at 100x magnification (A). Each sample in a well was scanned
(the red lines indicate the scanning path) on a 3x5 rectangular
pattern producing 15 image tiles per sample (B). Each
microscope image (C1) was processed (C2 — C7) by executing
an Imaged macro in FIJI to produce a spreadsheet of
parameters (C8) and an image overlaid with outlines (C9).
Input and output files for each samples for every sampling
date were organised in a directory with a structure shown in D.

A deep neural network architecture showing an input layer with
13 variables, three hidden layers with 16, 8, and 4 nodes, and
an output layer with 2 nodes used to classify species in
pairwise mixed cultures.

Diagnostic plots used to assess the performance of the deep
neural network models used in this study. The line plots (A)
show the cross-entropy loss and classification accuracy over
epochs for the training (blue) and validation (red) datasets.
The confusion matrix heat map (B) shows the counts of correct
and incorrect classification of species in a pairwise mixed-
species culture. The loss and accuracy of models used to
classify species in pairwise mixed-species cultures at three
different temperature treatments are shown in Supplementary
Figure 5.1 — 5.3. The confusion matrices of these models are
shown in Supplementary Figure 5.4 — 5.6.

Growth rates of marine dinoflagellates in monocultures and co-
cultures across temperature treatments. The points represent
the growth rates of focal species in monocultures (black) and
co-cultures (coloured), whereas the lines represent the trend
of growth in monocultures (broken) and co-cultures (solid) over
temperature.

Relative growth rates of marine dinoflagellates across
temperature. The points represent the growth rates of focal
species in monocultures (black) and co-cultures (coloured),
whereas the lines represent the trend of growth in
monocultures (broken) and co-cultures (solid) over
temperature. Points above the horizontal line indicate higher
growth in co-culture than in monoculture.

Linear relationship between growth and competition in marine
dinoflagellate in three temperature treatments. Relationship
between growth in monocultures and predicted competition
coefficient (PCC) and the relationship between growth in co-
cultures and realised competition coefficient (RCC) are
presented (A and B, respectively). Also, the relationship
between PCC and RCC is also presented (C). The colour-
coded points represent the estimates obtained from focal
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Figure 6.8

Figure 7.1

Figure 7.2

species in the competition. The solid lines represent the fits
with the linear model displayed at the bottom. The points
above the horizontal broken lines or at the right side of the
vertical broken lines indicate that focal species outcompetes
competitor, whilst points below or at the left side of the broken
lines indicates that competing species outcompetes focal
species.

Predicted community structure of marine dinoflagellates in 201
three temperature treatments. Filled bars represent the relative
frequency of non-toxic and potentially toxic dinoflagellate
species across, which were based from the predicted and
realised competition coefficients (PCC and RCC, respectively).

Predicted shifts in the latitudinal limits and range of marine 219
phytoplankton. These are projected using correlative and
mechanistic ecological niche models (ENM) based on the
present and future climate scenarios (RCP 2.6 and RCP 8.5).
The points indicate the projected estimates in non-toxic and
potentially toxic species (coloured blue and red, respectively).
The points above the 1:1 dashed line indicate a poleward shift
in the lower and upper limits of latitudinal range (A and B,
respectively) and expansion of latitudinal range (C). On the
other hand, the points below the 1:1 dashed line indicate a
shift towards the equator in the limits of species range (A and
B) and a range contraction (C). As shown, most of the species
are expected to experience no change or poleward shift in the
lowest and highest latitude at which they can exist. It is also
expected that the species range may expand, contract, or
remain unchanged in the future climate scenarios. The shifts in
the latitudinal limits and range may be dependent on the
taxonomic identity and toxicity of phytoplankton species. The
results are based on the preliminary analysis, which will not be
discussed in detail since it is not within the scope of this
chapter. This figure is for demonstration purpose only to show
how correlative and mechanistic ENM projections are used to
examine ecological response of marine phytoplankton to
climate change.

Predicted changes in the habitat suitability for marine 220
phytoplankton. The number of suitable and unsuitable habitats
are projected using correlative and mechanistic ecological
niche models (ENM) based on the present and future climate
scenarios (RCP 2.6 and RCP 8.5). The points indicate the
projected estimates in non-toxic and potentially toxic species
(coloured blue and red, respectively). The points above the 1:1
dashed line indicate an increase in number of suitable and
unsuitable habitats, and points below this line indicate the
decline in the estimates (A and B). The latitudinal variation of
the relative change in the predicted number of suitable
habitats is also presented (C). It is predicted that the
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Figure 7.3

Figure 7.4

Figure 7.5

percentage of new and loss habitats in the future may vary
across phytoplankton species and between non-toxic and toxic
species. The results are based on the preliminary analysis,
which will not be discussed in details since it is not within the
scope of this chapter. This figure is for demonstration purpose
only to show how correlative and mechanistic ENM projections
are used to examine ecological response of marine
phytoplankton to climate change.

Predicted changes in the diversity of marine phytoplankton. 221
The species richness (SR) is projected using correlative and
mechanistic ecological niche models (ENM) based on the
present and future climate scenarios (RCP 2.6 and RCP 8.5).
The colour gradient represents the change in species richness
per decade (ASR) (A to D). The latitudinal variation of ASR is
also presented (E). It is predicted that climate change will
decrease of diversity in the lower latitudes and increase
diversity in higher latitudes. The results are based on the
preliminary analysis, which will not be discussed in details
since it is not within the scope of this chapter. This figure is for
demonstration purpose only to show how correlative and
mechanistic ENM projections are used to examine ecological
response of marine phytoplankton to climate change.

Predicted changes in the community composition of marine 222
phytoplankton. The Sorensen’s index (S/) is projected using
correlative and mechanistic ecological niche models (ENM)
based on the present and future climate scenarios (RCP 2.6
and RCP 8.5). The colour gradient represents the projected
estimates of S/ (A to D). The latitudinal variation of S/ is also
presented (E). It is predicted that more changes in
phytoplankton community composition is expected in tropics
as compared to the temperate regions in response to climate
change. The results are based on the preliminary analysis,
which will not be discussed in details since it is not within the
scope of this chapter. This figure is for demonstration purpose
only to show how correlative and mechanistic ENM projections
are used to examine ecological response of marine
phytoplankton to climate change.

Predicted changes in the relative proportion of potentially toxic 222
and non-toxic phytoplankton (A PT - NT). The relative

proportion of the number of non-toxic and potentially toxic

species are projected using correlative and mechanistic

ecological niche models (ENM) based on the present and

future climate scenarios (RCP 2.6 and RCP 8.5). The colour

gradient represents the projected estimates of A PT - NT (A to

D). The latitudinal variation of A PT - NT is also presented (E).

As per mechanistic ENM, it is expected that the relative
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composition of toxic species decreased in lower latitude.
However, this projection is different from the correlative ENM
that show a complex latitudinal pattern in A PT — NT. The
results are based on the preliminary analysis, which will not be
discussed in details since it is not within the scope of this
chapter. This figure is for demonstration purpose only to show
how correlative and mechanistic ENM projections are used to
examine ecological response of marine phytoplankton to
climate change.
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GENERAL INTRODUCTION

1.1 PHYTOPLANKTON AND THEIR IMPACTS

Phytoplankton are unicellular photosynthetic microorganisms that are drifting
with the current in the euphotic layer of the oceans (Falkowski and Raven, 2007). They
are widespread and diverse group of organisms, which are distributed across the major
taxonomic groups including the prokaryotes (i.e. cyanobacteria) and the eukaryotes
(e.g. diatoms, dinoflagellates, and chlorophytes) that acquired photosynthesis via
endosymbiosis (Simon et al., 2009). These autotrophic organisms are ecologically
important as primary producers, biological carbon pump regulators, and biogeochemical
cycle mediators (Barsanti and Gualtieri, 2005; Behrenfeld et al., 2006; Falkowski, 2012;

Falkowski and Oliver, 2007).

As the base of aquatic food web, they make their own food by harnessing
sunlight to combine carbon dioxide and water, and produce excess carbohydrates and
oxygen that are made available to organisms at higher trophic levels, fueling the entire
(Falkowski and Raven, 2007). They account for 1% of the photosynthetic biomass at a
global scale and contribute almost half of our planet’s annual net primary production
(Falkowski, 2012). As regulator in the biological carbon pump, they transfer tons of
carbon dioxide from the atmosphere to the water bodies each year. They fix inorganic
carbon (Falkowski and Oliver, 2007) into more usable organic material, transfer it to
other organisms when they are consumed, and deposit it into the sea floor when they
die or decompose (Behrenfeld et al., 2006). As mediator of the biogeochemical
cycles, they also provide a link between metabolic processes and the flux of nutrients

other than carbon (C), such as nitrogen (N), phosphorus (P), silicon (Si), sulfur (S), iron
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(Fe), and other trace elements (Barsanti and Gualtieri, 2005). Key functional
phytoplankton groups have their role in various marine biogeochemical cycles. Silicifiers
(e.g. diatoms and silicoflagellates) play a major role of the biogeochemical cycle of C,
Si, N, and Fe in open ocean, and some are chain forming species that contribute to the
downward export of Si especially after bloom events (Tréguer and De La Rocha, 2013).
Calcifiers (e.g. coccolithopores) control the air-sea carbon dioxide equilibrium,
alkalinity, and surface carbonate chemistry and contribute for more than the marine
carbonate export (Schiebel, 2002). Nitrogen fixers (e,g. Trichodesmium spp. and
diazotrophs) regulate the balance of total oceanic nitrogen and drive new and export
production by providing a new bioavailable nitrogen source to the ocean (Montoya et
al., 2004). Dimethyl sulfate (DMS) producers (e.g. diatoms, dinoflagellates, and
Phaeocystis spp.) influence the atmospheric sulfur cycle by converting dimethyl-
sulfoniopropionate (DMSP) to DMS (Simo, 2001). Picoautotrophs (e.g. Synechococcus
spp. and Prochlorococcus spp.) play a significant role in microbial food web, ocean

nitrogen cycles, and global carbon biogeochemistry (Boyd et al., 2010).

Regardless of their ecological importance, some phytoplankton species, under
certain circumstances, may form harmful algal bloom (HAB) that pose human health
risks, environmental degradation, and economic losses (Berdalet et al., 2016). HAB
species (HABs) may harm marine organisms by production of excessive biomass. The
bacterial degradation of high biomass during the decline phase of the bloom can
diminish the concentration of dissolved oxygen in coastal waters. This results to hypoxic
condition that may cause massive mortalities of fish and invertebrates (Hallegraeff et
al., 2004). Furthermore, high algal biomass in coastal waters may also reduce light

penetration and produce excessive ammonia. This condition degrades the coastal water
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with scums and bad odours, making the area unsuitable for recreation (Berdalet et al.,

2016).

Other HABs produce compounds (e.g. reactive oxygen species (ROS),
polyunsaturated fatty acids (PUFAs, mucilage) that are noxious to fish and invertebrates
(Hallegraeff et al., 2004). Fish kills by these harmful species has been suggested to be
caused by impairment in fish respiratory system by: (1) mechanical damage to the gills
due to serrated algal spines, (2) clogging of gills by the excess mucus produced at the
site of penetration by the spines, and (3) hemorrhage of gill capillaries due to hemolytic
substance produce by the algae (Kent et al., 1995; Yang and Albright, 1992). Some fish
kill is associated with algal blooms that produce extracellular toxins (Bourdelais et al.,

2002).

Some HABs present risk to human health by production of potent biotoxins,
which have been linked to food-borne poisonings. They can be filtered from the water
by bivalve mollusks, which bio-concentrate the algal toxins. These toxic HABs,
especially dinoflagellate species, can cause harm at low abundances by contaminating
shellfish with toxins that are harmful or even lethal to humans (Hallegraeff et al., 2004).
Economic impacts of toxic HABs include commercial fishery losses due to closure of
aquaculture, fish mortalities, and shellfish poisoning scare, and the associated high cost

of monitoring and management of toxic harmful blooms (Anderson et al., 2000).

The well-documented impacts of phytoplankton to the marine environment, to
humans and to other organisms have generated ongoing interests in the physiology and
ecology of phytoplankton, but more especially their response to changes in temperature
(e.g. Litchman et al., 2012; Righetti et al., 2019; Thomas et al., 2012), and particularly in

the context of contemporary climate change (IPCC, 2013).
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1.2 PHYTOPLANKTON IN THE WARMING OCEAN

Excessive emissions of CO: in the atmosphere from anthropogenic activities
lead to ocean warming (IPCC, 2013). The ocean absorbs more than 93% of the
enhanced heat since 1970s which warms the ocean at a rate of ~0.13 °C per decade
(Rhein et al., 2013). Ocean warming is not just an increase in the sea surface
temperature (SST); in fact, two thirds of the excess heat has been absorbed by the
upper ocean whilst one third is taken up into deep ocean (Laffoley and Baxter, 2016).
Ocean heat uptake is not uniform spatially with warming greater in mid-latitude regions
and greatest in the southern hemisphere (Laffoley and Baxter, 2016; Rhein et al.,
2013). These changes in temperature in ocean is likely to have a profound effect on
phytoplankton physiology and ecology, and consequently altering marine ecosystem
structure and function (Regaudie-De-Gioux and Duarte, 2012; Thomas et al., 2012;

Toseland et al., 2013).

Phenology is regarded as the simplest process to track changes in response to
climate change (Rosenzweig et al., 2007). It refers to a naturally recurring phenomenon
in organisms governed by seasonal and interannual variations in climate. The shifts in
phenology are widely recorded impacts of global warming (Root et al., 2003). It is
expected that the increasing temperature allows organisms to initiate activity earlier in
spring and maintain the activity later in fall (Angilletta, 2009). A recent study that
conducted a meta-analysis of recorded impacts of climate change on marine organisms
suggests that phytoplankton phenology have shifted earlier in the year (Poloczanska et
al., 2016). Several phytoplankton species have advanced their timing of the spring
bloom, which may be crucial to the subsequent productivity of the marine ecosystems
(Edwards and Richardson, 2004). The annual phytoplankton spring bloom governs the

seasonal cycle of primary production in many regions (Gran and Braarud, 1935).
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Furthermore, the timing of oceanic CO2 uptake is considered to be under the influence
of phytoplankon phenology (Bennington et al., 2009; Palevsky and Quay, 2017), and
the carbon export and storage efficiency is controlled by the seasonal variability in
primary production (Lutz et al., 2007). Hence, the climate-induced changes in the timing
of the phytoplankton bloom are likely to impact the primary production and carbon

cycling in the future ocean.

Aside from the changes in the timing of biological events, activities of
organisms are also expected to shift in space due to the warming climate. In recent
decades, many plant and animal species have shifted their geographical ranges in
response to climate change (Parmesan et al., 2003). Biogeographical distribution and
community structure of phytoplankton are also expected to shift in the warming ocean
due to alteration in their thermal tolerance. Recent studies have demonstrated the effect
of elevated temperature on metabolic and growth rates in phytoplankton (Boyd et al.,
2013; de Boer et al., 2004; Krol et al., 1997; Levasseur et al., 1990; Maxwell et al.,
1994; Mortain-Bertrand et al., 1988; Regaudie-De-Gioux and Duarte, 2012; Thomas et
al., 2017; Toseland et al., 2013) and on phytoplankton biogeographical repartition
(Chen, 2015; Righetti et al., 2019; Thomas et al., 2016). Increasing SST enhances
stratification that variably affects nutrient and light availability for phytoplankton growth
in the global ocean (Behrenfeld et al., 2006). Growth of the phytoplankton in the tropics
and mid-latitudes will be limited by nutrients because the increased stratification
reduces upwelling of nutrient-rich water to the surface. On the other hand,
phytoplankton growth will be light-limited at higher latitudes, and the increased
stratification retains phytoplankton within the euphotic zone. Certain phytoplankton
species will likely be favoured if the increased thermal stratification will deplete

resources for growth within the euphotic zone. For instance, flagellated phytoplankton,
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such as most harmful dinoflagellates, are capable to vertically migrate to nutrient replete
regions, and therefore are expected to dominate over non-motile species (Falkowski et
al., 2004; Tozzi et al., 2004). Increasing SST will likely trigger the poleward shifts in
thermal niches of phytoplankton species (Barton et al., 2016). It may also trigger to the
decline of phytoplankton diversity in the tropics (Thomas et al., 2012). Warming may
also result to the occupancy of non-indigenous and invasive species in new thermally
defined habitats (Sorte et al., 2010). Furthermore, it may cause the shift towards a

smaller size community structure (Acevedo-Trejos et al., 2015).

In the context of harmful bloom-forming phytoplankton, some specie produce
toxin in response to stressful thermal conditions when growth is strongly inhibited
(Aquino-Cruz, 2012). Long-term starvation also allows toxic phytoplankton to
accumulate toxins (Lee et al., 2016), which can be induced when increased
temperature limits their capacity to uptake nutrients (Sterner and Grover, 1998).
Increased toxicity to elevated temperature could be attributed to the reduction of toxin-
consuming bacterial symbionts (Ashton et al., 2003). Furthermore, warming may also
shift the abundance, distribution, and timing of toxic bloom forming phytoplankton.
Abundance of Gambierdiscus toxicus, a tropical HAB, increases with elevated SST
during El Nifio events (Hales et al., 1999), and its range may expand to higher latitudes
as the ocean gets warmer (Tester, 1994). Moreover, toxic bloom of Alexandrium
catenella occurs usually at SST greater than 13°C in late summer and early fall in Puget
Sound (Washington) (Gessner and Middaugh, 1995), and the annual occurrence of this
bloom in this region may expand as a result of warming (Moore et al., 2008). Ocean
warming may also indirectly influence phytoplankton blooms. It can cause coral-
macroalgal phase shifts (Hughes et al., 2007), that may increase habitat for toxic HAB

epiphytes like G. foxicus (Moore et al., 2008). Climate change may provide favourable



Chapter 1 — General Introduction

conditions for toxic algae to occur (Hallegraeff, 2010). It is likely that toxic blooms and
their impacts may be exacerbated in the future where their duration, intensity, and
frequency may increase in response to changes in the climate (Moore et al., 2008;

Tatters et al., 2013).

With these known effects of ocean warming due to climate change to
phytoplankton, it is crucial to advance our understanding on the physiological and

ecological adaptations of marine phytoplankton to temperature.

1.3 DIRECT EFFECTS OF TEMPERATURE

Growth of phytoplankton depends on the abiotic factors such as light, nutrients,
temperature, as well as biotic factors such as competition and predation. Among these
variables, temperature is one of the most fundamental factors that determines the niche
of phytoplankton (Boyd et al., 2013; de Boer et al., 2004). The direct effect of
temperature on metabolic and growth rates in phytoplankton are well recognised in
literature (Baker et al., 2016; Boyd et al., 2013; de Boer et al., 2004; Geider et al., 1997;
Krol et al., 1997; Levasseur et al., 1990; Maxwell et al., 1994; Mortain-Bertrand et al.,
1988; Regaudie-De-Gioux and Duarte, 2012; Thomas et al., 2017; Toseland et al.,

2013).

Growth of phytoplankton is contingent on the two temperature-dependent
metabolic fluxes: photosynthesis and respiration (Raven and Geider, 1988). Typically,
photosynthesis rises with elevated temperature until it reaches its optimum, and
decreases with further increase in temperature; whilst respiration, on the other hand,

increases with increasing temperature. The influence of temperature on metabolic
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processes in phytoplankton is mainly driven by the kinetics of enzymes. One important
temperature-sensitive enzyme is ribulose-1,5-bisphosphate (Rubisco) with carboxylase
and oxygenase activity that catalyzes two competing biochemical reactions -

photosynthesis and photorespiration, respectively (Hikosaka et al., 2005).

Modification of Rubisco activity is one of the acclimation strategies of
phytoplankton in response to changes in temperature. Some phytoplankton species that
are acclimated to low temperature reduce Rubisco carboxylase activity to decrease the
energy transfer efficiency between the antennae and photosystem Il (PS Il) reaction
centers and consequently prevent photoinhibition (Krol et al., 1997; Levasseur et al.,
1990; Maxwell et al., 1994), whilst others enhance this enzymatic activity to ensure the
utilization of excess energy and increase photosynthetic rates (Mortain-Bertrand et al.,
1988). Phytoplankton that grow beyond the optimal growth temperature inactivates or
denatures their photosynthetic enzymes that unbalances ATP consumption and
production, and eventually affects photosynthesis, respiration and growth (Raven and
Geider, 1988). Furthermore, adaptation to varying temperature for growth in
phytoplankton involve changes in the quantity of enzymes, light-harvesting pigments

and thylakoid membrane integrity (Raven and Geider, 1988).

Increasing temperature enhances growth until it reaches the optimal
temperature, whilst elevated temperature beyond the optimal is lethal and declines
growth. These thermal responses characterise the typical asymmetry of growth-
temperature curve (Figure 1.1), with asymptotic increase in one side, and an abrupt
decline in another side (Ras et al., 2013). The curves can be used to estimate
maximum growth rate (rmax) and the thermal traits such as the (i) the cardinal
temperatures that corresponds to the boundaries of thermal tolerance (i.e. thermal

optima (Topt), critical thermal minima (CTmin), and critical thermal maximum (CTmax), and
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(i) the fundamental thermal niche breadth (FTN) that correspond to the thermal range
on which the species can physiologically tolerate. The shape of the curves reflects the
effect of temperature on enzymatic rate process and on enzyme activation and stability
at high temperatures (Knies and Kingsolver, 2010). Growth rates increase gradually
with increasing temperature below the thermal optimum (Topt), which is attributed to the
exponential increase of the reaction rates with increasing temperature following the
Arrhenius kinetics (Arrhenius, 1915). On the other hand, growth rate decreases with
further increase in temperature above Topt, Which is attributed to the denaturation of

essential proteins (Hochachka and Somero, 2002).

The physiological range of temperature at which phytoplankton can survive
defines the thermal “window” or thermal tolerance limit of species (Boyd et al., 2013;
Chen, 2015). This temperature range is species-specific that reflects the physiological
plasticity of species in response to changes in temperature (de Boer et al., 2004).
Species that are heat stress sensitive have narrow thermal tolerance limit, whilst those

that can survive through acclimation or adaptation have wider range (Chen, 2015).

11
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Figure 1.1. A typical thermal growth curve which can be used to estimate the maximum growth rate
(rmax), the cardinal temperatures i.e. thermal optima (Topt), critical thermal minima (CTmin), and critical
thermal maximum (CTmax), and the fundamental thermal niche breadth (FTN). This figure was drawn
using the temperature growth data of Emiliana huxleyi available in the R package temperatureresponse
(Low-Décarie et al. 2017).

The fundamental thermal niche of a species is defined by species’ physiological
tolerance range to temperature in the absence of biotic interactions (Hutchinson, 1957).
However, the presence of biotic interactions (Jankowski et al., 2013), species dispersal
limitation (Sanchez-Fernandez et al., 2016), and limited climate availability (Soberon
and Nakamura, 2009) reduce the fundamental niche to realised niche. Most
phytoplankton studies are focused on the single-species population responses that
reflect the direct physiological response of organism to changing temperature (e.g.
Boyd et al., 2013; Coello-Camba and Agusti, 2017; Huertas et al., 2011), but often
disregarded the contribution of biotic interaction that may either improve or aggravate a
species’ response to increased temperature. The effect of temperature on interspecific
interactions such as competition is recognised in prior works (e.g. Dunson and Travis,
1991; Park, 1954; Tilman, 1981) and in recent studies (e.g Amarasekare, 2008, 2007;
Gilman et al., 2010; Kordas et al., 2011; Tylianakis et al., 2008; Woodward et al., 2010).

Temperature influences species interaction, and changes in species interaction may

12
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influence the impacts of climate change on populations (Bellard et al., 2012; Cahill et
al., 2013; Tylianakis et al., 2008). Hence, understanding how temperature influences
species interaction is critical for predicting how climate change will alter the structure

and function of phytoplankton communities in the future oceans.

Metabolic theory of ecology (MTE), also known as the metabolic scaling theory
(MST), attempts to provide mechanistic links between the different levels of
organisation in biology and ecology, e.g. from organelles to ecosystems (Brown et al.,
2004). Generally, MTE utilises the fundamental roles of size, temperature, and
metabolism of organisms in determining various patterns within and across individuals,
species, population, community (Brown et al., 2004). Based on this theory, the effect of
temperature on competitive interaction is mainly through its influence on the metabolic
traits of the organisms (Brown et al., 2004; Van Der Meer, 2006). As a fundamental
dimension of the MTE, temperature plays a key role in shaping the ecosystem structure

and function (Brown et al., 2004; Gillooly, 2001).

However, the complexity of the effect of temperature makes it challenging to
develop a mechanistic model to predict responses to climate change. This is because
the processes at different biological and ecological levels (i.e. from organism to
ecosystem) do not just depend on the direct effects of temperature on physiology, but
also on how these direct effects occur in the context of other processes. For example,
the species distribution along the environmental temperature reflects interactions of
species, not just the direct effects of temperature (e.g. Gross and Price, 2000; Price and
Kirkpatrick, 2009). The effect of temperature on interspecific interactions such as
competition is recognised in prior works (e.g. Dunson and Travis, 1991; Park, 1954;
Tilman, 1981) and in recent studies (e.g Amarasekare, 2008, 2007; Gilman et al., 2010;

Kordas et al., 2011; Tylianakis et al., 2008; Woodward et al., 2010). Despite these
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efforts, more studies are needed to elucidate the physiological mechanism of

interspecific competition in response to temperature.

The thermal performance curves (TPC) between two species can be compared
to predict the outcome of competition. In a given temperature, patterns of species
replacement with the dominance of species with the higher growth rate can be observed
along a thermal gradient, which can occur in several ways. One way is when both
species are generalists with similar TPC but have different thermal optimum (Topt).
Another way is when one species is a specialist and the other is a generalist, but both
have the same Topt. In both ways, dominance of a species is dependent on local
temperature. Species replacement patterns can also occur when the competing species
have unequal strengths of density dependence that differ with temperature. In this
scenario, a species can be outcompeted by competitor due to its sensitivity to the per
capita effects of the competing species in a given temperature, and not because it has

low carrying capacity (Reuman et al., 2014).

In the context of toxic species, temperature is one of the most fundamental
abiotic factors that may have a direct effect, or an indirect effect if growth and toxin
production is uncoupled (Cembella, 1998). Temperature-dependent effect of toxin
production is associated with species-specific growth rate, and hence production of
toxins is dependent on the thermal tolerance of the species. Hence, the effect of
temperature on toxin production has implication on how toxic species may influence the
structure and function of marine ecosystems in the future climate scenarios.
Supplementary Information 1.1 presents a review that summarises our current
knowledge on the evolution and ecology of toxin production by phytoplankton, and
provided ecophysiological insights into the expected change in toxic bloom formation

with climate change, which brings issues to the debate whether toxin production may
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provide a competitive advantage among phytoplankton in the future climate change

scenarios.

Concisely, the critical roles of temperature on the physiology, growth, and
species interaction of phytoplankton are recognised in numerous studies (e.g. Bestion
et al., 2018; Brun et al., 2015; Coello-Camba et al., 2015; Grimaud et al., 2017; Raven
and Geider, 1988). Despite these efforts, our knowledge is still limited, particularly on
how toxic phytoplankton respond to changes in temperature. Elucidating the thermal
response of non-toxic and toxic marine phytoplankton will advance our ability to predict

the biogeographic distribution of harmful blooms in the future climate scenarios.

1.4 PREDICTING BIOGEOGRAPHY IN THE FUTURE CLIMATE

In recent years, there have been an impressive growth in use of modeling
approaches to predict the biological impacts of climate change (for reviews see Araujo
and Guisan, 2006; Austin, 2006, 2002; Guisan and Thuiller, 2005; Guisan and
Zimmermann, 2000; Jiménez-Valverde et al., 2008; Morin and Lechowicz, 2008;
Peterson, 2006; Rushton et al., 2004). These modeling approaches are empirical or
mathematical approximations to ecological niche of a species (Marcia Barbosa et al.,
2012), and are often termed as ecological niche models (ENM), species distribution
models (SDM), habitat distribution models (HDM), or climate envelope models (CEM).
These models use the concept of ecological niche to predict the distribution of species

in geographic space.

There are several definitions of ecological niche that have been proposed over
the years. The earliest definition is by Grinnell (1917) who proposed that a niche is a

portion of the habitat that contains the environmental conditions necessary for the
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survival and reproduction of individuals of a species. Conversely, Elton (1927) defined a
niche with the emphasis of the functional role of species in community, particularly its
position in food webs. Grinell's niche concept is based on the broad-scale variables
such as the climate that are not affected by the density of species, whereas Elton’s
niche concept is based on fine-scale variables such as the nutrients that a species can
consume or modify (Soberon, 2007). Hence, these two niche concepts associated the
term niche with the environmental space for species to occupy. Contrary to this,
Hutchinson (1957) defined the niche as an innate property of a species not of the
environment. The Huchinson’s concept of fundamental and realised niches is widely
used in the modeling to predict the geographic distributions in the changing climate. The
fundamental niche represents the abiotic factors (i.e. one dimension for each variable)

that regulate the success of a species (Wiens and Graham, 2005).

In practice, a limited number of factors is used to define the niches, and among
the abiotic factors, temperature have played a critical role in characterising the
fundamental niches of species (Lima et al., 2007; Thomas et al., 2012; Walther et al.,
2002). The fundamental niche of a species is reduced into realised niche when a
species does not occupy the entirety of the fundamental niche due to niche exclusion by
competition (Hutchinson, 1957). The concept of realised niche is replaced by Jackson
and Overpeck (2000) who introduced potential niche, which is the intersection between
available environmental space and the fundamental niche space. Some part of the
fundamental niche space may lie outside the environmental space at a given time.
Hence, the realised niche is a subset of the potential niche. Three different niches, i.e.
fundamental niche, potential niche, and realised niche, have been adapted in several

studies (e.g. Colwell and Rangel, 2009; Soberon and Nakamura, 2009).
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Another theory is the occupied niche concept that postulates that the species
distribution are constrained by geographical and historical factors, as wells as biotic
interactions, such as competition, predation, symbiosis and parasitism (Pearson, 2007).
Unlike the realised niche as defined by Hutchinson (1957) was only limited by species
competition, not by other factors such as dispersal limitations. Therefore, it is expected
that the occupied niche is smaller than the realised niche. Another important concepts
to consider are the source-sink theory and the dispersal limitation. In a source-sink
theory, some populations may occupy unsuitable habitats (sinks) because of the
immigration from healthier nearby populations (sources), and individuals in the sinks
may die by unfavorable environmental conditions and are replaced by new immigrants
(Pulliam, 2000). Here, the realised niche is larger than the fundamental niche when
species occupies habitats that are inadequate and not contained in the fundamental
niche (Pulliam, 2000). On the other hand, a species may not occupy suitable habitats

due to historical reason and dispersal limitations (Holt, 2003).

The effect of climate change on species can be examined by modeling the
ecological niche and then projecting the model into the future to determine any changes
on the location of the niche. Mechanistic and correlative ENM have been used to model

the ecological niche (Pearson and Dawson, 2003).

Mechanistic ENM is based on mathematical description that relate the
environmental tolerance of a species to its population dynamics. These models are
calculated with physiological data, and are used to establish a causal relationship
among the species distribution and the variables, independently of the species records
(Kearney, 2006; Kearney and Porter, 2009, 2004). Hence, the fundamental niche can
be derived from mechanistic models. Mechanistic models provide an explicit approach

to predict geographic distribution of species with assumptions that can be modified to
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integrate further biological detail, such as biotic interactions, dispersal limitations, and
evolutionary adaptation. However, extensive knowledge of the biology of the species
(e.g. the behavior, physiology, and life history) is required to implement these models
(Angilletta, 2009). On the other hand, correlative ENM links present geographic
distribution of a species to its local environmental conditions to determine its niche and
can be used to predict a biogeographic shift during climate change (Elith et al., 2006;

Hijmans and Graham, 2006).

Correlative ENM provide convenient approach to predict global biogeography
since these models only need environmental data that are related to the occurrence
locations of species (Graham et al., 2004; Guisan and Thuiller, 2005), and to a certain
extent, these models can also deal with geographic variation (Murphy and Lovett-Doust,
2007) and species interactions such as competition and predation (Araujo and Luoto,
2007; Sutherst et al., 2007) (Araujo and Luoto, 2007; Sutherst et al. 2007). However,
dispersal and evolutionary responses are not accounted in the correlative models
(Pearson and Dawson, 2003). Correlative ENM are calculated with species distribution
records, and depending on the type of species’ records, each model is a different
representation of the realised niche. Correlative models using pseudo-absences or
absences and presence records forecast the probability of finding the species in a
particular place, whereas correlative models using only presence records forecast the

suitability of a particular habitat for the species .

Ecological niche modeling has been used in recent phytoplankton studies.
Thomas et al. (2012) used a mechanistic ENM to investigate how warming leads to
poleward shifts in species’ thermal niches and cause the decline of phytoplankton
diversity in the absence of an evolutionary response. Also, Irwin et al. (2012) compiled

occurrence data for 119 phytoplankton species obtained from plankton recorder with
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climatological environmental variables in the North Atlantic to obtain ecological
response functions of each species using correlative ENM. Brun et al. (2015)
characterised the realised niche of 133 open ocean phytoplankton taxa species using
correlative ENM with observations from the MAREDAT initiative. Furthermore, Ajani et
al. (2018) obtained long-term phytoplankton community composition and environmental
data from a Pacific Ocean coastal station offshore from Sydney, Australia, and used
correlative ENM to examine whether the realised niches of phytoplankton are fixed or
shift in response to changing environmental conditions. More recently, Righetti et al.
(2019) investigated the monthly phytoplankton species richness by using correlative
ENM and global phytoplankton observations to predict global biogeographic patterns of
536 species of phytoplankton. All these studies have demonstrated the usefulness of
ecological niche modeling as valuable tool to improve our understanding on how

phytoplankton will respond to the expected changes in the climate.
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1.5 THESIS STRUCTURE

Given the introductions above, the main aim of this thesis is to investigate how

temperature limits biogeography, growth, toxin production, and competition in marine

phytoplankton. To achieve this aim, the thesis presents a series of chapters with

independent objectives, which is structured as follows:

Chapter 2 presents the analysis of species occurrence records to investigate the
thermal limits to the current biogeographic distribution of marine phytoplankton.
Here, | examined whether the patterns in the biogeography of marine phytoplankton
follow classical macroecological theories (e.g. Janzen’s Rule, Rapoport’s rule, and
niche breadth—-range size hypothesis). Also, | tested if the observed patterns can be
explained by environmental temperature, habitat availability, phytoplankton diversity,
and the seasonal variability of these factors.

Chapter 3 presents the global pattern of thermal biology in marine phytoplankton
using the thermal traits derived from the published laboratory results and from sea
surface temperature of the species’ occurrence. In this chapter, | determined the
congruence and inequality between physiology- and occurrence-based thermal
traits. | also evaluated the variation in the inequality between physiology- and
occurrence-based thermal traits, thermal sensitivity, exposure and vulnerability to
warming across the gradient of latitude, thermal affinity, and thermal specialisation.
Furthermore, | assessed the phylogenetic effect on these thermal attributes in
marine phytoplankton.

Chapter 4 reports the findings of the laboratory experiments that test the
temperature dependence of the growth in marine phytoplankton. Here, | determined
whether non-toxic and potentially toxic marine phytoplankton exhibit variation in (i)

temperature dependence of growth, (ii) maximum growth rates and thermal traits,
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(iii) relationship between maximum growth rates and thermal traits, (iv) trait-
environment relationship, and (v) thermal safety and vulnerability.

Chapter 5 reports the results of the laboratory experiments that examine the
temperature dependence of toxin production in marine phytoplankton. Here, |
examined the temperature dependence of the concentration, cellular content,
relative composition, and cellular production rate of toxins and their relationship with
growth in a toxic model organism.

Chapter 6 reports the results of laboratory experiment that examine the effect of
warming on growth and competition in phytoplankton using marine dinoflagellates as
model organisms. In this chapter, | evaluated the growth responses of species to
warming in the absence and presence of competitors. | also tested whether the
growth and competitive responses to different temperature treatments are
dependent or not on the taxonomic identity and toxicity of focal and competitor
species. Moreover, | assessed the relationship between growth rates and
competition coefficients across the different temperature treatments.

Chapter 7 provides a general discussion of this thesis. In this final chapter, |
synthesised the key findings of the research and discussed their implications to the
global change ecology of marine phytoplankton. | also discussed the future work that

come to light from the thesis.
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THERMAL LIMITS TO THE BIOGEOGRAPHY OF MARINE PHYTOPLANKTON IN

THE CONTEMPORARY OCEAN

ABSTRACT

Temperature plays a critical role in shaping the geographic distribution of
marine phytoplankton. Current theories suggest that species that experience greater
climate variability will be adapted to a wider thermal range than those species thriving in
a stable thermal condition. It remains unclear whether the biogeographical patterns of
marine phytoplankton conform to these theories. Here, we analysed the global dataset
of species occurrence data to investigate the latitudinal patterns in the realised thermal
niche and geographic range of marine phytoplankton. Our findings show complex
patterns in the biogeography of marine phytoplankton that do not strictly conform to the
classical macroecological theories. We found (1) non-monotonous latitudinal trend in
niche breadth, (2) narrower niche in the tropics, (3) unclear latitudinal variation in
geographic range, and (4) weak positive relationship between thermal niche and
geographic range. These complex patterns are driven by temperature, climate
variability, habitat availability, and diversity. Our findings support our current expectation
that highly diverse phytoplankton communities in the tropics may be the most at threat

from ocean warming.
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2.1 INTRODUCTION

The biogeographic distribution of organisms is regulated in part by climatic
conditions. Among the climate variables, temperature plays one of the most
fundamental roles in limiting the biogeography of organisms from polar to tropical
oceans (Stuart-Smith et al., 2017, 2015; Tittensor et al., 2010). The range of
temperatures at which organisms can survive defines the thermal ‘window’ or thermal
niche (Boyd et al., 2013; Chen, 2015), the width of which reflects the physiological
plasticity to temperature of a given organism (de Boer et al., 2004). Species that are
temperature sensitive have narrow thermal tolerance ranges, whilst those that can
survive through acclimation or adaptation have wider ranges (Chen, 2015).
Understanding the mechanisms by which thermal niche influence the distribution of
species will improve our ability to predict their ecological and evolutionary responses to
changes in temperatures under ongoing global climate change.

Theories linking niche breadth with latitude are well established. One
remarkably prominent idea is that niches become narrower toward the tropics. Janzen’s
Rule suggests that reduced seasonal thermal variation selects for narrower thermal
tolerance (Janzen, 1967). It is expected that tropical species living in a stable thermal
condition will be adapted to a narrower thermal range than the temperate species that
experience greater seasonal temperature extremes (Sunday et al., 2011). This pattern
has been demonstrated in several studies on terrestrial and marine species (Deutsch et
al., 2008; Stuart-Smith et al., 2017; Sunday et al., 2011). Following the premise of lower
variability in the tropics, the geographic extent of species ranges is expected to
decrease at lower latitude as postulated in Rapoport’s rule (Stevens, 1989).

Furthermore, species in the temperate regions are expected to become more
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widespread as they can utilise resources (e.g. light and nutrients) within a wider thermal
condition as posited in the niche breadth—-range size hypothesis (Slatyer et al., 2013).
The patterns predicted by the Rapoport’s rule and the niche breadth—range size
hypothesis are confounded by the effect of latitudinal gradients in habitat (temperature)
availability and the effect of seasonality (TomasSovych et al., 2016). The concept that
narrower niches in the tropics serve as a premise to several hypotheses that explain the
latitudinal trends in species richness (Willig et al., 2003; Willig and Presley, 2018).
Alternatively, species richness has been proposed to indirectly affect the latitudinal
changes in niche breadth (Vazquez and Stevens, 2004).

Here, we tested whether marine phytoplankton conforms with classical
macroecological pattern and whether these patterns can be explained by temperature,
habitat availability, diversity, and their seasonal variability. The effect of temperature on
phytoplankton has been well studied (Barton et al., 2018; Boyd et al., 2013; Righetti et
al., 2019; Thomas et al., 2012; Wang et al., 2018), however, the relationship of niche
breadth and geographic range to latitude and temperature is still unclear in marine
phytoplankton. Our current understanding of the global patterns in thermal tolerance of
phytoplankton has been predominantly inferred from compiling the results of laboratory
experiments that quantify the effect of temperature on growth (Chen, 2015; Thomas et
al., 2012). In these studies, the relationship between the fitness of phytoplankton and
temperature are expressed using thermal performance curves (TPC). However,
inference from TPC is influenced by model choice and data quality (Low-Décarie et al.,
2017). Most phytoplankton studies have largely focused on thermal optima that have
been shown to decrease with increasing latitude (Chen, 2015; Thomas et al., 2012).
However, no clear latitudinal pattern has been observed for the thermal niche breadth in

phytoplankton based on the experimental results (Chen, 2015; Thomas et al., 2012). It
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remains unknown whether phytoplankton will have the same pattern using a global
dataset of species occurrences as demonstrated in several studies on other ectotherms
such as macro-invertebrates and fishes (Deutsch et al., 2008; Stuart-Smith et al., 2017).
In this study, we analyse species occurrence records to investigate the thermal
limits to biogeographic distribution of marine phytoplankton. We examine whether the
patterns in the biogeography of marine phytoplankton would follow the classical
macroecological theories. Also, we test if the observed patterns can be explained by
temperature, habitat availability, diversity, and their seasonal variability. We hypothesise
that species thriving in thermally stable and warmer oceans would have narrower
thermal and geographical ranges than the temperate species that experience higher
seasonal temperature extremes. We discuss our results in light of their congruency with
the existing theories and highlight possible mechanisms that could explain the observed

biogeographical patterns in marine phytoplankton.

2.2 MATERIALS AND METHOD

2.2.1 Occurrence data collection and processing

Occurrence records of phytoplankton species from major taxonomic groups
were downloaded from Ocean Biogeographic Information System (OBIS) (GBIF.org,
2018) and Global Biodiversity Information Facility (GBIF) (OBIS, 2018). Additional
occurrence records of coccolithophores (O’Brien et al., 2013), diatoms (Leblanc et al.,
2012), and Phaeocystis spp. (Vogt et al., 2012) were collected from the Marine
Ecosystem Data (MAREDAT) initiative (Buitenhuis et al., 2013). Also, supplementary
records of phytoplankton in the tropical and subtropical regions were obtained from

Estrada et al. (Estrada et al., 2016).
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The data were compiled and curated to only include records with complete
spatial and temporal information (i.e. Global Positioning System (GPS) coordinates and
year of the collection), records reported from 2000 to 2014, and records of
phytoplankton identified at the species level. Species names in the original data were
validated against the reference list in GBIF Backbone Taxonomy (GBIF Secretariat,
2019). The species names were subsequently curated to merge spelling variants and
synonymous names and to exclude records that could not be traced on the checklist
dataset. This resulted in occurrence dataset with 771,286 observations representing
1,681 species recorded from 89°N to 78°S between 2000 and 2014 (Figure 2.1;
Supplementary Figure 2.1). These observations were spatially biased, with the majority
of the observations originating from temperate coastal regions in the northern

hemisphere (Supplementary Table 2.1).

SST(°C)

Figure 2.1. Geographic locations of the occurrence records of phytoplankton species retrieved from the
four data sources used in this study. The curated dataset is comprised of 62,597 observations from 1,062
geographic variants of phytoplankton representing 331 species from 13 taxonomic classes across 43
regions recorded between 2000 and 2014, which were retrieved from OBIS, GBIF, MAREDAT, and
Estrada et. al. (2016). The colour gradient indicates the long-term annual average SST data at 5 arcmin
between 2000 and 2014 retrieved from BioORACLE.

To minimise the effects of spatial bias, the occurrence dataset was further

curated to exclude duplicates and records verified being on land. Furthermore, the data
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were spatially filtered to ensure that no two records were within 10 km of one another.
Spatial filtering can reduce the effect of sampling bias and commonly used to improve
the performance of ecological niche model (Boria et al., 2014). Subsequently, the
records were clustered into regions based on the Longhurst’s division of the world’s
oceans (Flanders Marine Institute, 2009; Longhurst, 2007). The dataset was screened
to exclude species that has less than 10 records in a region, and the total number of
regional records for species ranged from 10 to 2,456. The final dataset contained
62,597 observations from 1,062 geographic variants of phytoplankton representing 331

species from 13 taxonomic classes across 43 regions (Supplementary Figure 2.2).

2.2.2 Sea surface temperature data collection and processing

Global sea surface temperature (SST, °C) data at 5 arcmin (c. 0.08° or 9.2 km
at the equator) between 2000 and 2014 were downloaded from Bio-ORACLE (Ocean
Rasters for Analysis of Climate and Environment) (Assis et al., 2018). Specifically,
long-term average annual SST and seasonal SST extremes, i.e. the average
temperature of the warmest and coolest months (Supplementary Figure 2.3) were
downloaded to examine spatial variability of surface water temperature and to examine
the contemporary thermal conditions experienced by marine phytoplankton. These data
were matched with the georeferenced species occurrence data and were used in the

subsequent thermal biogeographic analysis.

2.2.3 Estimation of thermal niche and geographic range
Thermal traits were calculated in two ways following by Stuart-Smith et al.
(Stuart-Smith et al., 2017): (i) the 5" and 95" percentiles of long-term average annual

SST (across all locations for which species occurrence was recorded) were determined
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to represent the lower and upper thermal limits, respectively (LTL and UTL,
respectively) and to provide a measure of realised thermal breadth (RTN; i.e. the
average temperature range experienced by a species across its geographic range); (ii)
the 5" percentile of the long-term minimum SST and the 95" percentile of the long-term
maximum SST (across all locations for which species occurrence was recorded) were
used to represent the extreme thermal limits (L7L*and UTL¥, respectively) and to
estimate realised extreme thermal breadth (RTN*; i.e. niche that covered the thermal
extremes experienced by species throughout its geographic range). The thermal
midpoints (TM and TM* ) between the 5" and 95" percentiles of the thermal distribution
occupied by a species was used to estimate the central tendency of the realised thermal
distribution of the species and was considered a proxy for optimal temperature for the
ecological success of the species (Stuart-Smith et al., 2015). This approach has the
advantage of avoiding the previously mentioned challenges of model choice and the
influence of data quality arising from models of TPC (Low-Décarie et al., 2017).
Geographic range size (GR, km?) was calculated as the area of a polygon in angular
coordinates on an ellipsoid (Karney, 2013).

To account for uncertainty arising from the error in the estimate of thermal traits,
bootstrapping technique was used to determine the standard error of thermal limits,
thermal midpoint, thermal niche breadth, geographic range size and the latitudinal
midpoint of each geographic variants of phytoplankton species. In this, re-sampling with
replacement was conducted on the sample for 10,000 times and the estimates were
made from every bootstrap re-sample. The bootstrap estimate of bias (i.e. difference
between the estimate calculated using the original sample and the mean of the
bootstrap estimate), the standard error of estimate (i.e. standard deviation of the

bootstrapped estimates), and the confidence interval (i.e. the lower and upper limits of
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95% confidence interval) were determined (Supplementary Figure 2.4). The bias-
corrected estimates (i.e. the difference between the original sample estimate and the
bootstrap estimate of bias) were used in the succeeding regression analysis, the
estimates in geographic range size of which the bias correction was too strong

producing estimates below zero (30% of the dataset).

2.2.4 Analysis of trends in thermal limits, niche breadth, and range size

Relationships between variables were initially examined using generalised
linear mixed-effects model (GLMM) (Bolker et al., 2009). Latitude and temperature were
used as fixed predictors for thermal limits, thermal niche breadth and geographic range
size in marine phytoplankton. Thermal limits and niche breadth were also considered as
a predictor for geographic range size to examine their postulated relationship in marine
phytoplankton. The random effects of ocean regions and taxonomic class were included
in the mixed models to account for the possible and biogeographic structure and
phylogenetically-conserved effects. All models were conducted separately for the
average annual and seasonal extreme SST to account for the effect of average and
extreme thermal conditions experienced by species across their geographic range,
weighted by the number of unique locations.

To assess the non-linearity of the relationship between variables, both the linear
and quadratic terms were included in the GLMM. Likelihood ratio (LR) test was used to
determine the significance of a single factor by comparing the fit for models with and
without the factor. Akaike information criterion (A/C) was used to determine whether a
full model with linear and quadratic terms would describe the relationship better than a
reduced model. Coefficient of determination for each model was estimated to describe

the proportion of variance explained by the fixed factor alone (i.e. mariginal R?) and by
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both the fixed and random factors (i.e. conditional R?) following Nakagawa and
Schielzeth (Nakagawa and Schielzeth, 2013). In addition to GLMM, generalised additive
mixed model (GAMM) (Pedersen et al., 2019) with cubic regression splines was used to
gain more insight into any non-linear responses that may exist. In this function, the
smooth is treated as a fixed effect, whilst the wiggly components of the smooth are
treated as random effects. GAMM and GLMM were used to ensure higher confidence in
the interpretation of the relationships. Regression diagnostics were used to evaluate the
residuals of the models and to examine whether or not there are observations with a
large, undue influence on the analysis (Supplementary Figure 2.5). Using this graphical
method, we found that the residuals of the models predicting geographic ranges
deviated from normality, and hence we logio-transformed the estimates to improve the
linearity of the residuals.

In summary, 21 models were fitted in GLMM with the linear term only, in GLMM
with linear and quadratic terms, and in GAMM. The model fits are visualised in
Supplementary Figure 2.6 — 2.9 and are summarised in Supplementary Table 2.2 — 2.3
(GLMM) and in Supplementary Table 2.4 — 2.5 (GAMM). Generally, the GAMM models
had a better fit than GLMM models, and hence results of the GAMM were preferably

reported in the text.

2.2.5 Estimation of climate variability, habitat availability, and diversity
Additionally, the three environmental factors were estimated to be used as
explanatory variables in the subsequent analysis. Climate variability (CV) is defined
here as the long-term mean environmental temperature range (2000-2014). This was
estimated from the difference between the average SST of the warmest and coolest

months (maximum and minimum SST, hereinafter). The SST data were obtained from
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Bio-ORACLE as mentioned above and extracted from the raster at 1° resolution. For
every 1° latitudinal band, the minimum SST was subtracted from the maximum value to
estimate the temperature range and was summarised to obtain the mean range, which
is referred hereinafter as climate variability (°C). Habitat availability (HA) is the total
number of thermally suitable habitats (i.e. cells or pixels at 0.08° resolution) available for
species to occupy. For every 1° latitudinal band, all cells within the band that had SST
values (based on long-term average annual SST) within the species’ extreme thermal
range (i.e. RTN*) was counted, and the resulting habitat availability statistic is
expressed in # cells per latitudinal degree. Diversity (D) is referred to here as the
species richness. For every 1° latitudinal band, the total number of unique species
within the latitudinal coverage of its thermal range was counted, and the resulting
diversity statistic is expressed in # species per latitudinal degree. Estimates of the
variability in habitat availability and diversity were computed as the square root of the
squared difference between the values derived from the maximum and minimum SST.

These variability estimates represent the seasonality of these variables.

2.2.6 Analysis of latitudinal trends in environmental variables

Sea surface temperature, habitat availability, diversity, and their seasonal
variability were fitted against latitude using generalised additive models (GAM).
Gaussian distribution was used for GAM fitting SST and climate variability with latitude.
Whereas, a Poisson distribution was used for GAM fitting habitat availability, diversity,
and their seasonal variability with latitude. The residuals of the GAM models were
evaluated as described above, and all models passed the regression diagnostics. All

GAM models are summarised in Supplementary Table 2.6.
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2.2.7 Assessment of the effect of environmental variables on niche breadth and
range size

The effects of SST, habitat availability, diversity, and their seasonal variability
on the thermal niche breadth and geographic range size were determined. Extreme
thermal niche breadth (i.e. RTN*) and geographic range size were binned at 1°
latitudinal resolution to obtain the mean estimates for every latitude, which were then
merged with the environmental data. Before model fitting, collinearity and relative
importance of the variables were assessed as the basis for variable selection. Pearson
correlation was implemented to assess the collinearity between environmental
variables. The result of this analysis is summarised in Supplementary Figure 2.10. To
assess the relative importance of the environmental variables, niche breadth and range
size were fitted against the environmental variables in random forest regression models
with 500 number of tress and with two variables tried at each split. The variable
importance measures produced by the random forest model were extracted. Partial
response plots for each environmental variable are available in Supplementary Figure
2.11 for niche breadth and in Supplementary Figure 2.12 for geographic range size.

Generalised linear models (GLM) was used to fit niche breadth and range size
against SST, habitat availability, diversity, and their seasonal variability. The variables
were added sequentially in the nested models based on their relative importance as
determined previously. Significance of a factor added in a nested model was assessed
using likelihood ratio test (LRT) by comparing the fit for models with and without the
factor. Interaction between significant terms was also tested for their significance in the
model. A/C was used for model selection. Results of this analysis are accessible in
Supplementary Table 2.7. Summary statistics of the GLM models are available in

Supplementary Table 2.8.
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2.2.8 Data processing and analysis software
Data processing and analyses were implemented in R version 3.5.1 (R Core

Team, 2019) using packages listed in the supplementary information 2.1.

2.3 RESULTS

2.3.1 Trends in thermal limits, niche breadth, and rang size

Marine phytoplankton displayed a complex latitudinal patterns in thermal limits
and niche breadth (Figure 2.2 A and B, respectively; Supplementary Figure 2.6;
Supplementary Table 2.2 and 2.3 GLMM 01 — 06; Supplementary Table 2.4 and 2.5
GAMM 01 - 06). Thermal limits decreased with latitude, and the relationship was
nonlinear (Figure 2.2 A). Lower thermal limit (LTL; GAMM 01) gradually declined from
the equator to ~40° and it decreased steeply towards the pole. Whilst the upper thermal
limit (UTL; GAMM 02) remained constant from the equator to ~23°. UTL declined
steeply to ~50°C and then slowed down towards the pole. This asymmetry between the
latitudinal change of LTL and UTL was matched with non-monotonous relationship
between the latitude and realised thermal niche (RTN; GAMM 03). This asymmetry
coincided to the narrowing of RTN in the tropics. RTN peaked at ~23° and declined
towards the equator and towards ~40°. It remained constant between ~40° — 50° and
begun to widen towards the pole. This asymmetry was more pronounced when
seasonality in the LTL* (GAMM 04) and UTL* (GAMM 05) was taken into account,
making RTN* (GAMM 06) higher than the average annual estimates in niche breadth.
RTN* had declined from the pole to ~38°, and peaked at ~25°. Generally, RTN* in the

tropics are narrower than the estimates in temperate regions. Latitude explained > 60%
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(adjusted R?: 0.60 — 0.78) of the variation in the thermal limits but it insignificantly
explained the variation in niche breadth.

Our results showed opposite monotonous patterns of thermal limits across the
temperature gradient, leading to non-monotonous behavior of niche breadth (Figure 2.2
C and D, respectively; Supplementary Figure 2.7; Supplementary Table 2.2 and 2.3
GLMM 07 — 12; Supplementary Table 2.4 and 2.5 GAMM 07 — 12). Temperature
explained > 80% (adjusted R?: 0.83 — 0.91) of the variation the thermal limits higher
(>1.25 times) than the explained variance by latitude. On the other hand, temperature
alone failed to explain the variation in niche breadth similar to the effect of latitude.

There was no clear evidence that geographic range (GR) in marine
phytoplankton changes with latitude nor with temperature (Supplementary Figure 2.8;
Supplementary Table 2.2 and 2.3 GLMM 13 — 15; Supplementary Table 2.4 and 2.5
GAMM 13 — 15). Furthermore, GR had no clear relationship with thermal limits, but had
a positive relationship with thermal niche breadth (Supplementary Figure 2.9;
Supplementary Table 2.2 and 2.3 GAMM 16 — 21; Supplementary Table 2.4 and 2.5
GAMM 16 — 21). However, the niche breadth—range size relationship was weak

(adjusted R?: 0.05 — 0.14).

37



Chapter 2 — Temperature limits current distribution

30 . 304 . ° & B
5 £ 2° e e RTN*
©
[N 8 ~ ﬁ
€ 5 )
= ) o
T 20+ 5 20+ = %%000{5
£ = ?OOOQOO oo o° x;
@ = " - Be
< -y [oe O
_; E Cod
8 £
5 104 o 104
O Q
[0 )
©
Q
o
04 0
0 20 40 60
o
30 . 304
= £
3 3
= o
£ a
= )
T 20 S5 20+
£ =
(0] p—
= ®
5 £
8 £
5 104 o 104
Q
4 2
©
Q
o
04 04

10 20 30 10 20 30
Thermal midpoint [°C] Thermal midpoint [°C]

Figure 2.2. Trends in the realised thermal limits and niche breadth of marine phytoplankton across the
gradient of latitude and temperature. The thermal limits decrease with increasing latitude (A) and increase
with increasing temperature (C). The monotonous asymmetrical behaviour of the lower and upper
thermal limits (LTL and UTL, respectively) leads to the non-monotonous pattern in the niche breadth
(RTN) across the latitudinal and temperature gradient (B and D, respectively). These findings reveal a
narrower niche in tropics, consistent to Janzen’s rule. Thermal limits and niche breadths are derived from
the average annual sea surface temperature (SST) and seasonal extremes SST (i.e. LTL*, UTL*, and
RTN*). The asymmetry between the limits is more pronounced when seasonality in SST is taken into
account, suggesting the influence of climate variability on the niche breadth in marine phytoplankton. The
solid lines are fit from the generalised additive mixed model with cubic regression splines (GAMM) with
95% confidence intervals as error of the regression.

2.3.2 Trends in climate variability, habitat availability, and diversity

Our results showed evident latitudinal trends in sea surface temperature (SST),
habitat availability, diversity, and their seasonal variability (Figure 2.3; Supplementary
Table 2.6). All variables, except for SST, showed a clear non monotonously behaviour

along the latitudinal gradient.
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SST reached its peak near the equator and gradually decreased poleward
(Figure 2.3 A). However, climate variability (CV) dipped near the equator, peaked at mid
latitudes, and then declined towards the pole (Figure 2.3 B). Clearly, SST was more
variable in mid latitudes than in tropical and polar regions. Also, climate of the
temperate regions in the northern hemisphere had more variability than in the southern
hemisphere. Nearly all of the variation in the mean SST and CV was explained by
latitude (Supplementary Table 2.6 GAM 1 — 2; adjusted R?: 0.99 and 0.96,
respectively).

Furthermore, mean habitat availability (HA) was low near the equator and
reached its peak at ~35° in southern hemisphere and at ~20° in northern hemisphere
(Figure 2.3 C). There are more thermally suitable habitats available in the southern
hemisphere than in the northern hemisphere. More than 75% of the variation in HA was
explained by latitude (Supplementary Table 2.6 GAM 3; adjusted R?: 0.76). On the
other hand, seasonal change in habitat availability (HAV) showed a complex pattern
(Figure 2.3 D), and only about a third of its variation was explained by latitude
(Supplementary Table 2.6 GAM 4; adjusted R?: 0.31).

Bimodality with a dip in the diversity near the equator was observed (Figure 2.3
E). Diversity reached its highest peak at ~23°, showing greater tropical diversity in
northern hemisphere than in the southern hemisphere. Diversity eventually declined
from the peak towards the polar regions. Latitude explained 88% of the variation in the
diversity (Supplementary Table 2.6 GAM 5; adjusted R?: 0.88). Moreover, variability in
the diversity (DV) was high across the tropics (Figure 2.3 E). It dipped in the mid
latitudes and peaked at ~45°, higher than the observed peak in southern hemisphere.
However, only 29% of the variation in DV was accounted by the latitude (Supplementary

Table 2.6 GAM 6; adjusted R?: 0.29).
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Figure 2.3. Latitudinal trend in mean, minimum, and maximum sea surface temperature (SST), habitat
availability and diversity (left panel) and their seasonal variability (right panel). Except for SST, all
variables have non-monotonous relationship with latitude. The solid lines are fit from the generalised
additive model with cubic regression splines (GAM) with 95% confidence intervals as error of the
regression.

2.3.3 Correlation and relative importance of environmental variables
Generally, results of the Pearson correlation indicated that there was a

significant association between the environmental variables (Supplementary Figure
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2.10). SST had a negative association with CV/, whilst it had positive associations with
HA and DV. On the other hand, CV was negatively associated with HA and HAV.
Moreover, HA was positively associated with HAV and D, but negatively associated with
DVv.

Random forest regression analyses revealed the relative importance of
environmental variables as explanatory factors for thermal niche breadth (RTN*) and
geographic range size (GR) in marine phytoplankton (Supplementary Figure 2.13).
Results showed that CV and SST are the most important explanatory variables for
RTN*. Whereas, D and HA are relatively more important than CV and SST in predicting

the GR.

2.3.4 Significant effect of environmental variables on niche breadth and range
size

The generalised linear regression models revealed the degree of significance of
the effect of environmental variables on thermal niche breadth (RTN*) and geographic
range size (GR) in marine phytoplankton (Supplementary Table 2.7). The additive
model with CV and SST as explanatory variables for RTN* (GLM 2) described the
relationship better than the other models (GLM 1 and GLM 3 — 7). The main effects of
CV and SST on the RTN* were significant (GLM 2), but the interaction between these
terms was not significant (GLM 7). RTN* was observed to be directly proportional to CV
and SST (Supplementary Table 2.8 GLM 2). On the other hand, GR was best explained
by the additive model with D and HA as predictors (GLM 9) in comparison to other
models (GLM 8 and GLM 10 — 14). There was significant effects of D and HA on GR
(GLM 9) but their interaction was not significant (GLM 14). GR decreased with

increasing D, and it increased with increasing HA (Supplementary Table 2.8 GLM 9).
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2.4 DISCUSSION

Our analysis of the species occurrence data provides new insights of the
biogeographical patterns of marine phytoplankton in the contemporary ocean. We
discuss our findings in light of the conformity or non-conformity with the existing

hypotheses and deliberate the possible mechanisms that explain the observed trends.

2.4.1 Narrower niches in the tropics

Our results reveal non-linearity of the latitudinal trend in thermal niche breadth
of marine phytoplankton. This trend can be attributed to the latitudinal variation in the
difference between the minimum and maximum average annual SST or in the difference
between the seasonal temperature extremes (i.e. average SST of the warmest and
coolest months) experienced by phytoplankton in the contemporary ocean (Figure 2.2 A
and C). Alternatively, this pattern in the thermal niche breadth reflects the asymmetrical
variation in the thermal limits, in which the irregular monotonous behaviour of the lower
and upper thermal limits leads to the non-monotonous latitudinal pattern in the niche
breadth. The asymmetry is evident in the tropics where the latitudinal decrease in lower
thermal limit is steeper than the upper thermal limit. This results in the narrowing of the
thermal niche in the tropics that inevitably converges the limits in the warmest latitude
(i.e. near the equator), which is evident when seasonality is taken into account (Figure
2.2 B and D). Our results conform to the prediction of Janzen’s rule (Janzen, 1967) that
expect niches to become narrower in the tropics. Furthermore, our results support
previous works showing the relationship between latitude and thermal niche (Addo-
Bediako et al., 2000; Stuart-Smith et al., 2017; Sunday et al., 2011) as biogeographical

pattern (Gaston et al., 2009). The validity of these relationships in marine phytoplankton
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is unclear to date (Chen, 2015; Thomas et al., 2012) but has emerged in our analysis of

the species occurrence data.

2.4.2 Limits are sensitive to temperature

The significant influence of latitude on the thermal limits is inevitable since there
is a clear monotonous relationship between latitude and temperature (Figure 2.3 A). As
expected, thermal limits increase with increasing temperature, opposite to their
latitudinal trends (Figure 2.2 A and C). This demonstrates the sensitivity of the thermal
limits to annual and seasonal temperatures, suggesting that the contemporary sea
surface temperature influences the distribution limits of marine phytoplankton, a trend
that was also observed in numerous marine organisms shifting poleward in response to
ocean warming (Poloczanska et al., 2013). This temperature dependence can be
explained by the metabolic scaling hypothesis (Padfield et al., 2018), which posits that
the metabolic rate of organisms regulates the biological processes and patterns in
ecology. It is well established that temperature is a key regulator for photosynthesis and
respiration in phytoplankton (Barton et al., 2018). The relationship between temperature
and physiological performance can are linked to evolutionary history traits of species.
Cardinal temperatures are strongly linked to the environmental temperature as an
indication of local adaptation and show clear latitudinal trends (Chen, 2015; Thomas et

al., 2012) consistent with our results.

2.4.3 Climate variability influences niche breadth
Non-significance of the effect of latitude and temperature on the thermal niche
breadth indicates that other factors other than the temperature influence its pattern. The

distinctive asymmetry between thermal limits when seasonality is taken into account
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(Figure 2.2 B and D) suggests that seasonality in temperature (i.e. climate variability) is
a key determinant in linking environmental temperature to the niche in marine
phytoplankton. This is further substantiated when climate variability has emerged as the
most relatively important variable for niche breadth (Supplementary Figure 2.13).
Climate variability is higher in mid-latitudes, whilst the tropics (and polar regions) have
more stable water temperature (Figure 2.3 B). The significant effect of climate variability
is directly proportional to niche, suggesting that the narrowing of the niche in the tropics
is due to reduced climate variability, consistent to the premise of Janzen’s rule (Janzen,
1967). Compared to trends observed in terrestrial plants and animals (Araujo et al.,
2013), the patterns of the thermal niche in marine phytoplankton are less pronounced
but are quite similar to that of marine invertebrates (Stuart-Smith et al., 2017). This
could be attributed to the ‘buffering’ of temperature in water that results in the lesser
variability in the annual temperature ranges in seawater as compared to land
(Parmesan et al., 2005; Steele, 1985).

Furthermore, the main effect of temperature is significant only when the
seasonality in climate is considered. The additive effect of climate variability and
temperature is directly positive to niche breadth, suggesting that niches are wider in
thermally variable and warmer oceans. This explains why the niches in marine
phytoplankton have peaked at ~23° (Figure 2.2 B). At mid-latitudes, it may be possible
to deal with much lower and higher temperatures (i.e. generalism is possible but not
necessary), whereas in the tropics or polar regions a more extreme temperature
(whether colder or hotter) ecological specialisation may be needed. Our results suggest
that, other than climate variability, temperature-dependent mechanisms acting at
physiological, ecological, and evolutionary levels may also drive the latitudinal patterns

of the niche in marine phytoplankton. In light with the metabolic scaling hypothesis
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(Padfield et al., 2018), tropical species can perform over a narrower thermal range
because of the scaling of physiological rates with the temperature that influences their
ecological success in warmer conditions (Payne and Smith, 2017). Recent work on
ectotherms have attributed the biogeographic patterns in niche breadth to (i) lower
plasticity and evolutionary lability of the upper thermal limits relative to lower thermal
limits (Gunderson and Stillman, 2015; Portner, 2002), (ii) lowering of the upper thermal
limit due to intensification of predation and competition in warmer waters (Stuart-Smith
et al., 2017), (iii) tenacity of species at the cool edge of their range by decreasing their
metabolism (Masuda, 2008), and (iv) vagrancy of individuals at the cool range edge
creating bias in the observation (Bates et al., 2014). Also, the pattern could also be
attributed to the negative skewness of the thermal growth response curves in
phytoplankton, a condition which makes these organisms more sensitive to warming
than cooling (Thomas et al., 2012). Temperature response and biogeography in
phytoplankton could also be driven in part by temperature and biogeography of

competitors and predators (Wang et al., 2018).

2.4.4 Diversity indirectly affects niche breadth

The strong correlation between diversity and SST (r = 0.88, p < 0.05) suggests
the important role of temperature in regulating the diversity of phytoplankton (Righetti et
al., 2019; Thomas et al., 2012). It is inevitable that the diversity varies across latitude
and is highest in the tropics. The latitudinal trend in the diversity of marine
phytoplankton shows bimodality with a dip near the equator (Figure 2.3 E) similar to the
observed pattern in several marine species (Chaudhary et al., 2016). However, this
deviates from the unimodal pattern with a tropical peak that is inferred from the species

distribution models in the recent phytoplankton study (Righetti et al., 2019). The
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bimodality would suggest that the phytoplankton in the tropics are evolving to
temperature variation and are moving away from the equator, and these are likely to
happen due to ocean warming.

The positive correlation between diversity and habitat availability (r = 0.28, p <
0.05) indicates that the high tropical diversity is associated to the high availability of
habitats (i.e. suitable temperatures) in tropics since it is inevitable that larger area
acccommodates more species (Rosenzweig, 1995). The larger habitat areas and little
climate variability in tropics may produce high speciation and low extinction rates (Willig
and Presley, 2018). It is therefore plausible that the more available habitats in the
tropics may influence the latitudinal diversity gradient in marine phytoplankton.

The variation in diversity across latitude may also be a consequence of the
decline in geographic range sizes from high to low latitudes as postulated Rapoport’s
rule (Stevens, 1989). Marine phytoplankton shows a complex relationship between
latitude and geographic range size (Supplementary Figure 2.8 A) that does not follow
Rapoport's rule despite the presence of clear latitudinal diversity gradient (Figure 2.3 E).
In theory, tropical species are predicted to have a small range size due to their
adaptation to little seasonal variation in climate. Whereas, temperate species are
expected to have a large range size due to their tolerance to greater climate variability.
This pattern has been documented for trees, fish, amphibians, reptiles, and mammals
(Willig and Presley, 2018), but is not universal, e.g. marine invertebrates (Stuart-Smith
et al., 2017), green turtles (Angielczyk et al., 2015), bats and marsupials (Willig and
Lyons, 1998), and molluscs (Roy et al., 1994). The inconsistency of the observed
pattern to the theory would suggest that several factors other than climate variability
may influence the geographic range size in marine phytoplankton. For instance,

transport may contribute to the variability in range size of phytoplankton across latitudes
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(Gaylord and Gaines, 2000; Hernandez-Carrasco et al., 2018), or the niche breadth
may influence species range size.

We found a weak trend of increasing geographical range size with increasing
thermal niche breadth in marine phytoplankton (Supplementary Figure 2.9 C),
suggesting that niche breadth to some extent limit the geographic distribution. This
observation supports the validity of the niche breadth—range size hypothesis, which
suggests that marine phytoplankton become more widespread when they can utilise
resources (e.g. light and nutrients) within a wider thermal condition (Slatyer et al., 2013).
Similar to Rapoport’s rule, this hypothesis also operates under the premise of climate
variability and is also compounded with other factors.

Our findings show that diversity and habitat availability are relatively more
important as variables for range size than the seasonal changes in the climate.
Geographic range size decreases with increasing diversity and increases with
increasing habitat availability. Hence, species may have large range size without
adapting to high climate variability if exposed to the environment with low diversity and
more thermally suitable habitats. Climate variability may indirectly related to geographic
range size via the climate effect on the niche breadth, and on the other hand, diversity
may be indirectly linked to niche breadth via diversity effect on range size. Hence, the
latitudinal trend of diversity may also explain the observed pattern in niche breadth.

Vazquez and Stevens (Vazquez and Stevens, 2004) proposed a mechanism
that relates species diversity with the latitudinal pattern in niche breadth. They
suggested that the greater specialisation may be a by-product of the latitudinal gradient
in species diversity. The increased nestedness and asymmetric specialisation would
suggest that the number of specialists increases faster thus higher species which can

result in high specialisation (Vazquez and Stevens, 2004). In this proposed mechanism,

47



Chapter 2 — Temperature limits current distribution

there is an indirect effect of latitude on niche breadth via the effect of diversity which
would occur only when species interactions are structured in an asymmetrically
specialised and nested way. Hence, the pattern of niche breadth in marine
phytoplankton, despite the clear latitudinal diversity trend, can only be explained by this
mechanism if a clear nestedness and assymmetric specialisation exist in the structure
of species interaction in the phytoplankton. A knowledge gap that limits our current

understanding of the biogeography of marine phytoplankton.

2.4.5 Caveats

Our analysis should be interpreted with caution in consideration of the caveats
with our approach. First, occurrence records remain geographically incomplete and
biased (Isaac and Pocock, 2015). Occurrence data is likely to be driven by survey
extent (Supplementary Figure 2.1). There are more and longer transects in the North
Atlantic ocean, North Eastern Pacific ocean, American west coasts, and Australian
coasts and adjacent waters, whereas such long survey routes are inadequate from the
tropics. Second, all locations with recorded occurrences are treated equally
independent of phytoplankton abundance, which produce a bias in the estimation of
thermal and geographical range. Therefore, it is possible that the species included in
the analysis may not have been observed across their full potential thermal and
geographical range. Third, data processing, such as excluding data points based on
criteria (i.e. dates) and clustering the points into groups (i.e. oceanic regions) may
produce possible artefacts by underestimation of the ranges of species. Lastly, the
relationship between thermal niches and geographic ranges among species is
confounded by the interacting effects of drivers other than the temperature (Sexton et

al., 2009; Wiens, 2011) such as light, nutrients, and predation.
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2.5 CONCLUSION

Based on our findings from the global analysis of species occurrence data, we
conclude that marine phytoplankton exhibit complex biogeographical patterns that do
not strictly conform to the classical macroecological rules, and this complexity is partly
explained by climate variability, habitat availability, and/or diversity. In summary, the
following patterns have emerged from our analysis: (i) the non-monotonous latitudinal
pattern in the niche breadth is consequent of the asymmetry between the thermal limits,
(i) the narrowing niches in the tropics is due to reduced seasonal variation in the
climate, consistent to Janzen'’s rule , (iii) the latitudinal pattern in geographic range size
of marine phytoplankton invalidates Rapoport’s rule but is explained by diversity and
habitat availability, and (iv) the direct relationship between niche breadth and range size
links diversity effect to the latitudinal trend in thermal niches. From these observed
patterns, we conclude that species in tropical oceans have a narrower range making

them more vulnerable to ocean warming than those in temperate oceans.
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BIOGEOGRAPHIC AND PHYLOGENETIC PATTERNS OF TEMPERATURE

RESPONSES IN MARINE PHYTOPLANKTON

ABSTRACT

Understanding the physiological and ecological adaptations of species to
temperature is important in predicting their responses to climate change. This study
aims to examine the biogeographic and phylogenetic patterns of physiology- and
occurrence-based thermal traits (7T, and TT,), their inequalities, thermal sensitivity,
exposure and vulnerability to warming in marine phytoplankton. Here, TT, were
obtained from the published laboratory results on growth rates across a temperature
gradient, whereas TT, were derived from the sea surface temperature of the species’
occurrence locations. The congruence and inequality between TT, and TT, were
assessed. Also, the variations in the inequality, thermal sensitivity, exposure and
vulnerability to warming across the gradient of latitude, thermal affinity, thermal
specialisation were determined. Finally, the phylogenetic effect on the thermal attributes
was assessed. The findings of this study reveal that TT, and TT, are congruent but not
equal. Results also show the inequality between TT, and TT, and the thermal sensitivity
in marine phytoplankton vary across latitude, thermal affinity, thermal specialisation;
whereas, the exposure and vulnerability to warming vary non-monotonously with
latitude. Interspecific variation in thermal attributes is evident in marine phytoplankton,
but no clear evidence of the presence of phylogenetic conservatism in the traits. This
empirical investigation of the macroecological patterns of these thermal attributes will
provide new insights into distribution of marine phytoplankton in the current and future

climate scenarios.
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3.1 INTRODUCTION

The critical role played by temperature on phytoplankton physiology, growth,
and biogeographical distribution are well recognised (Brun et al., 2015; Coello-Camba
et al., 2015; Grimaud et al., 2017; Raven and Geider, 1988). Contemporary rates of
warming are shifting the global distributions of marine species (Poloczanska et al.,
2013). Recent studies have provided important information on the effect of changes in
the temperature on the physiological processes and growth in phytoplankton,
consequently altering marine ecosystem structure and function (Behrenfeld et al., 2015;
Chust et al., 2014; Huertas et al., 2011; Regaudie-De-Gioux and Duarte, 2012; Thomas
et al., 2012). Since the changing climate have serious consequences, it is imperative to
have a robust framework to predict the responses of marine phytoplankton on changing
climate.lt is therefore crucial to understand the physiological and ecological adaptations
of marine phytoplankton to temperature to improve our ability to predict their distribution
in future climate scenarios.

The direct effect of temperature on phytoplankton growth is typically
represented by asymmetric curve, with asymptotic increase in one side, and an abrupt
decline in another side (Ras et al., 2013). Several thermal traits can be extracted from
this curve including (1) the cardinal temperatures that corresponds to the boundaries of
thermal tolerance (i.e. thermal optima, critical thermal minima, and critical thermal
maximum), and (2) the thermal niche breadths that correspond to the thermal range on
which the species can physiologically tolerate. These physiology-based thermal traits
are linked to the biogeographical distribution in ectotherms (Sunday et al., 2012, 2011).
However, this physiology-based estimation present a major issue relating to the biases

introduced from experimental design, model choice, and data quality (Boyd et al., 2013;
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Low-Décarie et al., 2017; Salvador et al., 2019). These biases could be avoided by
estimating thermal traits from distribution or species occurrence data (Chapter 2),
however occurrence-based estimation is still challenged with spatial, temporal, and
taxonomic biases (Isaac and Pocock, 2015). Physiology- and occurrence-based thermal
traits may express different aspects of thermal niche of species. Physiology-based
thermal traits may represent the fundamental niche, whereas the occurrence-based
thermal traits represent the realised niche. Biotic interaction, species dispersal
limitation, and limited climate availability reduce fundamental niche to realised niche
(Jankowski et al., 2013; Sanchez-Fernandez et al., 2016; Soberon and Nakamura,
2009), and hence the realised niche is expected to be smaller than and within
fundamental niche (Hutchinson, 1957). Whilst there have been some investigations into
the link between physiology- and occurrence-based estimates (Sanchez-Fernandez et
al., 2012), there are no detailed studies about this relationship in marine phytoplankton.
Understanding this link will provide ecophysiological and evolutionary insight on the
vulnerability of marine phytoplankton to the warming climate.

In recent years, there has been an increase in the utility of the concept of
thermal safety margin (TSM) to understand the global patterns of the warming
vulnerability in ectotherms (Bennett et al., 2019; Clusella-Trullas et al., 2011; Deutsch et
al., 2008; Diamond et al., 2012; Huey et al., 2009; Sunday et al., 2014). TSM can be
extrapolated from species’ thermal sensitivity wherein a physiological thermal safety is
inferred if a species’ upper (lower) tolerance limit exceeds the warmest temperature
(falls short the coldest temperature) it experiences, otherwise species is at risk of
thermal danger (Sunday et al., 2014). Furthermore, vulnerability to warming can be
explicitly estimated as a function of inherent thermal sensitivity to warmest temperature

and the warming exposure (i.e. warming rate) of a species in a given location (Bennett
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et al., 2019). The recent developments in the field (i.e. new information and tools) have
heightened the need to reassess the vulnerability to warming in marine phytoplankton.

Macroecological patterns of traits has long been a question of great interest.
Latitudinal trends in the thermal traits have been demonstrated in previous studies
using the physiology data (Chen, 2015; Thomas et al., 2016, 2012) and occurrence
data (Chapter 2). Therefore, latitudinal variation in the inequality between physiology-
and occurrence-based thermal traits in marine phytoplankton is expected. Also,
previous studies have shown the increase of thermal safety margin with increasing
latitude, suggesting that tropical species are more vulnerable to warming than
temperature species (Clusella-Trullas et al., 2011; Diamond et al., 2012; Sunday et al.,
2014).

Other than the latitude, the variation in physiology- and occurrence-based
thermal traits, their inequalities, thermal sensitivity, exposure and vulnerability to
warming (collectively referred hereinafter as thermal attributes) could also be related to
species’ thermal affinity, thermal specialisation, and phylogenetic relationship, which
previous phytoplankton studies have not dealt with (Chen, 2015; Thomas et al., 2016,
2012). Thermal affinity (TA) can be expressed as an index of the degree of preference
of species to warm or cold temperatures relative to the average preference in the
species pool. Positive TA indicates affinity of species to warm temperatures, whilst a
negative TA indicates affinity to cold temperatures. Thermal specialisation (TS) can be
expressed as an index of the degree of species thermal tolerance relative to the
average tolerance in the species pool. Positive TS suggests that a species is relatively
more a thermal generalist, whilst a negative TS suggests that a species is relatively

more a thermal specialist.
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Although the phylogenetic effects on thermal traits have been previously
demonstrated in phytoplankton (Chen, 2015; Thomas et al., 2016, 2012), there is still
very little scientific understanding of whether the thermal attributes are shared with
closely related species (i.e. phylogenetic signal) and whether these thermal attributes
are evolutionary labile or conserved (i.e. phylogenetic conservatism). Historically, the
terms “phylogenetic signal” and “phylogenetic conservatism” has been used
synonymously, but in this present study these terms are differentiated. Here,
phylogenetic signal is defined as the tendency of closely related species to be similar to
each other more than expected from a null model from the same phylogeny (Blomberg
et al., 2003). On the other hand, phylogenetic conservatism is the tendency of species
to retain their ancestral traits more than expected from a Brownian null model of
evolution (Felsenstein, 1985), which can be considered as an extreme case of
phylogenetic signal (Loza et al., 2017).

To advance our current knowledge on the microalgal thermal biology, this study
sets out to investigate global patterns of physiology- and occurrence-based thermal
traits, their inequalities, thermal sensitivity, exposure and vulnerability to warming in
marine phytoplankton. Specifically, this study aims to determine the: (1) congruence
and inequality between physiology- and occurrence-based thermal traits, (2) variation in
the inequality between physiology- and occurrence-based thermal traits, thermal
sensitivity, exposure and vulnerability to warming across the gradient of latitude,
thermal affinity, and thermal specialisation, and (3) phylogenetic effect on these thermal

attributes in marine phytoplankton.
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3.2 MATERIALS AND METHOD

3.2.1 Data collection and processing of thermal traits

Physiology-based thermal traits (T7p; Supplementary Information 3.1) such as
the cardinal temperatures (i.e. thermal optimum (7o), critical thermal minimum (CTmin),
and critical thermal maximum (CTmax)), the fundamental thermal niche breadth (FTN)
and the maximum growth rate (rmax) in marine phytoplankton were compiled from
previous studies. Data were obtained from Chen (2015) that compiled 275 records of
Topt and rmax, 125 records of CTmin and 158 records of CTmax, and 93 records of FTN in
243 marine phytoplankton strains from 141 unique isolation locations in tropical and
temperature regions. Additional data from recently published literature (Coello-Camba
and Agusti, 2017) were collected to include 43 records of Topt and rmaxin 31 marine
phytoplankton strains from 21 unique locations in the polar regions. The data were
merged into one dataset (referred hereinafter as published dataset) with 318 records of
rmax and Topt, 125 records of CTmin, 158 records of CTmaxand 93 records of FTN, ranging
in latitude from ~75°S to ~81°N (Figure 3.1). The studies included in this published
dataset employ different approaches in estimating the cardinal temperature and niche
(e.g. different models used for curve fitting), which may introduce some bias. To
minimise the effect of this bias, a second dataset of all thermal physiology traits in
marine phytoplankton was assembled by fitting growth rates against temperature using
the same model. Here, the database of laboratory results on growth rates across a
temperature gradient (Litchman and Klausmeier, 2014; Thomas et al., 2016, 2012) was
used. The datasets with positive rates for at least four different temperatures were
selected. Growth rates were fitted against temperature in a unimodal response curve

using the different non-linear functions (i.e. equ04 — equ15 in the temperatureresponse
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R package (Low-Décarie et al. 2017)). Also, the data were fitted using Cardinal
Temperature Model with Inflexion (CTMI; equ16, hereinafter) (Rosso et al., 1993) (see
Supplementary Information 3.2 for the model formulas). The data were fitted to
equations using a modified Levenberg-Marquardt algorithm. The fitted equations were
compared in terms of Akaike Information Criteria (A/C), Bayesian Information Criterion
(BIC), coefficient of determination (pseudo R?), and the number of successful fits
(Supplementary Figure 3.1). Both equ10 and equ16 were initially selected as the best
models since they had relatively lower AIC and BIC values and had relatively higher
pseudo R?. CTMI model (i.e. equ16) had yielded more realistic estimates of CTmi» and
CTmax (Supplementary Figure 3.2) and hence was preferably used in the succeeding
analysis. CTMI allows identifying the cardinal temperatures from experimental data
(Grimaud, 2016), which proves useful for the objective of this study. The CTMI model
successfully fits growth rates with temperature (Supplementary Figure 3.3), generating
197 curve fits. These curves were used to extract the thermal physiological traits in 85
marine phytoplankton strains from 60 unique isolation locations from ~65°S to ~75°N
(Figure 3.1) (referred hereinafter as CTMI-derived dataset). The CTMI/-derived dataset
was screened with the following inclusion criteria: (1) CTmin > —7 °C, and (2) CTmax < 40
°C and CTmax > Topt+ 1°C. The resulting dataset comprised of 168 records of rmax and
Topt, 165 records of CTmin, and 120 records of CTmaxand FTN. Published and CTMI-

derived TT, are summarised in Supplementary Figure 3.4.
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Figure 3.1. Isolation locations of marine phytoplankton listed in the physiology datasets (i.e. published
and CTMiI-derived datasets) and occurrence locations of species listed in occurrence dataset.

Thermal traits derived from species occurrence data (TT,) was also assembled
following Edullantes et al. (unpublished) with modifications. Briefly, occurrence data for
each species were downloaded from the databases and recent literature (GBIF.org,
2018; OBIS, 2018; Buitenhuis et al., 2013; Estrada et al., 2016). The collected datasets
were curated to only include unique occurrences recorded in marine waters from 2000
to 2014 with complete spatial, temporal, and taxonomic information (i.e. GPS
coordinates, year of collection, and identified at species level). To reduce the effect of
sampling bias, the species-specific occurrences were spatially filtered to ensure that no
two records were within 10 km of one another, which generated a dataset with 98,286
observations representing 1,419 species recorded between 2000 and 2014 (Figure 3.1).
The occurrence records were matched with the Sea Surface Temperature (SST) values
(annual mean SST, long-term minimum and maximum SST) from 2000 to 2014 that
were downloaded from Bio-ORACLE (Assis et al., 2018). Lower thermal limit (LTL),
upper thermal limit (UTL), thermal midpoint (TM), and realised thermal niche breadth

(RTN) (Supplementary Information 3.1 for description) were estimated in every species
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with > 10 unique occurrence records. These traits were derived from both the annual
average SST and seasonal extreme SST, i.e. average temperature of the warmest and
coldest months. A bootstrapping technique was implemented to account for uncertainty
arising from the error in the estimate of thermal traits. The resulting dataset contains the
annual average (AA) and seasonal extreme (SE) SST-derived TT,in 562 marine
phytoplankton species, which are summarised in Supplementary Figure 3.4.

TT, (obtained from published literature and CTMI-derived*) and TT, (derived
from annual average and seasonal extreme* SST) were merged and matched up by
taxonomic identity at least at species level. This resulted to four combined datasets: (1)
TTp* and TTo, (2) TTp * and TTo*, (3) TTp and TTo, and (4) TTp, and TT, *. These
datasets were used in the subsequent analyses and were compared. For simplicity
purposes, results of the analyses using the second dataset (i.e. TT,* and TT,*) were
preferably highlighted in the main text. 7T, * avoids the curve fitting bias introduced in
the published dataset as described above, whilst TT,* is previously shown to account
better for biogeographical pattern of niche in phytoplankton than the parameters derived

from the annual mean SST (Edullantes et al., n.d.).

3.2.2 Comparing physiology and occurrence-based thermal traits

The congruence in the thermal traits derived from physiological and species
occurrence data (TT, and TT,, respectively) was assessed following Sanchez-
Fernandez et al. (2012). TT, were fitted against TT, via generalised linear models
(GLM) using a Gaussian distribution with link identity (see Supplementary Table 3.1 for
the summary statistics). A statistically significant relationship suggests that two
approaches of thermal trait estimation are congruent. The slopes of the relationships

were tested of their difference from 1 using Chi-squared tests. Deviation of the slope
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from 1 suggests that the thermal trait derived from two methods are different. The
regression slopes between TT, and TT, were also compared across four different
datasets using Student t-tests (Andrade and Estévez-Pérez 2014).

Furthermore, the differences between TT, and TT, (i.e. difference in optimal
temperature (DOT), cold tolerance limit (DCL), heat tolerance limit (DHL), and thermal
range (DTR); Supplementary Information 3.1 for description; Supplementary Figure 3.5
for summary) were calculated as an additional measure of congruence in the thermal
traits estimations. Deviation from O was tested using one-sample t-test to indicate
mismatch between the two approaches. Positive (or negative) values indicate that the

physiology-based estimates are higher (or lower) than the occurrence-based estimates.

3.2.3 Estimation of thermal sensitivity, exposure and vulnerability to warming
Thermal sensitivity, exposure and vulnerability to warming were calculated as
described in Supplementary Information 3.1. Sensitivity to cold and warm temperature
(Sminand Smax, respectively) were estimated by obtaining the difference between the
species’ critical thermal limits (CTmin and CTmax, respectively) and the ambient sea
surface temperature extremes (Hmin and Hmax, respectively) it experiences in its local
habitat (Bennett et al., 2019). Warming vulnerability (V) is a function of inherent thermal
sensitivity (Smax) and warming exposure (WR) of a species in a given location. V
describes the number of years prior the local temperatures are expected to exceed
CTmax in a given location (Bennett et al., 2019). SST of the warmest month predicted in
the year 2050 and 2010 based on the climate scenarios (i.e. RCP 2.6, RCP 4.5, RCP
6.0, and RCP 8.5) were downloaded from Bio-ORACLE (Assis et al., 2018) and were
used to compute for the warming rate. The estimates of thermal sensitivity, warming

rate, and vulnerability to warming are summarised in Supplementary Figure 3.6.
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3.2.4 Analysis of latitudinal trends

The differences between physiology- and occurrence-based thermal traits,
thermal sensitivity, exposure, and vulnerability to warming were fitted against the
absolute latitude of the isolation location using generalised additive models (GAM).
Gaussian distribution with link identity was used for the GAM fitting. Latitudinal trends
in the differences between physiology- and occurrence-based thermal traits are
summarised in Supplementary Table 3.2. Latitudinal trends in thermal sensitivity,

exposure, and vulnerability to warming are summarised in Supplementary Table 3.3.

3.2.5 Analysis of the effect of thermal affinity and specialisation

Thermal affinity (TA) and thermal specialisation (TS) were computed as
described in Supplementary Information 3.1. The main and interactive effects of thermal
affinity and thermal specialisation on the differences between thermal traits, thermal
sensitivity, exposure and vulnerability to warming were determined by GLM models
using a Gaussian distribution with link identity. GLM models for these relationships of
differences between physiology- and occurrence-based thermal traits with thermal
affinity and specialisation are summarised in Supplementary Table 3.4. GLM models for
the relationship of thermal sensitivity, exposure, and vulnerability with thermal affinity

and specialisation are summarised in Supplementary Table 3.5.

3.2.6 Analysis of the phylogenetic effect

All species were pooled to construct a backbone phylogeny based on the NCB/
taxonomy database (Benson et al., 2009; Sayers et al., 2009), which resulted to a
topology with all species in the pool. A phylogenetic tree for each of the dataset was

constructed using the software program Phylomatic (Webb and Donoghue, 2005), that

63



Chapter 3 — Biogeography & phylogeny explain variation in traits

matches a pool of species against the backbone phylogeny and returns a trimmed tree.
Unresolved relationships between genera and all species within genera were treated as
polytomies. Estimated divergence time on the several nodes in the backbone phylogeny

(Supplementary Information 3.3) were obtained from TimeTree (www.timetree.org), a

public knowledge-base for information of on the evolutionary timescale of life derived
using molecular sequence data (Kumar et al., 2017). This information was used to
adjust the evolutionary branch lengths in the phylogeny using the BLADJ algorithm in
the program Phylocom (Webb et al., 2008). The reconstruction of phylogeny was
implemented in R using the phylocomr package (Ooms and Chamberlain, 2019). These
reconstructed phylogenies were used to determine the phylogenetic effect.

The presence and strength of phylogenetic signal and phylogenetic
conservatism for each trait were quantified. Three approaches were employed to
examine the phylogenetic effect on the traits: (1) variance partitioning analysis, (2)
autocorrelation using Moran’s / and Abouheif's Cmean indices, and (3) Brownian motion
model of evolution using Blomberg’'s K and K* and Pagel’'s A indices. The first two
approaches tested only for phylogenetic signal, whereas the third approach tested for
both phylogenetic signal and phylogenetic conservatism. In the first approach, the
phylogenetic signal was tested by comparing the observed variation within hierarchical
taxonomic levels with expected values according to a tip randomisation null model
following Loza et al. (2017) (citing (Prinzing et al., 2001)). The observed values were
examined whether these values were found within the 95% confidence intervals for
expected variation within the hierarchical taxonomic level. The confidence intervals
were calculated as the interval between the 2.5 and 97.5 percentiles of 10,000 iterations
of the null model. Indices in the second and third approaches were calculated using the

phylosignal package in R (Keck et al., 2016). Local Moran’s I index (/), a Local
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Indicator of Phylogenetic Association (L/PA; synonymous to Local Indicator of Spatial
Association (LISA) (Anselin, 2010)) was also computed to detect hotspots of positive
and negative autocorrelation and a phylogenetic correlogram was constructed to

visualise the phylogenetic signal in the taxonomy using the phylosignal package in R

(Keck et al., 2016).

3.2.7 Data processing and analysis software
Data processing and analyses were implemented in R version 3.5.1 (R Core

Team, 2019) using packages listed in the Supplementary Information 3.4.

3.3 RESULTS

3.3.1 Relationship between physiology- and occurrence based thermal traits
Generalised linear models (GLM) were used to assess the relationships
between physiology- and occurrence-based thermal traits (7T, and TT,, respectively) in

marine phytoplankton. Supplementary Table 3.1 provides summary statistics of the
linear relationships. Figure 3.2 presents the direct linear relationship of the TT,*and
TTo*(see Supplementary Figure 3.7 for the linear relationship in all four datasets). Chi-
squared tests were used to determine whether the regression slopes are different from
the slope = 1.

The direct relationship of optimal temperature estimated from physiological
experiments (Topt*) and occurrence data (TM*) were significant (GLM 05: F(1,122) =
94.25, p < 0.05; Figure 3.2 A). The slope of the relationship was 1.29 + 0.13, which was
significantly higher than the slope = 1 (1,123 = 4.71, p < 0.05). Approximately 44% of

the variance in physiology-based optimal temperature was explained by the variance in
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occurrence-based estimates. The regression slopes between physiology- and
occurrence-based optimal temperature were the same across the four datasets
(Supplementary Figure 3.7 A; Supplementary Table 3.1 GLM 01, 05, 09, and 13).

There was also a significant positive relationship between the physiology- and
occurrence-based cold tolerance limits (CTmin* and LTL*, respectively) (GLM 06: F1,121)
= 99.42, p < 0.05; Figure 3.2 B). The slope of the relationship between the cold
tolerance limits was 0.67 + 0.07, which was significantly lower to slope= 1 (y%1,122) =
24.86, p < 0.05). Occurrence-based cold tolerance limits did account for 45% variance
in the physiology-based estimates. Similar to the slopes in temperature optimum, the
regression slopes between the physiology- and occurrence-based cold tolerance limits
were the same across the four datasets (Supplementary Figure 3.7 B; Supplementary
Table 3.1 GLM 02, 06, 10, and 14).

Furthermore, the heat tolerance limits estimated from physiology and
occurrence data (CTmax* and UTL*, respectively) had a significant positive relationship
(GLM O7: F1,80) = 46.81, p < 0.05; Figure 3.2 C). The regression slope was 1.00 + 0.15,
and was not significantly different to the slope = 1. About 34% of the variation in the
physiology-based estimates was accounted for the occurrence-based upper thermal
limits. The slopes of the relationship between physiology- and occurrence-based heat
tolerance limits did not vary across the four datasets (Supplementary Figure 3.7 C;

Supplementary Table 3.1 GLM 03, 07, 11, and 15).
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Figure 3.2. Relationship between physiology- and occurrence-based estimates of thermal traits (77, and
TTo, respectively) in marine phytoplankton. TT,* (CTMI-derived) were fitted against TT,* (derived from a
seasonal extreme (SE) sea surface temperature (SST)) using generalised linear models (GLM, see
Supplementary Table 3.1 GLM 05 — 08 for the summary statistics). The regression lines are indicated in
blue solid lines with 95% confidence interval in grey shading. The black solid lines represent equality
between TT,*and TT,*. Generally, there was significant positive relationship between TT,*and TTo*,
suggesting congruence in estimation approaches. Except for the slope between heat tolerance limits, the
slopes of the relationship between TT,* and TT,* were different to the slope = 1, indicating thermal traits
derived from physiology and occurrence data are not the same. Also, the regression slopes were the
same across the datasets, except for the regression slope between the thermal ranges (see
Supplementary Figure 3.7).

The positive relationship between the physiology- and occurrence-based
thermal ranges (FTN* and RTN*, respectively) was also significant (GLM 07: F(1,g9) =
10.39, p < 0.05; Figure 3.2 D). The slope of the relationship between FTN*and RTN*
(0.46 + 0.14) was different to the slope = 1 (x%1,90) = 14.76, p < 0.05). Occurrence-

based thermal range only accounted 10% of the variation in the physiology-based
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thermal range. The slopes of the relationship between physiology- and occurrence-
based thermal range did vary across datasets (Supplementary Figure 3.7 D;
Supplementary Table 3.1 GLM 04, 08, 12, and 16), e.g. GLM 12 slope was different

from the slope in GLM 4 (fuss) = -2.19; p < 0.05) and GLM 8 (fuss) = -2.68; p < 0.05).

3.3.2 Inequality across latitude, thermal affinity and specialisation

Except for the difference in cold and heat tolerance limits (i.e. DCL> and DHL»,
respectively), the mean estimated differences between TT,*and TT,* were significantly
different from zero, i.e. the difference in optimal temperature (DOT2 = Topt* — TM*) was
4.56 + 0.49 °C (t(123) = 9.25, p < 0.05), and the difference in thermal range (DTR2 =
FTN*— RTN*) was —1.56 + 0.64 °C (f90) = -2.42, p < 0.05). Similar patterns was
generally observed in all the datasets. Except for DOT, DCL (F3382) = 45.01, p < 0.05),
DHL (Fz348)= 7.61, p <0.05), and DTR (F@z.274) = 35.00, p < 0.05) varied across the
four datasets.

Latitudinal trends in the difference between TT, and TT, were examined using
generalised additive models (GAM; Supplementary Table 3.2 for the summary
statistics). The difference TTp,*and TT,* did vary non-monotonously with latitude (Figure
3 A — D). These non-monotonous relationships were generally observed in other
datasets (Supplementary Figure 3.8), where latitude accounted for <60% of the
variation in the difference between TT, and TT,.

Latitude accounted for 29% of the variation in DOT> (Supplementary Table 3.2
GAM 05). Generally, the DOT> was higher than zero across all latitude except for
several species close to ~40° and beyond ~60° latitude (Figure 3.3 A). This latitudinal

pattern was generally consistent across all datasets (Supplementary Figure 3.8 A).
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Figure 3.3. Difference between physiology- and occurrence-based thermal traits (77, and TTo,
respectively) in marine phytoplankton across latitude (A — D) and across thermal affinity and thermal
specialisation (E — H). The estimates of the difference between TT,* (CTMI-derived) and TTo* (derived
from a seasonal extreme (SE) sea surface temperature (SST)) (TTp* — TTo*) were fitted against latitude
using generalised additive models (GAM, see Supplementary Table 3.2 GAM 05 — 08 for the summary
statistics). The regression lines are indicated in blue solid lines with 95% confidence interval in grey
shading. The horizontal broken line indicates the difference is zero. As presented, TT, — TT, did vary non-
monotonously with latitude (A — D). Moreover, TTy* — TTo* were fitted against thermal affinity and thermal
specialisation using generalised linear models (GLM; see Supplementary Table 3.4 GLM 05 — 08 for the
summary statistics). The GLMs were used to construct the contour plots (E — H). The colour bars indicate
the estimates of TT,* — TTo* .

On the other hand, latitude only explained 6% of the variance in DCL>
(Supplementary Table 3.2 GAM 06). DCL>did not deviate from zero across all latitude
(Figure 3.3 B). However, this pattern was different in DCL; and DCL3that were
generally below zero across latitude (Supplementary Figure 3.8 B). Also, DCL7had no
clear latitudinal pattern.

About 34% of variance in DHL> was explained by latitude (Supplementary Table
3.2 GAM 07), which generally did not differ from zero across latitude, except for the
estimates near ~40° latitude and beyond ~60° (Figure 3.3 C). This trends varied from
DHL 1 and DHL3that were generally higher than zero at lower latitude (< 40° latitude)

(Supplementary Figure 3.8 C).
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Approximately 31% of the variance in DTR> was explained by latitude
(Supplementary Table 3.2 GAM 08). DTR: did not vary from zero at lower latitude, but it
was lower than zero at higher latitude (Figure 3.3 D). Different pattern was observed in
DTR7:and DTR3, where estimates were generally higher than zero across the latitude
(Supplementary Figure 3.8 D).

The effects of thermal affinity (TA) and thermal specialisation (7S) on the
difference between TT, and TT, were tested using the generalised linear model (GLM,;
Supplementary Table 3.4 for the summary statistics). Generally, the difference TT,*and
TTo* did vary with thermal affinity and thermal specialisation (Figure 3 E — H). These
patterns were also observed in other datasets (Supplementary Figure 3.9).

The main effect of TA on DOT;was significant (GLM 21). Neither TS nor its
interaction with TA had an effect on DOT,. DOT;had decreased with increasing TA
(Figure 3 E). Similar pattern was observed in all datasets, but both DOTzand DOTy4
were influenced by the main and interaction of the effects of TA and TS (Supplementary
Figure 3.9).

The main effects of TA and TS on DCL were significant (GLM 22). DCL> had
decreased with increasing TA and had increased with increasing TS (Figure 3 F), and
these were consistent in all datasets (Supplementary Figure 3.9).

The main and interactive effects of TA and TS on DHL;were significant (GLM
23). DHL> had decreased with increasing TA and TS (Figure 3 G). Similar patterns were
observed in all datasets, except for DHL3 that was not affected by the interaction
between TA and TS (Supplementary Figure 3.9).

The main effects of TA and TS on DTR2were significant (GLM 24). DTR>had
decreased with increasing TA and TS (Figure 3 H). This pattern were the same across

datasets, except for DTR4that did not vary across TA (Supplementary Figure 3.9).
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3.3.3 Thermal sensitivity, warming exposure and vulnerability across latitude,
thermal affinity and specialisation

Latitudinal trends in sensitivity to cold and warm temperature (Smin and Smax,
respectively), warming exposure (WR), and vulnerability to warming (V) in marine
phytoplankton were determined using generalised additive model (GAM,;
Supplementary Table 3.3 for the summary statistics). Smin *, Smax*, WR*, and V*
(estimated from the CTMI-derived dataset) were found to vary non-linearly across
latitude (Figure 3.3), which generally similar to the patterns observed from the data in
the published dataset (Supplementary Figure 3.10).

Exactly half of the variation in Smin * was explained by latitude. As observed,
Smin * rose evidently to high point and peaked at ~50° (Figure 3.4 A). Estimates of Spin *
were generally lower than zero, except for the observations beyond the peak that were
not different from zero. This patterns in Smin * had a notable difference from the trends in
Smin estimated from the published dataset that had dipped at ~50° (Supplementary
Figure 3.10 A),

About 31% of the variance in Smax® was explained by latitude. Smax® had no
clear latitudinal variation in lower latitude but the estimates were generally above zero.
Smax™ had dropped at ~40°, then increased to a peak (15°C) at ~55°, and declined to
~65° (Figure 3.4 B). These patterns were generally retained in the latitudinal trends in
Smax estimated from the published dataset, but had remarkable differences: (1) the
decline of Smax from 0° to ~23°, (2) the peak at ~35°, and the increasing pattern of Smax
beyond ~65° (Supplementary Figure 3.10 B).

On the other hand, latitude accounted for the 43% of the variance in warming
exposure based on RCP 8.5 climate scenario (WRs5*). WRg.s* evidently increased with

latitude until it reached a peak at ~45, and declined at ~65° (Figure 3.4 C).
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Successively, WRg.s5* rose to high point and peaked in the highest latitude. Warming
exposure did vary significantly across climate scenarios (F3,612) = 925.36, p < 0.05). As
expected, WRs.5* were higher than the WR projected in RCP 2.6, RCP 4.5, and RCP
6.0 climate scenarios. These trends did not differ from the trends in WR estimated from

the published dataset (Supplementary Figure 3.10 C — F).
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Figure 3.4. Sensitivity to cold and warm temperature (Smin and Smax, respectively), warming exposure
(WR), and vulnerability to warming (V) in marine phytoplankton across latitude (A — D) and across thermal
affinity (TA) and thermal specialisation (TS) (E — H). All estimates were obtained from CTMI-derived
datasets (indicated by an asterisk), and the warming rate and vulnerability were computed based on RCP
8.5 climate scenario (WRs.s5*and Vs.5*, respectively). Smin *, Smax*, WRs.5*, and Vs.5* were fitted against
latitude using generalised additive models (GAM; see Supplementary Table 3.3 GAM 17, 18, 22, and 26,
respectively, for the summary statistics). The regression lines are indicated in blue solid lines with 95%
confidence interval in grey shading. Except for Vss*, estimates for Smin*, Smax*, WRs.5* did vary non-
monotonously with latitude (A — D). Furthermore, Smin*, Smax*, WRs.5*, and Vs.5* were fitted against TA and
TS using generalised linear models (GLM,; see Supplementary Table 3.5 GLM 33, 34, 38, and 42,
respectively, for the summary statistics). The GLMs were used to construct the contour plots (E — H). The
colour bars indicate the estimates of Smin *, Smax*, WRs.5*, and Vs.s*.

Warming vulnerability based on RCP 8.5 climate scenario (Vs5*) appeared to
behave monotonously (Figure 3.4 D). About 14% of the variance in Vg s5* was explained
by latitude. Vg 5* remained constant in lower latitude and gradually increased in higher
latitude. There was a significant difference in Vg s* across the climate scenarios (F3,361)

= 35.27, p < 0.05). Vg 5" were lower than the warming vulnerability projected in other
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climate scenarios. Contrastingly, trends in warming vulnerability estimated from
published dataset were non-monotonous (Supplementary Figure 3.10 G — J).

Furthermore, significant effects of thermal affinity (TA) and thermal
specialisation (TS) on sensitivity to cold and warm temperature (Sminand Smax,
respectively), warming exposure (WR), and vulnerability to warming (V) in marine
phytoplankton were tested using generalised linear model (GLM; Supplementary Table
3.5 for the summary statistics).

Only the main effect of TS on Smin™ was significant (GLM 33), increasing Smin*
with increasing TS (Figure 3.4 E). On the other hand, only the main effect of TA on
Smax™ was significant (GLM 34), decreasing Smax™ with increasing TA (Figure 3.4 F).
These trends were similar to the patterns observed in Smin and Spax estimated from the
published dataset (Supplementary Figure 3.11 C and D, respectively).

There was no significant effect of TA and TS on warming exposure and on
warming vulnerability based on RCP 8.5 climate scenario (WRs.5* and Vs.s5*, GLM 38
and 42, Figure 3.4 G and H, respectively). However, the significance of these effects
were dependent on climate scenarios and on the composition of the datasets.
Supplementary Figure 3.11 presents contour plots showing the variation of warming
exposure (Supplementary Figure 3.11 F — L) and warming vulnerability (Supplementary

Figure 3.11 M — T) across thermal affinity and thermal specialisation.

3.3.4 Phylogenetic effect on the thermal traits, thermal sensitivity, exposure and
vulnerability to warming

The phylogenetic distribution of the physiology- and occurrence-based thermal
traits (TT, and TT,, respectively), their difference (TT, — TT,), thermal sensitivity (Smin

and Smax), warming exposure (WR), and warming vulnerability (V) in marine
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phytoplankton (Figure 3.5; Supplementary Figure 3.12 — 3.14) were examined to
determine the phylogenetic effect. Three approaches were employed: (1)

variance partitioning (VP) (Figure 3.6; Supplementary Figure 3.15 — 3.17), (2)
autocorrelation (AC) using Moran’s I (Figure 3.7; Supplementary Figure 3.18 — 3.20)
and Abouheif's Cnean indices, and (3) Brownian motion model of evolution (BM) using
Blomberg’'s K and K* and Pagel’s /1 indices. Supplementary Table 3.6 presents the
summary statistics for these three approaches.

Variation in TT, across taxonomic groups was evident (Figure 3.5 A — D;
Supplementary Figure 3.12 A — H). For instance, cyanobacteria had higher Top*),
CTmin™), and CTmax™), and lower FTN™) compared to other taxonomic groups. Based on
VP, about 24 — 63% of the variation in TT, was explained by species, and a significant
smaller proportions of the variance was explained by supra-specific taxonomic levels
(Figure 3.6 A — D; Supplementary Figure 3.15 A — H). AC-based phylogenetic signal
was present in Top™) (I and Cmean> 0, p < 0.05; Figure 3.7 A and Supplementary Figure
3.18 A and E), but BM-based signal was absent. Both AC and BM-based phylogenetic
signals were detected in CTmin™ (I, Cmean, K, K* and 1 > 0, p < 0.05; Figure 3.7 B and
Supplementary Figure 3.18 B and F), but the BM-based signal was weak to detect
phylogenetic conservatism in CTmin™) (K, K* and A < 1). However, no AC-based
phylogenetic signal was detected in CTmax™ (Figure 3.7 C), but CTmax estimated from the
published dataset had produced a significant AC-based phylogenetic signal (/ and Cmean
>0, p <0.05; Supplementary Figure 3.18 G). Furthermore, phylogenetic signal was
absent in FTN* (Figure 3.7 D), but, both AC and BM-based signals were detected in
FTN estimated from the published dataset (/, Cmean, K, K*, and 4 >0, p < 0.05;
Supplementary Figure 3.18 H). The BM-based signal was weak to infer presence of

phylogenetic conservatism in FTN (K, K*, and 1< 1).
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Figure 3.5. Phylogenetic distribution of the thermal traits estimated from physiology data (77,) and

occurrence data (TTo), their difference (TTp, — TTo), thermal sensitivity (Smin and Smax), warming exposure
(WR), and warming vulnerability (V) in marine phytoplankton. CTMI-derived TT,* (A — D) and seasonal
extreme SST-derived TT,* (E — H) were used to compute for the difference between physiology- and
occurrence-based thermal traits (I — L). Smin*, Smax*, WRs.5*and Vs.5* were obtained from CTMI-derived
datasets (M — P) and the warming rate and vulnerability were computed based on RCP 8.5 climate
scenario. Colours indicate trait value, as shown by the colour bar below each tree.
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Figure 3.6. Percentage of variation in thermal traits estimated from physiology data (7T,) and occurrence
data (TTo), their difference (TT, — TTo), thermal sensitivity (Smin and Smax), warming exposure (WR), and
warming vulnerability (V) in marine phytoplankton explained by different taxonomic levels according to a
variance partitioning analysis. CTMI-derived TT,* (A — D) and seasonal extreme SST-derived TTo* (E —
H) were used to compute for the difference between physiology- and occurrence-based thermal traits (I —
L). Smin*, Smax®, WRs.5*and Vs.s* were obtained from CTMI-derived datasets (M — P) and the warming rate
and vulnerability were computed based on RCP 8.5 climate scenario. Solid points represent the observed
values, whilst the boxplots represent the distribution of values generated by the tip randomisation null
model. All observed values are significant different from the null model at 95% confidence interval. The
red and blue points indicate that observed values are lower and higher than the null model, respectively.

76



Chapter 3 — Biogeography & phylogeny explain variation in traits

A. Topt™ [°C] B. CTrmin* [°C] C. CThax” [°C] D. FTN* [°C]
&
N _ s . o
10 St TedeTN “ < | Mo R -
\ \ 4 S o \
N © | \ \ \
c © N c c o 7 o c o] %
S \ S S \ <] \
T o \ k<t 5 \ s \
s ° % 2o 3 [N <l 2ol e
3 \ s © S o T s S e
o= Vonteooe . o o 8 (& I ZEEN
oS S |
N - o~ \
o N Ve maonaeh A IS =3 5
=R = 9 1 [T |
y 24 \ / / )
- T S ' N 2 [ i < .
Es T y y " 1 " " T T s y T " y @ y " " "
0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000
Phylogenetic distance Phylogenetic distance Phylogenetic distance Phylogenetic distance
E. TM* [°C] F.LTL* [°C] G. UTL* [°C] H. RTN* [°C]
©
m )
S~ ~ ST S 5
o~ .
= 3 \
o 1 Sq N
I3 =] \
) \
55 § 51 £°| £
8 ° s = & °
e [ [ [ S Fecs 4o
S o S o S g S 8
o2 o 3 [*] g (Sl = ———
~ ,
e ;
- 4 9 ;< A
<7 = = s
G ] W,
0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000
Phylogenetic distance Phylogenetic distance Phylogenetic distance Phylogenetic distance
1. DOT; = Topt™ - TM* [°C] J.DCLy = CTpyin* - LTL* [°C] K. DHL; = CTax* - UTL* [°C] L. DTR; = FTN* - RTN* [°C]
=3
SN “u o | T o |
v o~ b o % o K
N S N \ \
v \ \ \
< | N ~ \ o~ \
S \ b S Y e N
\ pr | \ \ N
s B §° (RN = cnne s ' TS M5 =] \ v
= =] e e = = = / = o S~ v ran
T o~ \ ] - z o \ - = \ v
e o Y ° ® T
S ¥ 5 2 S 5 2
o N oerremsesaa I o < . O 2 o ° _
o N (ARSI - am gl TS T
°© S = / - S S ¥
N ST — R S / S i /
\ / i ? - /
v LS S T g o | /
34 N v o | TN < -
T u U u u : u y u U <@ T u u y v T u T y
0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000
Phylogenetic distance Phylogenetic distance Phylogenetic distance Phylogenetic distance
M. Smin" [°C] N. Smax* [°C] 0. WRg " [*Clyear] P. Vg™ [logio(year)]
, © e .-
hEN o | ™ S sV [EPPRIN
\ S “ =
. \ PR A 1 i T -
N g | r . - e, R
c o N c S S c S A - c S
S \ GRS <] S o S o
& \ L & 8 | kS K - e
S e S g NTTRESS S w / s S o /!
q / S . <4 /
K , ] Py < /
- ANRERE=- o -/ - ' TN !
S ; ; 1 . / ] I 1
- U w | M- &1V
f u y T y 1 y g u y s T " y T s g u T T
0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000
Phylogenetic distance Phylogenetic distance Phylogenetic distance Phylogenetic distance

Figure 3.7. Phylogenetic correlograms for the thermal traits estimated from physiology data (77,) and
occurrence data (TTo), their difference (TTp, — TTo), thermal sensitivity (Smin and Smax), warming exposure
(WR), and warming vulnerability (V) in marine phytoplankton. CTMI-derived TT,* (A — D) and seasonal
extreme SST-derived TT,* (E — H) were used to compute for the difference between physiology- and
occurrence-based thermal traits (I — L). Smin*, Smax*, WRs.5*and Vs.5* were obtained from CTMI-derived
datasets (M — P) and the warming rate and vulnerability were computed based on RCP 8.5 climate
scenario. The solid black lines indicate the Moran’s / index autocorrelation, and the dashed black lines
indicate the 95% confidence interval. The horizontal black lines represent the estimated value of Moran’s
I under the null hypothesis of no phylogenetic autocorrelation. The red and blue colored bars indicate
significant positive and negative autocorrelation, respectively; whilst, the black colored bars indicate a
non-significant autocorrelation.

TT,also appeared to vary across taxonomic groups (Figure 3.5 E — H;
Supplementary Figure 3.12 | — P). Approximately, 68 — 88% of the variation in TT, was

largely explained by species (Figure 3.6 E — H; Supplementary Figure 3.15 | — P). AC-

77



Chapter 3 — Biogeography & phylogeny explain variation in traits

based phylogenetic signal was present in TM *) (I and Cmean> 0, p < 0.05; Figure 3.7 E
and Supplementary Figure 3.18 | and M). Also, BM-based signal was detected in TM*
(based onlyon 4 >0, p <0.05) and in TM (based on Kand 4 > 0; p < 0.05), however
this signal was weak to detect phylogenetic conservatism in TM®*)(Kand A < 1). LTL®)
had produced significant AC- and BM-based phylogenetic signals (/, Cmean, K, K*, and 4
>0, p <0.05; Figure 3.7 F and Supplementary Figure 3.18 J and N). However,
phylogenetic conservatism was absent in LTL®) (K, K* and A < 1). Also, AC- and BM-
based phylogenetic signals were also detected in UTL™) (I, Cmean, and 2 >0, p < 0.05;
Figure 3.7 G; Supplementary Figure 3.18 K and O) but failed to detect phylogenetic
conservatism in UTL™ (1 < 1). AC-based phylogenetic signal was present in RTN *
(based only on Cmean> 0, p < 0.05) and in RTN (/ and Cmean> 0, p < 0.05; Figure 3.7 H
and Supplementary Figure 3.18 L and P). Neither the phylogenetic signal nor the
phylogenetic conservatism based on BM analysis were detected in RTN (¥,

The difference between TT,*) and TT,™* was also found to vary across
taxonomic groups (Figure 3.5 | — L; Supplementary Figure 3.13), and significant
proportion of the variation in TT,*) — TT,™*) was explained by the species (25 — 70%)
and supra-specific taxonomic levels (Figure 3.6 | — L; Supplementary Figure 3.16).
However, both AC- and BM-based analyses did not reveal statistically significant
phylogenetic signal and conservatism in TT,*— TT,* (Figure 3.7 | —-L and
Supplementary Figure 3.19). In contrast, TT, — TT, estimated from published dataset
produced a significant AC-based phylogenetic signal (/ and/or Cmean> 0, p < 0.05),
except for the difference in heat tolerance limits (DHL() .

Thermal sensitivity (Smin and Smax), warming exposure (WR), and warming
vulnerability (V) in marine phytoplankton also seemed to vary across taxonomic groups

(Figure 3.5 M — P; Supplementary Figure 3.14), and significant percentage of the
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variation was explained by species and supra-specific taxonomic levels (Figure 3.6 M —
P; Supplementary Figure 3.17). However, phylogenetic signal and conservatism were
absent in Smin* (Figure 3.7 M and Supplementary Figure 3.20 A). In contrast, Smin
estimated from published dataset had detected a statistically significant phylogenetic
signal based on AC (/ and Cmean> 0, p < 0.05; Supplementary Figure 3.20 C) and BM
(K*and 4 >0, p <0.05). However, BM-based signal was too weak to detect
phylogenetic conservatism in Smin. Also, There was no significant phylogenetic signal in
Smax® (Figure 3.7 N and Supplementary Figure 3.20 B and D), with the exception of
the analysis based on Cnean that had detected a statistically significant phylogenetic
signal in Smax estimated from published dataset (Cmean > 0, p < 0.05). Generally,
phylogenetic signal was absent in WR(* across all climate scenarios (Figure 3.7 O and
Supplementary Figure 3.20 E and L), except for the analysis based on K and K* that
had detected significant phylogenetic signal in WR26* but was weak to detect
phylogenetic conservatism in the trait (K and K* < 1). Furthermore, significance of the
phylogenetic signal in V(¥ across all climate scenarios was not detected (Figure 3.7 P
and Supplementary Figure 3.20 M and T), except for the 4 that had detected statistically
significant signal in V26, V6.0, and Vss(4 > 0, p < 0.05). The A-based signals were close
to 1 (i.e. 0.96 — 1.00), which may indicate the presence of phylogenetic conservatism in

warming vulnerability in marine phytoplankton.
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3.4 DISCUSSION

3.4.1 Congruence and inequality between physiology- and occurrence-based
thermal

The significance of the direct relationship between the thermal traits derived
from physiology and occurrence data (7T, and TT,, respectively) in marine
phytoplankton (Figure 3.2) suggests congruence between the estimation approaches.
However, the degree of congruence is not high as inferred from the lower proportion of
the variance in TT, explained by TT, (< 50 %). Furthermore, the TT, and TT, are not
equal as indicated by the non-conformity of the slopes to 1 (Figure 3.2) and the non-
equality of TT, — TT, to zero (Figure 3 A — D), with the exception of the heat tolerance
limits. Taken together, these results support the hypothesis of the link between TT, and
TT,that may express different aspects of the thermal niche of species. TT, is expected
to estimate the fundamental niche of a species, which is defined by species’
physiological tolerance range to environmental factors such as temperature in the
absence of biotic interactions (Hutchinson, 1957). However, the presence of biotic
interaction such as predation, competition, mutualisms, parasites and pathogens
(Jankowski et al., 2013), species dispersal limitation (Sanchez-Fernandez et al., 2016),
and limited climate availability (Soberon and Nakamura, 2009) reduce the fundamental
niche to realised niche that may be estimated by the TT,. Hence, it is expected that the
TT, is higher than TTo,.

Contrary to expectations, the extreme cold and heat tolerance limits as
estimated from occurrence data in several species are close, or even exceed their
physiological thermal limits (Figure 3 B and C), resulting to the extreme realised range

equal to or wider than the fundamental range (Figure 3 D). However, this is not case for
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the thermal ranges estimated from the annual average SST that are generally smaller
than the physiological thermal range (Supplementary Figure 3.7 D). Therefore, the
thermal range derived from annual average- and seasonal extreme-SST may estimate
a different aspect species niche, the former being limited by thermal availability and is
generally smaller than and is within the fundamental niche (Supplementary Figure 3.21
A and C), conforming to the prediction by Hutchinson (1957).

The biases associated with physiology data (Boyd et al., 2013; Low-Décarie et
al., 2017; Salvador et al., 2019) and occurrence data (Isaac and Pocock, 2015); cannot
be ignored that may introduce uncertainties in the estimation of the thermal traits, and
thus possibly violate the prediction by Hutchinson (1957). For instance, strains/isolates
of species may possess different thermal niche and species may not be represented
across their geographic range, which may underestimate the fundamental thermal
niche. Also, the spatial, temporal, and taxonomic bias in the occurrence dataset may
underestimate or overestimate the species’ realised niche.

Setting these biases aside, the predictions by Hutchinson (1957) can be
violated in several ways: (1) niche evolution can change the physiological limits in a
population relative to their baseline; (2) natural or anthropogenic mechanisms can
facilitate the occurrence of species outside their physiological limits; and (3) failure to
account for the variation in physiological requirements across species life history may
introduce inaccuracies of the estimation of fundamental thermal niche (Soberon and

Arroyo-Pefa 2017).

81



Chapter 3 — Biogeography & phylogeny explain variation in traits

3.4.2 Variation of the inequality between physiology- and occurrence-based
thermal traits

Generally, thermal traits in marine phytoplankton vary across latitude as
demonstrated in previous studies using the physiology data (Chen, 2015; Thomas et al.,
2016, 2012) and occurrence data (Edullantes et al., n.d.). Hence, the difference
between physiology- and occurrence-based thermal traits (77T, — TT,) is also likely to
vary across latitude. As observed, TT, — TT, generally vary non-monotonously with
latitude (Figure 3 A — D), suggesting that TT, — TT, may increase or decrease
depending on the geographic locations where the species are collected/isolated.
Moreover, the significance of the main effects of thermal affinity (TA) and thermal
specialisation (TS) on TT, — TT, reveals remarkable contrasts between the cooler- and
warmer-affinity species, and between the specialists and generalists (Figure 3 E — H;
Supplementary Figure 3.9).

The estimates of the difference in optimal temperature (DOT) across latitude
are mostly above the equality line (Figure 3 A; Supplementary Figure 3.8 A), indicating
that the optimal temperature for growth of a species is higher than that the optimal
temperature for their ecological success. Hence, it is possible to hypothesise that
presence of the biotic interactions is likely to reduce the optimal thermal preference of
species. Also, the results also show the decline of DOT near the equality line at ~40°
where variability in DOT is high. These findings may be explained by the fact that
climate variability is highest at mid latitude (Chapter 2). A high climate variability
inevitably widens the realised niche breadth to an extent where the midpoint will be
closer or exceed the physiological thermal optimum. Furthermore, DOT decreases with

TA (Figure 3 E; Supplementary Figure 3.9), suggesting that the greater the affinity of
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species to warm temperature, the closer their thermal optimum for growth to their
optimal temperature for ecological success.

On the other hand, the latitudinal trend in DCL (i.e. difference in cold tolerance
limit) is generally close to or below the equality line (Figure 3 B; Supplementary Figure
3.8 B), entailing that the species’ lower thermal limits in the presence of biotic
interaction are equal or greater than their physiological thermal minima. Contrastingly,
the latitudinal trend in DHL (i.e. difference in heat tolerance limit) is commonly near or
above the equality line (Figure 3 C; Supplementary Figure 3.8 C), suggesting that the
realised upper thermal limits of species are equal or lower than their critical thermal
maxima. These findings support the hypothesis that the species’ realised thermal limits
are within their fundamental thermal niche. However, there are several notable
observations that contradict this hypothesis. For instance, estimates of DCL and DHL
are highly variable at ~40°, where some estimates are above and below the equality
line, respectively. Therefore, in this case, the realised thermal limits are not contained
by the fundamental thermal range, and the realised thermal niche may be wider than
the fundamental niche (Figure 3 D), which is inconsistent to the prediction by
Hutchinson (1957). As described earlier, these discrepancies are obvious with
occurrence-based thermal traits derived from seasonal extreme SST. In addition, both
DCL and DHL also decline with increasing TA (Figure 3 F and G, respectively;
Supplementary Figure 3.9), indicating that warmer-affinity species have lesser
inequality between physiological and realised thermal limits as compared to the cooler
water species. The direct relationship between DCL and TS suggests that the more
specialist a species, the lesser is the difference in cold tolerance limits. On the other
hand, the inverse relationship between DHL and TS implies that the difference in heat

tolerance limits is greater in the thermal specialist than in the thermal generalist.
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The latitudinal trends in DTR (difference in thermal range) with realised thermal
limits derived from annual average SST are generally above the equality line
(Supplementary Figure 3.8 D), conforming to the hypothesis. As observed, DTR in
lower latitude are greater than the estimates in higher latitude, suggesting that the
realised thermal niche in temperate species are much closer to the their fundamental
thermal niche as compared to the niches in tropical and sub-tropical species.
Furthermore, DTR declines with increasing TA and TS (Figure 3 H; Supplementary
Figure 3.9), implying that the difference between fundamental and realised thermal
range is greatest among species with greater affinity to cold temperature and with
higher degree of thermal specialisation. This trend could be explained by the reduced
climate variability in lower latitude, constraining the species’ realised thermal niche
(Stuart-Smith et al., 2017) and physiological thermal niche (Addo-Bediako et al., 2000;
Janzen, 1967; Sunday et al., 2011) in the tropics. In addition, the high biodiversity of
marine phytoplankton in the tropics (Righetti et al., 2019) entails intensification of the
biotic interaction in the tropical phytoplankton community, and hence may narrow the
realised thermal niche in the tropics. Accordingly, the rates of biotic interactions and
processes, or the rate of evolutionary diversification are higher in a warmer climate than
the rates in a colder climate (Allen et al., 2002; Mittelbach et al., 2007). Several
literature provide persuasive empirical evidence to support that thermal niche breadth
increases with increasing latitude (Addo-Bediako et al., 2000; Stuart-Smith et al., 2017;
Sunday et al., 2011). In spite of this, the generalisation of the relationship is still unclear
mainly due to several analytical issues associated with macroecological studies

(Blackburn and Gaston, 1998; Gaston et al., 2009).
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3.4.3 Variation of thermal sensitivity, exposure and vulnerability to warming

Thermal sensitivity (Smin and Smax) is the proximity between species’
physiological thermal limits (CTmin and CTmax, respectively) and the ambient
temperature extremes it experiences in its local habitat (Hmin and Hmax). This can be
used to infer species’ thermal safety margin (TSM), a useful concept to understand
global patterns of the vulnerability of ectotherms to warming (Bennett et al., 2019;
Clusella-Trullas et al., 2011; Deutsch et al., 2008; Diamond et al., 2012; Huey et al.,
2009; Sunday et al., 2014). A positive TSM (CTmin < Hmin, hence Smin < 0; CTmax > Hmax,
hence Smax> 0) suggests that a species has a physiological thermal safety since the
lower and upper tolerance limits are below the coldest temperature and above the
warmest temperature it experiences, respectively. In contrast, a negative TSM (CTpmin >
Hmin, hence Smin> 0; CTmax < Hmax, hence Smax < 0) indicates that a species has to
avoid the extreme temperatures or else it is at risk of thermal danger (Sunday et al.,
2014). The results of the study show that Smin and Smax are generally below and above
zero, respectively (Figure 3.4 A and B; Supplementary Figure 3.10 A and B), indicating
positive TSM. Hence, the marine phytoplankton are generally living in the present
climate scenario within the thermal safety zone.

Thermal sensitivity in marine phytoplankton varies across latitude (Figure 3.4 A
and B; Supplementary Figure 3.10 A and B), which can be explained by the fact that
species in the tropics are more exposed to warmer temperature as compared to
temperate species that are more exposed to cold temperature. This suggests that
temperate species have low cold safety margins and therefore they are at risk to live
beyond the limit of their cold tolerance as compared to species in the tropics. On the
other hand, the tropical species have low heat safety margins and hence they are more

vulnerable to warming than the species thriving at higher latitudes (Clusella-Trullas et
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al., 2011; Deutsch et al., 2008; Diamond et al., 2012; Huey et al., 2009). This is further
supported by the latitudinal trend in warming vulnerability (Figure 3.4 D; Supplementary
Figure 3.10 G — J), indicating that the local temperatures will surpass the physiological
upper thermal limits in tropical species faster than the temperate species despite the
warming rate is slower in the lower latitudes (Figure 3.4 C; Supplementary Figure 3.10
C-F).

Moreover, Smin is independent on species’ thermal affinity (TA) but depends on
the degree of their thermal specialisation (TS) (Figure 3.4 E). This suggests that the
more specialist the species, the lower their physiological lower thermal limits relative to
the coldest temperature they experience, regardless of their degree of affinity to warm
and cold temperature. It can therefore be inferred that the specialists have higher cold
safety margin than the generalist.

On the other hand, Smaxis dependent on TA but not on TS (Figure 3.4 F),
suggesting that the sensitivity to warm temperature is different between the cooler- and
warmer-affinity species regardless of their degree of specialisation. This further implies
that cooler-affinity species tend to have high physiological upper thermal limits relative
to the highest temperature they experience in their local habitat as compared to that of
the warmer-affinity species. Hence, species that have higher affinity to warm
temperature have low heat safety margin, which makes them more vulnerable to
warming. Contrary to expectations, this study is unable to find a clear effect of TA and
TS on exposure and vulnerability to warming (Figure 3.4 G — H; Supplementary Figure
3.11 M —T). This result however is contingent on the climate scenarios and the

composition of datasets.
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3.4.4 Presence of phylogenetic signal in thermal attributes

This study also set out to assess the phylogenetic effect on the thermal
attributes in marine phytoplankton such as the physiology- and occurrence-based
thermal traits, their inequalities, thermal sensitivity, warming exposure, and warming
vulnerability. This aim is attained by assessing the presence and strength of
phylogenetic signal and/or phylogenetic conservatism using three approaches: (1)
variance partitioning, (2) autocorrelation, and (3) Brownian motion model of evolution.
Generally, the results provide support for the hypothesis that thermal attributes are
more similar among closely related species than expected from a null model from the
same phylogeny. However, the findings provide no clear evidence of the presence of
phylogenetic conservatism in the thermal attributes. The implications of these findings
and a number of caveats with respect to our analyses are discussed below.

The first approach is based on variance partitioning (VP) in which the
phylogenetic pattern of thermal attributes is inferred from the significant difference
between the observed variation within hierarchical taxonomic levels and the variation
expected by the tip randomisation null models. There are several null models used to
deduce phylogenetic patterns of traits (Krasnov et al., 2011; Machac et al., 2011;
Silvertown et al., 2006; Waldron, 2007), however the explicit null models used for this
hypothesis testing (i.e. tip randomization) remove any attribution to shared ancestry by
randomly assigning species traits values across a given phylogeny (Loza et al., 2017).
The findings reveal that the significant proportion of the variation in all thermal attributes
is mainly explained by species, which generally exceeds the proportion of variance
explained by supra-specific taxonomic levels. This suggests that the thermal attributes
are most variable among species within genera with few notable exceptions (Figure 3.6;

Supplementary Figure 3.15 — 3.17). Although the variation is largely explained by
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species, the supra-specific taxonomic levels frequently explained more variation than
expected by the tip randomisation null models. This indicates presence of phylogenetic
signal in the physiology- and occurrence-based thermal traits, their inequalities, thermal
sensitivity in marine phytoplankton. This study demonstrates the utility of variance
partitioning across taxonomic levels in assessing the phylogenetic patterns of thermal
attributes. However, this approach does not require a dated phylogeny nor assume any
evolutionary model premises, hence this can only be used to test the phylogenetic
signal and not phylogenetic conservatism.

The second approach is based on autocorrelation (AC) using Moran’s / and
Abouheif's Cmeanindices. Moran’s / index measures spatial autocorrelation (Moran,
1950, 1948), which later used to tests phylogenetic autocorrelation that relates cross-
taxonomic trait variation to phylogeny (Gittleman and Kot, 1990). Whereas, Abouheif’s
Cmean index measures for serial independence (Abouheif, 1999), which is the mean
value of a random subset of possible ways to represent the order of branches in a
phylogenetic tree. Both indices are not under an assumption of evolutionary model and
are not suited as an effect size measure. Since both are restricted to comparisons
among different traits in the same phylogeny, the resulting values do not offer
interpretation when comparing values between phylogenetic trees. However, the
deviation from zero (i.e. null model) indicates the relationship between trait values in the
same phylogeny (Muinkemdller et al., 2012). The results of this study generally show the
significant difference in the AC-based indices for physiology- and occurrence-based
thermal traits from the null model, suggesting the presence of phylogenetic signal in the
thermal traits. On the other hand, the findings generally suggest absence of
phylogenetic signal in the inequality between physiology- and occurrence-based

thermal traits, thermal sensitivity, and exposure and vulnerability to warming.
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The third approach is based on the Brownian motion model of evolution (BM)
using Blomberg’'s K and K* and Pagel’s 1 indices. Blomberg’'s K and K* expresses the
strength of phylogenetic signal as a scaled ratio of observed distribution of tip data to
expectations derived from a Brownian motion model of evolution (Blomberg et al.,
2003). K uses the phylogenetically correct mean, whereas K* uses the observed data
on a star phylogeny with contemporaneous tips, but both indices are highly correlated
(Blomberg et al., 2003). A K or K* value close to 1 implies that relatives resemble each
other more than expected under a Brownian motion model of evolution, whereas a
value close to 0 indicates absence of phylogenetic conservatism (Blomberg et al.,
2003). Similar to Blomberg’s indices, Pagel's A index operates under the assumption of
Brownian evolution model in which it measures a scaling parameter for the correlations
between species relative to the expected correlation (Pagel, 1999). A A value close to 1
indicates that traits evolve under a Brownian model of evolution, whereas a value of 0
indicates no phylogenetic signal in the trait. Depending on the shape of phylogeny, A
value may exceed to 1 (Freckleton et al., 2002). Generally, the results of this study
reveal no significant difference in the BM-based indices for the thermal attributes from
the null model, suggesting the absence of phylogenetic signal in the thermal attributes.
A notable exception is the patterns in physiology- and occurrence-based estimate of the
lower thermal limits, which appear to have significant phylogenetic signal based on the
BM-based indices. However, the detected phylogenetic signals are weak, suggesting
the absence of phylogenetic conservatism in both the physiology- and occurrence-
based estimate of the lower thermal limits.

These results however must be interpreted with caution because of the possible
biases from the composition of the datasets. For instance, several AC-based indices

show significant difference from the null model for traits in CTMI/-derived dataset but not
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in the published dataset. Another source of uncertainty is the estimate of the trait values
due to potential biases associated with physiology and occurrence data (Boyd et al.,
2013; Isaac and Pocock, 2015; Low-Décarie et al., 2017; Salvador et al., 2019) as
described earlier. Furthermore, there is also a potential bias form the estimates of the
phylogeny since indices and tests for phylogenetic signals are dependent on tree
topologies (Blomberg et al., 2003; Freckleton et al., 2002, 2011; Ives et al., 2007; Rohlf,
2001). The findings may be somewhat limited by the genetic information used to
reconstruct phylogeny and to estimate the divergence time of major taxon in

phytoplankton.

3.5 CONCLUSIONS

The present study examines the global pattern of the congruence between
physiology- and occurrence-based thermal traits, thermal sensitivity, and exposure and
vulnerability to warming in marine phytoplankton. To our knowledge, this has been one
of the first attempts to thoroughly investigate the biogeographic and phylogenetic
patterns of these thermal attributes in marine phytoplankton. Key findings in this study
are summarised as follows: (1) physiology- and occurrence-based thermal traits are
congruent but not equal, (2) the inequality between these traits and thermal sensitivity
vary across latitude, thermal affinity, thermal specialisation, (3) exposure and
vulnerability to warming vary non-monotonously with latitude, (4) interspecific variation
in thermal attributes is evident, and (5) phylogenetic signals are present, but no clear
evidence of the presence of phylogenetic conservatism in the thermal attributes. The
study has identified emerging patterns of thermal attributes in marine phytoplankton,

contributing to our understanding of how these species respond to climate change.

90



CHAPTER 4



Chapter 4 — Temperature influences growth

This page is intentionally left blank.

92



Chapter 4 — Temperature influences growth

TEMPERATURE DEPENDENCE OF GROWTH IN NON-TOXIC AND TOXIC MARINE

PHYTOPLANKTON

ABSTRACT

Toxic algal blooms appear to expand globally and their duration, frequency, and
intensity may increase in response to climate change. Hence, it is important to assess
the effect of temperature on growth in marine phytoplankton. This present study
examined the temperature dependence of the growth in non-toxic and toxic marine
phytoplankton. Using strains of dinoflagellates, growth rates were measured along a
wide temperature gradient to estimate the maximum growth rates and thermal traits.
The data obtained from this study were supplemented with datasets compiled from
published laboratory culture experiments to allow comparison with an adequate number
of observations. The results revealed no difference in the (i) temperature dependence of
growth, (ii) thermal traits, (iii) relationship between maximum growth rates and thermal
traits, (iv) trait-environment relationship, and (v) thermal safety and vulnerability
between non-toxic and potentially toxic phytoplankton. These findings improve our
current knowledge on the growth in marine phytoplankton in response to temperature,

advancing our ability to predict toxic blooms in response to ongoing climate change.
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4.1 INTRODUCTION

Phytoplankton are ecologically important as primary producers and biological
carbon pump regulators (e.g. Behrenfeld et al., 2006; Falkowski, 2012; Falkowski and
Oliver, 2007). However, some phytoplankton species may form harmful algal blooms
(HAB) that are a global problem due to the production of toxins that pose a risk to public
health, the environment, and our economy (Berdalet et al., 2015). Toxic blooms are
already a global problem and their current distribution is alarming. Climate change may
provide favourable conditions for toxic algae to occur (Hallegraeff, 2010). It is likely that
toxic blooms and their impacts may be exacerbated in the future where their duration,
intensity, and frequency may increase in response to changes in the climate (Moore et
al., 2008; Tatters et al., 2013). The well-documented effects of toxins to humans and to
other organisms (Berdalet et al., 2016) and the potential effect of climate change on
toxic blooms in the future (Fu et al., 2012) have stimulated studies on the ecophysiology
of toxic phytoplankton (e.g. Kellmann et al., 2010a; Perini et al., 2014; Ramsey et al.,
1998; Stuken et al., 2011). Hence, it is crucial to be able to assess the sensitivity of
HAB species to changes in the temperature, which is projected to increase under
climate change (IPCC, 2013).

Temperature is one of the most fundamental abiotic factors that influence the
niche of phytoplankton (Boyd et al., 2013; de Boer et al., 2004). Increasing temperature
enhances growth until it reaches the optimal temperature, whilst elevated temperature
beyond the optimal decreases growth and can be lethal. These thermal responses
characterise the typical asymmetry of the growth-temperature curve, with an asymptotic
increase on the colder side, and an abrupt decline on the warmer side (Ras et al.,

2013). The influence of temperature on physiological processes in phytoplankton is
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mainly driven by the kinetics of enzymes. One important temperature-sensitive enzyme
is ribulose-1,5-bisphosphate (Rubisco) with carboxylase and oxygenase activity that
catalyzes two competing biochemical reactions - photosynthesis and photorespiration,
respectively (Hikosaka et al., 2005). Modification of Rubisco activity is one of the
acclimation strategies of phytoplankton in response to changes in temperature. Some
phytoplankton species that are acclimated to low temperature reduce Rubisco
carboxylase activity to decrease the energy transfer efficiency between the antennae
and photosystem Il (PS II) reaction centers and consequently prevent photoinhibition
(Krol et al., 1997; Levasseur et al., 1990; Maxwell et al., 1994), whilst others enhance
this enzymatic activity to ensure the utilization of excess energy and increase
photosynthetic rates (Mortain-Bertrand et al., 1988). Phytoplankton that grow beyond
the optimal growth temperature inactivates or denatures their photosynthetic enzymes
that unbalances ATP consumption and production, and eventually affects
photosynthesis, respiration and growth (Raven and Geider, 1988). Furthermore,
adaptation to varying temperature for growth in phytoplankton involves changes in the
quantity of enzymes, light-harvesting pigments and thylakoid membrane integrity
(Raven and Geider, 1988).

Several non-linear models have been used to describe the growth response to
temperature (Low-Décarie et al., 2017; Rosso et al., 1993). These models are also used
to predict the maximum growth rate (rmax) and the thermal traits such as the (i) the
cardinal temperatures that corresponds to the boundaries of thermal tolerance (i.e.
thermal optima (7o), critical thermal minima (CTpmin), and critical thermal maximum
(CTmax), and (ii) the fundamental thermal niche breadth (FTN) that correspond to the
thermal range on which a species can physiologically tolerate. This temperature range

is species-specific that reflects the physiological plasticity of species in response to
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changes in temperature (de Boer et al., 2004). The relationship between the maximum
growth rate of phytoplankton and temperature is initially described by an exponential
envelope function (Eppley, 1972), which the “hotter is better” hypothesis is based on.
Under this hypothesis, the maximum growth rate is expected to be greater at higher
optimal temperature. However, several works have challenged the validity of this
hypothesis (Bissinger et al., 2008; Brush et al., 2002). Several studies have examined
the effect of temperature on phytoplankton growth rate (Thomas et al., 2012), but the
differences in the temperature-growth relationship between non-toxic and toxic
phytoplankton species is understudied. Understanding the effect of temperature on
growth in non-toxic and toxic marine phytoplankton is crucial in predicting the
biogeography of harmful blooms in future climate scenarios.

To improve our understanding on the effect of temperature on the growth of the
phytoplankton, this chapter sets out to determine whether non-toxic and potentially toxic
marine phytoplankton exhibit variation in (i) temperature dependence of growth, (ii)
maximum growth rates and thermal traits, (iii) relationship between maximum growth
rates and thermal traits, (iv) trait-environment relationship, and (v) thermal safety and
vulnerability. It is hypothesized that there will be no significant variation in these
responses between the toxicity of marine phytoplankton. To test this hypothesis, plate-
based and tube-based growth experiments were conducted to determine the growth
response of non-toxic and potentially toxic strains of phytoplankton. The data obtained
from these experiments were supplemented with the datasets compiled from laboratory
culture experiments to allow comparison with an adequate number of observations. The
variation in these responses were then examined across strain identity, toxicity, and

experiments.
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4.2 MATERIALS AND METHOD

4.2.1 Test organisms

Six cultures of dinoflagellate strains were obtained from different culture
collections (Table 4.1). They are ecologically relevant organisms belonging to the
phytoplankton genera that make up the majority of the toxic bloom-forming species, i.e.
Prorocentrum and Alexandrium (Abdenadher et al., 2012; Ben-Gharbia et al., 2016;
Grzebyk et al., 1997; Quilliam et al., 1996; Vlamis et al., 2015). Three of the strains are
listed as “toxic” from their respective culture collections but only one strain was detected
for the presence of toxins (e.g. okadaic acid (OA) and dinophysistoxins (DTX1 and
DTX?2)), henceforth all of these strains were referred as potentially toxic. Another three
strains congeneric to the potentially toxic strains were non-toxic. To minimise the effect
of the differences in source’s culture conditions, all strains were maintained in 35 mL
batch cultures in artificial seawater (ASW) (Berges et al., 2001) enriched with K
minimum nutrients (Keller et al., 1987). Cultures were regularly transferred to a fresh K
medium to maintain the exponential growth. The cultures were not axenic. To minimize
contamination, all ASW and K media were autoclaved, and all transfers were performed
in a class Il biosafety cabinet. The batch cultures were maintained at a constant
temperature of 15°C and under a 12:12 hour light-dark cycle at a mean light intensity (+
standard error) of 221 + 12, measured using a light meter (Li-Cor Li-250A). They were
allowed to grow at this condition for at least four transfers prior to experimental

procedures.
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Table 4.1. Information on the identity, origin, culture condition, and toxicity of experimental organisms
obtained from different culture collections.

Experimental Origin Source’s culture condition Toxicity
Organism
Prorocentrum sp. Maintained at University Medium: /2 in natural sea water  non-toxic
(NRR 188) * of Essex culture (NSW)

collection; Information on  Temperature: 15 °C

isolate’s origin is not Light intensity: 100 pmol m2 st

available.
Prorocentrum micans Isolated at Lynn of Lorne, Medium: L1 in NSW non-toxic
(CCAP 1136/15) Argyll, Scotland, UK; Temperature: 15— 20 °C

maintained at Culture Light intensity: 30 — 40 pmol m™2

Collection of Algae and s

Protozoa (CCAP) at the

Scottish Association for

Marine Science (SAMS)
Alexandrium tamutum Isolated at Kerloc'h, Temperature: 19 °C non-toxic
(PARALEX 242) Dinan, English Channel, Light intensity: 100 pmol m2 st

France; maintained at

Roscoff Culture

Collection (ID: RCC

3034)
Prorocentrum minimum  Maintained at RCC (ID: Medium: Kin NSW potentially
(Poulet) RCC 291); Information on  Temperature: 20 °C toxic

isolate’s origin is not Light intensity: 100 pmol m2 st

available.
Prorocentrum lima Isolated from Vigo, Spain; Medium: L1 in NSW potentially
(CCAP 1136/11) maintained at CCAP at Temperature: 15— 20 °C toxic*

SAMS Light intensity: 30-40 ymol m?2 s™
Alexandrium minutum Isolated from Britanny Medium: f/2 in NSW potentially
(PARALEX 246) coast, English Channel, Temperature: 18 °C toxic

France; maintained at
RCC (ID: RCC 2649)

Light intensity: 100 pmol m2 st

* The he species name needed to be confirmed.
** Lipophilic toxins (e.g. okadaic acid (OA) and dinophysistoxins (DTX71 and DTX2)) were detected in the

samples.

4.2.2 Growth experiments

Plate- and tube-based experiments (Figure 4.1; Table 4.2) were designed to

examine the growth of non-toxic and toxic marine phytoplankton across a wide range of

temperature.
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Table 4.2. Description of the experimental design in plate- and tube-based experiments.

Experimental design

Plate-based experiments

Tube-based experiments

Growth conditions
Air temperature
Relative humidity
Light:dark cycle
(hours)

Light intensity
(umol m?s™)

Thermal gradient
Temperature range
Stepwise variation

Samples

Incubation
Stepwise
acclimatisation
Incubation period

Growth measurement

Chamber 1 Chamber 2
10°C 20°C
80% 80%
12:12 12:12

268 + 11 257 +13
7.1-18.6 °C 16.8 — 35.1°C
0.7 °C 1.0°C

3 replicates of 2 mL
per culture per well

No
9 days

Optical density at 660 nm

20°C
80%
12:12

251+£10

5-30°C
5.0°C

3 replicates of 40 mL
per culture per tube

1st tube-based  2nd tube-based

experiment experiment
No Yes
16 days 28 days

Fluorescence

4.2.2.1 Plate-based experiments

In the plate-based experiments, temperature gradient was maintained using

thermoblocks that were housed in separate growth chambers (Conviron Adaptis

CMP6010) with similar growth conditions, except for the air temperature which needed

to be different in order to achieve the desired thermal gradient. Each of the

thermoblocks were custom-made metal blocks that were temperature-regulated wih

flow-through fluid. The temperature gradient of the thermoblock was regulated by the

flow of fluid to an external cooling or heating device connected via insulated flexible

PVC hoses. At one end of the block, a water bath chiller was used as a cooling device

to circulate antifreeze fluid. Whereas, a water bath was used as a heating device to

circulate distilled water at the other end of the block. Temperature set points for external

cooling and heating devices are adjusted to attain the desired temperature gradient and

stepwise variation in each thermoblock (Table 4.2).
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To determine the thermal growth response in each experimental organism,
three replicates of 0.2 mL of each of the culture were inoculated into 1.8 mL K medium
in each well of the first three rows of the 24-well microplates. Wells in the last row were
inoculated with K medium to serve as blank. Algal cells in the microplates were
incubated in the above mentioned plate-based thermoblocks for nine days. The
microplates were covered with lids with pores that sheathed with polyvinylidene chloride
gas-permeable membranes to ensure gas exchange during the incubation period and
were removed aseptically every growth measurement.

Growth rates were quantified from the changes in cell density that were
estimated from the optical density (OD) measured daily (between 14:00 to 16:00) for
nine days using a FLUOstar Omega spectrophotometer (BMG Labtech, Germany) with
the following endpoint protocol settings: excitation of 660 nm that corresponds to the
long wavelength absorption peak of chlorophyll a, horizontal bidirectional reading (start
top left), and a shaking with frequency of 400 rpm for 60 seconds before plate reading
to homogenize the sample.

OD values were blank corrected and were pre-processed to detect outliers prior
to regression analyses. A total of 324 triplicated observations (36 assay temperatures x
9 days) for every experimental organism were obtained and were quality controlled. The
data were trimmed to capture growth within the exponential phase. These pre-
processed data were used subsequently in the regression analyses to estimate the

growth rates.

4.2.2.2 Tube-based experiments

Tube-based experiments were performed inside a growth chamber with

conditions described in Table 4.2. The thermal gradient in these experiments ranged
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from 5°C to 30°C at 5°C stepwise variation. Each assay temperature was maintained
inside a glass water-jacketed bath using circulating distilled water. The temperature of
the circulated distilled water was regulated by external recirculating water baths
connected via flexible PVC hoses.

Triplicates of 4 mL of each of the culture were inoculated into 36 mL K medium
contained in 50 mL glass test tubes. The tubes were capped with autoclaved foam
stoppers to allow gas exchange during the incubation period. Algal cells in the test
tubes were incubated in the above-mentioned temperature regulated water-jacketed
bath. Two tube-based experiments were performed. In the first experiment, the cells
were incubated for 16 days without a stepwise acclimatisation. Whilst in the second
experiment, the strains were allowed to acclimatise to a new thermal condition for 14
days prior the incubations to another 14 days of incubation.

Growth of the cultures were determined using in in vivo fluorescence as a proxy
for phytoplankton biomass, which was measured daily (between 14:00 to 16:00) using a
Turner Designs Trilogy Fluorometer. Prior to the fluorescence measurement, each
culture in a test tube was homogenised using a vortex mixer. The test tube was
subsequently placed in the fluorometer and a fluorescence reading was obtained. The
estimated fluorescence in all samples was corrected with the fluorescence in a blank
sample (i.e. 0.04). The corrected estimates of fluorescence were used to compute for

the growth rates as described in the section below.
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Figure 4.1. Schematic representation of the plate- and tube-based experimental designs to examine
effect of temperature on growth and toxin production in marine phytoplankton.
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4.2.3 Determination of growth rates and thermal attributes

Natural log of OD or the fluorescence estimates were fitted against time in a
linear model to estimate the growth rate (Supplementary Figure 4.1 — 4.4). Only the
positive growth rates were included in the subsequent analysis. The growth rates were
fitted against temperature in a unimodal response curve using the different non-linear
functions (i.e. equ04 — equ15 in the R package temperatureresponse (Low-Décarie et
al. 2017) and Cardinal Temperature Model with Inflexion (CTMI; equ16) (Rosso et al.,
1993)) presented in Table 4.3. The fitting of all equations was implemented in R version
3.6.1 (R Core Team, 2019).

A modified Levenberg—Marquardt algorithm was used for robust fitting of non-
linear equations to data (Low-Décarie et al. 2017). The starting values were estimated
from the dataset when the equation parameter values represent features of the dataset,
otherwise the starting values for the parameters were derived the fitted parameters from
the source publication of equation or were set to ensure a downward parabola-like
shape. Equations were ranked on each dataset using Bayesian information criterion
(BIC). Similar results of the ranking of equations was observed when other measures of
model quality were used such as Akaike information criterion (AIC) and the AIC

corrected for finite sample sizes (AlCc).
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Table 4.3. List of equations used to fit growth rates (r) against temperature (T) (adapted from Low-
Décarie et al. 2017 and Rosso et al., 1993).

ID Formula
—b —d
equod | P (ﬁ)_c'ex” (W)
o 1-om(i)
U0 | "o (- 5)
T b 1 1
a: (298.15) " exp (ﬁ ’ (298.15 - T))
equob | "~ T 1 T 1
a 1”’“’[%'(3‘?)]+e"p[%(7‘7)]
T b 1 1
a: (293.15) " exp (ﬁ' (293.15 - T))
equ0d7 |77 c 1 1
a 1+eplg-(7-7)]
2
equl8 |r=a-exp [—0.5 . ([T bT”f]> ]
equ09 r=a-exp [—0.5 (abs[Tb— Tref]> ]
T - Tref 2
equ10 r:a-exp(c-T)[l—(T)]
equit r=a+b-T+c-T?
B 1
equ12 r_1+(a+b'T+C'TZ)
equ13 r=[a-(T- CTmin)]z . [1 - exp(b (T - CTmax))]Z
equid r=a-{1—exp[=b- (T = CTpn)]} - {1 — exp[—c - (CTpax — T}
o T=CTin N
equ15 " Tmax {Sln [T[ (CTmax - CTmin) ]}
r=0,if T < CTyn
= Tnax " 0,if CTax < T < CTpax
equ16 r=0,if T > CTpax
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with:

(T - CTmax) - (T - CTmin) 2

g =
(Tapt - CTmin) : [(Topt - CTmin) . (T - Tapt) - (Tapt - CTmax) - (Tupt + CTmin - ZT)]

under the condition:

CTin + CT,
Tgpt > min > max

Abbreviations: a — f are the model coefficients; R is the universal gas (Boltzmann) constant; Trris reference temperature; CTmin is
the critical thermal minimum; CTmax is the critical thermal maximum; Topt is the thermal optimum; rmax is the maximum growth rate.

These non-linear models were used to estimate the following thermal traits: (1)
the maximum growth rate (rmax, d'; the highest growth rate within the temperature
range), (2) the cardinal temperatures such as the thermal optimum (Top:,°C) ;
temperature that corresponds to rmax), critical thermal minimum (CTmin,°C; the lowest
temperature at which no positive growth), and critical thermal maximum (CTmax,°C; the
highest temperature at which no positive growth), and (3) the fundamental thermal
niche breadth (FTN,°C; the width of the temperature range). The skewness of the curve
was also calculated as the difference between activation and deactivation rates, which
were derived from the mean of value of the derivative across sub- (CTmin to Topt) and
supra- (Topt to CTmax) optimal temperatures, respectively. The skewness was used as a
measure of asymmetry of the thermal growth curve. A positive skew indicates activation
is steeper than deactivation, whereas a negative skew indicates that deactivation is

steeper than activation.

Thermal sensitivity, exposure and vulnerability to warming were also calculated

as described in Chapter 3. Longitude and latitude coordinates were approximated

based on the isolation location of the strains. These coordinates were used to
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determine the sea surface temperature (SST) of the coldest and warmest months from
2000 to 2014, which were downloaded from Bio-ORACLE (Assis et al., 2018).

The SST were used to represent the ambient temperature extremes that the
strains experience in their local habitats (Hmin and Hmaxin °C, respectively). The
difference between a strain’s critical thermal limits (CTmin and CTmax) and the
temperature extremes it experiences represent its sensitivity to cold and warm
temperature (Sminand Smaxin °C, respectively) (Bennett et al., 2019). The thermal
sensitivity was used to infer species’ thermal safety margin (TSM). A positive TSM
(CTmin < Hmin, hence Smin< 0; CTmax > Hmax, hence Smax> 0) suggests that a species
has a physiological thermal safety, whereas a negative TSM (CTmin > Hmin, hence Smin >
0; CTmax < Hmax, hence Smax < 0) indicates that a species has to avoid the extreme
temperatures or else it is at risk of thermal danger (Sunday et al., 2014). Warming
vulnerability (V, year) describes the number of years prior the local temperatures are
expected to exceed CTmax in a given location (Bennett et al., 2019). This was calculated
by dividing the species’ sensitivity to warm temperature (Smax) by the warming rate (WR,
°C per year) it experiences in a given location. WR was derived from the slope of SST
of the warmest month between the contemporary and future climate scenarios (i.e. SST
predicted in 2050 and 2010 based on RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5, which
were also downloaded from Bio-ORACLE (Assis et al., 2018)). Thermal sensitivity,
exposure and vulnerability to warming in Prorocentrum minimum strains were not
determined because their isolation locations were unknown.

To obtain an adequate number of observations, this study was supplemented
with the dataset from the published experimental results on marine phytoplankton
growth rates across temperature (Litchman and Klausmeier, 2014; Thomas et al., 2016,

2012). The species in the dataset that were listed in the IOC-UNESCO Taxonomic
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Reference List of Harmful Micro Algae (Moestrup et al., 2009) were categorised as
potentially toxic, otherwise they are categorised as non-toxic. Out of 545 phytoplankton
strains/isolates in the dataset, 74 of which represent 25 potentially toxic species and
about 20% belong to the same taxonomic class as the experimental organisms in this
study.

However, only few of the temperature-growth relationships in these potentially
toxic strains (not more than 14) were successfully fitted by the non-linear models. In
Chapter 3, CTMI was preferably used in the analysis since this model yielded more
realistic estimates of the cardinal temperatures from the published experimental data.
Out of the 18 temperature-growth relationships expected in each of the experiments in
this study, 80 to 90% of these relationships in the tube-based experiments were
successfully fitted by CTMI, whilst only 40% in the plate-based experiments.

In this study, the variations in traits across different models were observed
(Supplementary Figure 4.5). To simplify the results, model averaging was used to
estimate the mean trait values were across models weighted by BIC median rank.

In this study, all temperature growth models were used, and the variation by
these models was explored as described in the next section. All estimates derived from
this study and published experimental data were pooled into one dataset. This dataset
was curated to exclude unrealistic estimates of thermal traits with the following inclusion
criteria (1) rmax within 0.01 to 3.00 d-'range, and (2) cardinal temperatures within the -7

to 40 °C range.
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4.2.4 Data processing and analyses

Generalised linear mixed models (GLMM) were used to analyse the variation
using the glmer function in Ime4 package implemented in R version 3.6.1 (R Core
Team, 2019). All the GLMM were compared to a null model using likelihood ratio (LR)
test to determine the significance of a single factor by comparing the fit for models with
and without the factor. Coefficient of determination for each model was estimated to
describe the proportion of variance explained by the fixed factor alone (i.e. mariginal R?)
and by both the fixed and random factors (i.e. conditional R?) (Nakagawa and
Schielzeth, 2013). These statistics were implemented as described below.

To analyse the variation in the maximum growth rates, thermal traits, thermal
sensitivity, and warming vulnerability (collectively known as response variables), the
fixed and random effects of strain identity, toxicity, and source of experimental data
were determined. Specifically, (1) variation in a response variable across phytoplankton
strains was analysed whilst taking into account the random effects of toxicity and
experiments, i.e. glmer(response ~ strain identity + (1|toxicity) + (1|experiments),data);
(2) variation in a response variable between non-toxic and potentially toxic species was
analysed whilst taking into account the random effects of strain identity and
experiments, i.e. glmer(response ~ toxicity + (1|strain identity) + (1|experiments),data);
and (3) variation in a response variable across the experiments (fixed effect) was
analysed whilst taking into account the random effects of strain identity and toxicity, i.e.
glmer(response ~ experiments + (1|strain identity) + (1] toxicity),data).

To examine the relationships between the maximum growth rates (rmax) and
thermal traits (i.e. Topt, CTmin, CTmax, and FTN), the fixed effect of a thermal trait on rmax

was examined whilst taking into account the random effects of strain identity, toxicity
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and experiments with following structure: glmer(rmax ~ thermal trait + (1|strain identity) +
(1]toxicity) + (1|experiments),data).

To examine the trait-environment relationships, the fixed effect of the
environmental temperature (e.g. mean, minimum, maximum, and range of SST) on the
thermal trait (e.g. Topt, CTmin, CTmax, and FTN, respectively) was examined whilst taking
into account the random effects of strain identity, toxicity and experiments with following
structure: glmer(thermal trait ~ environmental temperature + (1|strain identity) +

(1]toxicity) + (1|experiments),data).

4.3 RESULTS

4.3.1 Growth across temperature

Growth rates of non-toxic and potentially toxic marine phytoplankton exhibited
sensitivity to temperature as observed in plate- and tube-based experiments (Figure
4.2). Generally, the growth rate had increased gradually with temperature until it
reached its peak at the optimal temperature, and it decreased substantially with further
increase in temperature. The shapes of the thermal performance curves varied
considerably from a more asymmetric for potentially toxic P. minimum and A. minutum
to a nearly symmetric response for P. lima. In tube-based experiments, the growth
response across temperatures below the optimal temperature was found to vary among
species from a more linear trend in potentially toxic P. minimum to a more non-linear
pattern in non-toxic Prorocentrum spp. Also, the asymmetric shape was more evident

from the thermal performance curves obtained from the tube-based experiments.
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A. Plate-based experiments (no stepwise acclimatisation)
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Figure 4.2. Growth rates in non-toxic and potentially toxic strains of marine phytoplankton across
temperature obtained from plate-based experiments (PB) and tube-based experiments without and with
stepwise acclimatisation (TB7 and TB2, respectively). Each data point shows the mean growth rate with
standard error as error bars. The grey solid lines denote all the non-linear models fitting growth rate
against temperature.

4.3.2 Variation in maximum growth and thermal traits

4.3.2.1 Maximum growth rate

Dinoflagellate strains exhibit significant variation in maximum growth rates (rmax)
(X%, N=54) = 74.39, p < 0.05) (Figure 4.3). P. lima had the lowest rmax(0.11 £ 0.03 d),
whilst potentially toxic P. minimum had the highest rmax (0.28 + 0.03 d). Variation in rmax
between non-toxic (0.18 + 0.04 d') and potentially toxic (0.21 + 0.09 d-*) dinoflagellate
strains was not significant (x%(1,n=54) = 0.46, p > 0.05). The mean rmaxin plate-based

experiment was 0.19 + 0.02 d-!, whereas the mean rmaxin tube-based experiments
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without and with stepwise acclimatisation were both 0.20 + 0.04 d-'. No significant

variation in rmax was observed across experiments (x%¢1, n=54) = 1.22, p > 0.05).
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Figure 4.3. Variations in the mean growth rates (rmax, d') across non-toxic and potentially toxic
dinoflagellates strains estimated across different experiments (PB, TB1, and TB2 refers to plate-based
experiments and tube-based experiments without and with stepwise acclimatisation, respectively). Each
point indicates a mean estimate with error bar showing the standard error of the mean.

4.3.2.2 Thermal optimum

There was a significant variation in the mean thermal optimum (Topt) across
dinoflagellates strains (X1, n=54) = 37.86, p < 0.05) (Figure 4.4). On average, Top in P.
micans was lowest (16.45 + 3.10 °C) among the strains. On the other hand, mean Topt
in potentially toxic P. minimum was highest among strains (23.16 £ 2.13 °C). Mean Topt
in potentially toxic strains was 21.60 + 2.57 °C, which 3.06 + 1.46 °C higher than the
mean Topt in non-toxic strains (18.54 + 1.11 °C ) (X?(1, n=54) = 4.3, p < 0.05). There was a
significant variation in mean Top: across experiments (X?¢1 n=54) = 7.81, p < 0.05). Mean
Topt Obtained in plate-based experiment was 19.14 + 1.57 °C, which was 1.28 and 1.51
°C higher than estimates from tube-based experiments. Mean Topt obtained in tube-

based experiment without acclimatisation (20.42 + 2.14 °C ) was lower compared to the
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average estimate obtained in tube-based experiment with acclimatisation (20.65 + 2.14

°C).
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Figure 4.4. Variations in the mean thermal optimum (Topt, “C) across non-toxic and potentially toxic
dinoflagellates strains estimated across different experiments (PB, TB1, and TB2 refers to plate-based
experiments and tube-based experiments without and with stepwise acclimatisation, respectively). Each
point indicates a mean estimate with error bar showing the standard error of the mean.

4.3.2.3 Critical thermal minimum

The mean critical thermal minimum (CTmin) did not vary across strains (X?(1, N=54)
=1.25, p > 0.05) (Figure 4.5). Average CTmin in dinoflagellate strains ranged from 4.27
°C to 5.1 °C. Also, the mean CTnindid not differ significantly between non-toxic (4.59 +
0.60 °C) and potentially toxic dinoflagellates (4.56 + 1.08 °C) (X?1, n=54) = 0.0033, p >
0.05). However, the variation in mean CTmin across the experiments was significant
(X2(1,n=54) = 8.78, p < 0.05). Average CTnmin estimated from plate-based experiments
was 5.61 £ 0.43 °C, which was 1.70 °C and 1.40 °C higher than the mean estimates
from the tube-based experiments. Mean T,y Obtained in tube-based experiment without

acclimatisation (3.91 + 1.03 °C ) was lower than the average estimate obtained in tube-

based experiment with acclimatisation (4.21 + 1.03 °C).
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Figure 4.5. Variations in the critical thermal minimum (CTmin, °C) across non-toxic and potentially toxic
dinoflagellates strains estimated across different experiments (PB, TB1, and TB2 refers to plate-based
experiments and tube-based experiments without and with stepwise acclimatisation, respectively). Each
point indicates a mean estimate with error bar showing the standard error of the mean.

4.3.2.4 Critical thermal maximum

Significant variation in the mean critical thermal maximum (CTmax) across
dinoflagellate strains was found (X?1, n=54) = 11.19, p < 0.05) (Figure 4.6). On average,
A. minutum had higher CTmnax (30.80 + 0.50 °C) than the estimates in other strains, with
difference ranging between 0.06 °C and 1.17 °C. There was also a significant variation
in the mean CTmax between non-toxic and potentially toxic dinoflagellates (X?(1, N=54) =
4.02, p < 0.05). Potentially toxic strains had higher CTmax (30.66 + 0.63 °C) than the
average estimate in non-toxic strains (29.95 + 0.26 °C), with a difference of 0.72 °C.
However, no significant variation in CTmax Was observed across experiments (X1, N = 54)
=1.06, p > 0.05). The mean CTnax in plate-based experiment was 30.32 + 0.41 °C,
whereas the mean CTnax in tube-based experiments without and with stepwise

acclimatisation were 30.48 + 0.77 °C and 30.12 + 0.77 °C.
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Figure 4.6. Variations in the critical thermal maximum (CTmax, °C) across non-toxic and potentially toxic
dinoflagellates strains estimated across different experiments (PB, TB1, and TB2 refers to plate-based
experiments and tube-based experiments without and with stepwise acclimatisation, respectively). Each
point indicates a mean estimate with error bar showing the standard error of the mean.

4.3.2.5 Fundamental thermal niche

The mean fundamental thermal niche breadth (FTN) did not differ significantly
across dinoflagellate strains (X?(1, n=54) = 2.56, p > 0.05) (Figure 4.7). Average FTN in
dinoflagellate strains ranged from 25.23 °C to 26.36 °C. There was no significant
difference in mean FTN between non-toxic (25.36 = 0.61 °C) and potentially toxic
dinoflagellates (26.10 + 1.14 °C) (X%1, n=54) = 1.95, p > 0.05). Significant variation in
mean FTN was found across experiments (X?1, n=54) = 8.03, p < 0.05). Plate-based
experiments yielded a lower mean FTN (24.71 £ 0.53 °C) as compared to the mean
estimates from tube-based experiments without and with stepwise acclimatisation with

difference of 1.86 °C and 1.20 °C, respectively.
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Figure 4.7. Variations in the fundamental thermal niche breadth (FTN, °C) across non-toxic and
potentially toxic dinoflagellates strains estimated across different experiments (PB, TB1, and TB2 refers
to plate-based experiments and tube-based experiments without and with stepwise acclimatisation,
respectively). Each point indicates a mean estimate with error bar showing the standard error of the
mean.

4.3.2.6 Skewness

Dinoflagellate strains exhibit significant variation in mean skewness (x?(1, n = 54) =
30.58, p < 0.05) (Figure 4.8). Potentially toxic P. minimum had the lowest skewness (-
1.03 £ 0.46), whilst P. micans had the highest skewness (0.0016 + 0.58). The mean
skewness did not differ significantly between non-toxic (-0.18 + 0.28) and potentially
toxic dinoflagellates (-0.57 + 0.58 °C) (X?¢1, n=54) = 1.92, p > 0.05). The variation in
mean skewness across the experiments was significant (X1, n=s4) = 20.86, p < 0.05).
Average skewness estimated from plate-based experiments was -0.05 + 0.21, which
was 0.65 and 0.32 higher than the mean estimates from the tube-based experiments.
Mean skewness obtained in tube-based experiment without acclimatisation (-0.71 +
0.34) was lower than the mean skewness obtained in tube-based experiment with
acclimatisation (-0.37 + 0.34). Most if not all of the thermal performance curves were
asymmetric based on skewness. About 78% of the curves were left skewed, and the

remaining 12% were right skewed.
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Figure 4.8. Variations in the skewness across non-toxic and potentially toxic dinoflagellates strains
estimated across different experiments (PB, TB1, and TB2 refers to plate-based experiments and tube-
based experiments without and with stepwise acclimatisation, respectively). Each point indicates a mean

estimate with error bar showing the standard error of the mean.

4.3.2.7 Variation in growth rates and thermal traits in combined studies

Analysis of the pooled experimental results from the present and published
studies revealed no significant differences in maximum growth rates and thermal traits
between non-toxic and potentially toxic phytoplankton (Figure 4.9).

Most potentially toxic strains observed in the present study had rmax close to the
median, except for P. lima of which the estimate was within the first quartile of the
distribution (Figure 4.9 A). Estimates of rmax in all non-toxic strains in the present study
were near the lower limit of the distribution. About 3% of the variation in rmax was
explained by the fixed effect of toxicity, and 82% of the variation was explained by both

the fixed effect and random effects of strain identity and study design.
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Figure 4.9. Variation in maximum growth rates and thermal traits between toxicity in marine
phytoplankton. Box plots show the distribution of maximum growth rates (rmax), thermal optimum (Topt),
critical thermal minimum (CTmin), critical thermal maximum (CTmax), fundamental thermal niche (FTN), and
skewness in non-toxic (blue) and potentially toxic (red) strains from the combined present and published
experimental data. Outliers are indicated as grey crosses. Traits in strains (S1 — S3 refers to non-toxic
strains of Prorocentrum sp., P. micans, and A. tamutum, respectively; whilst S4 — S6 refers to potentially
toxic strains of P. minimum, P. lima, and A. minutum, respectively) used in this present study are labelled
and indicated as black circles.
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Thermal traits of the strains used in this present study were generally within the
interquartile range of the distribution of the traits (Figure 4.9 B — F). The range of
thermal traits in non-toxic and potentially toxic strains were overlapping. Analysis of
variance in these traits revealed no significant difference. The proportion of the
variance in these traits explained by toxicity was less than 2%. The fixed effect of
toxicity and the random effects of strain identity and study design explained about 40%
— 92% of the variance in these traits. Majority of the variation in these traits was

explained largely by taxonomic affinity.

4.3.3 Trade-offs between maximum growth rate and thermal traits

There was no clear linear relationship between rmaxand thermal traits in marine
phytoplankton (Figure 4.10). Less than 15% of the variation in rmax Was explained by the
fixed effects of thermal traits. About 83 — 86% of the variation in rmax was explained by

both the fixed and random effects.

4.3.4 Trait-environment relationship

There was a clear evidence of the direct relationship between the cardinal
temperatures and the ambient temperature experienced by marine phytoplankton at
their local habitat (Figure 4.11).

Thermal optimum (Topt) had increased at 0.61 + 0.06 °C per degree increase of
mean SST (Figure 4.11 A). The fixed effect of mean SST on Top: explained 40% of the
variance, whilst 91% of the variance was explained by both the fixed effect and random
effects of toxicity, strain identity, and source of experimental data. Among these random
effects, strain identity explained the most variation in Top:. About 85% of the

phytoplankton strains (83% of non-toxic and 100% of potentially toxic) had higher
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average Topt than the local mean SST, with the difference varying between 0.17 and
19.00 °C and the mean difference of 6.25 + 0.24 °C. Topt in the remaining 15% of the

phytoplankton strain was 3.64 + 0.35°C lower than the local mean SST.
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Figure 4.10. Trade-offs between maximum growth rate (rmax) and thermal traits in non-toxic and
potentially toxic marine phytoplankton. The scatter plots show the relationship between rmaxand thermal
optimum (Top), critical thermal minimum (CTmin), critical thermal maximum (CTmax), and fundamental
thermal niche (FTN) (A — D, respectively). Circles indicate the mean estimates of the traits in non-toxic
(blue) and potentially toxic (red) strains with error bars representing the standard error of the mean. rmax
was fitted against Topt, CTmin, CTmax, and FTN using generalised linear mixed models (GLMM) with
toxicity, strain identity, and source of experimental data as random factors. The solid lines represent the
linear fit with 95% confidence interval in grey shading.
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Figure 4.11. Relationship between thermal traits in marine phytoplankton and environment. The scatter
plots present the relationship between the thermal traits, i.e. thermal optimum (7o), critical thermal
minimum (CTmin), critical thermal maximum (CTmax), and fundamental thermal niche (FTN) (A - D,
respectively) in marine phytoplankton and the ambient temperatures (mean, minimum, maximum, and
range of sea surface temperature (SST), respectively) they experienced in their local habitat. Circles
indicate the mean estimates of the traits in non-toxic (blue) and potentially toxic (red) strains with error
bars representing the standard error of the mean. Generalised linear mixed models (GLMM) were used
to model the trait-environment relationships with toxicity, strain identity, and source of experimental data
as random factors. The solid lines represent the linear fit with 95% confidence interval in grey shading.
The broken lines represent the equality between the thermal traits and the environment.

Also, critical thermal minimum (CTmin) had increased with increasing minimum

SST at rate of 0.43 + 0.05 °C per degree increase in local temperature (Figure 4.11 B).
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About 33% of the variance in CTninwas explained by the fixed effect of minimum SST
and 73% of variance was explained by both the fixed effect and random effects of
toxicity, strain identity, and source of experimental data. Strain identity also explained
the highest proportion of the variation in CTninamong the random effects. Approximately
34% of the strains (35% of non-toxic and 26% of potentially toxic strains) had higher
average CTminthan the minimum SST they experienced at their local habitat with the
difference of 2.59 + 0.28 °C, ranging from -0.24 to 0.93 °C. The majority of the strains
(66%) had CTminlower than the local minimum SST with the mean difference of 6.66 +
0.34 °C.

There was an increasing trend in critical thermal maximum (CTmax) with the
local maximum SST experienced by marine phytoplankton (Figure 4.11 C). CTmaxhad
increased at 0.43 + 0.07 °C per degree increased local maximum SST. The fixed effect
of maximum SST explained 13% of the variance in CTmax, and both the fixed and
random effects explained 75% of the variation. Among the random effects, the source of
experimental data explained the highest proportion of the variation in CTmax, whilst strain
identity explained the variation the least. Majority (85%) of the phytoplankton (83% non-
toxic and 100% potentially toxic strains) had CTmax higher than the local maximum SST
with the difference ranging from 0.07 °C to 20.83 °C and the average difference of 8.70
+ 0.31 °C. CTmax of the 15% of the phytoplankton strains was 8.10 + 0.99 °C lower than
the maximum SST they experienced at their local habitat.

On the other hand, fundamental thermal niche (FTN) did not change with
increasing SST range (Figure 4.11 D). The fixed effect of SST range explained a
negligible proportion (less than 1%) of the variation in FTN. Whereas, both the fixed and
the random effects explained 62% of the variation. Most of the variation in FTN was

also explained by the source of experimental data.
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4.3.5 Thermal safety and vulnerability

Majority of the phytoplankton had higher critical thermal maxima (CTmax) than
the maximum sea surface temperature (SST) projected in 2050 and 2010 at different
climate scenarios (RCP 2.6 and RCP 2.8) (Figure 4.12 ). About 82% of the marine
phytoplankton (79% of the non-toxic strains and 100% of the potentially toxic strains)
had CTmax higher than the environmental temperature projected in 2050 at RCP 2.6,
with the mean difference of 7.86 + 0.30 °C (Figure 4.12 A). The remaining 18% of the
marine phytoplankton (all were non-toxic; 21% of the non-toxic strains) had mean CTmax
that was 8.56 + 0.98 °C lower than the projected local environmental temperature.
Similar observations were found in the projections in 2050 at RCP 8.5 (Figure 4.12 B)
and in 2100 at RCP 2.6 (Figure 4.12 C). However, a noticeable difference in the
statistics was observed for the projections in 2100 at RCP 8.5 (Figure 4.12 D).
Approximately, 73% of the marine phytoplankton (70% of the non-toxic strains and 94%
of the potentially toxic strains) had CTmax higher than the environmental temperature
projected in 2100 at RCP 8.5, with the mean difference of 6.26 + 0.30 °C. The
remaining 27% of the marine phytoplankton (30% of the non-toxic strains and 6% of the
potentially toxic strains) had mean CTmaxthat was 7.99 £ 0.87 °C lower than the

projected local environmental temperature in 2100 at RCP 8.5.
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Figure 4.12. Scatter plots showing the critical thermal maximum (CTmax) of non-toxic (blue) and
potentially toxic (red) marine phytoplankton strains in relation to their habitat’s maximum sea surface
temperate (SST) projected in 2050 and 2100 at different climate scenarios (RCP 2.6 and RCP 2.8). The
points above the threshold (broken line) indicates that the projected SST exceeds the CTmax.

Maijority of the phytoplankton strains had lower CTmin and higher CTmax than the

local minimum and maximum SST, respectively. As a result, they had sensitivity to cold

(Smin) and sensitivity to warm (Smax) temperatures below and above zero, respectively,

occupying the thermal safety zone (Figure 4.13). About 62% of the strains had thermal

safety, whereas the remaining 38% were at risk of cooling (21.38%), warming (13.77%),

or both (2.29%).
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Figure 4.13. Scatter plot of the sensitivity to cold (Smin) and sensitivity to warm (Smax) temperatures in
non-toxic (blue) and potentially toxic (red) marine phytoplankton strains. This plot is divided into four
quadrants, categorising the strains that are safe and vulnerable to warming and/or cooling in the present
climate scenario.

Average Sminin non-toxic strains was -5.06 + 0.77 °C, which was not statistically
different from the average Smin in potentially toxic strains (-4.73 £ 2.61 °C) (X1, N=276) =
0.04, p > 0.05) (Figure 4.14 A). Furthermore, non-toxic had a mean Spax 0of 5.75 + 1.00
°C, which was similar to the mean Snax of potentially toxic strain (6.61 + 2.93 °C) (X?(1,

n=276) = 0.14, p > 0.05) (Figure 4.14 B). Toxicity explained a negligible proportion of
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variation in Smin and Smax. Both the fixed effect of toxicity and random effects of
taxonomic affinity and study design explained more than 75% of the variation in Smin
and Smax. The source of experimental data explained more proportion of the variance in
Smin and Smaxthan the strain identity.

No significant difference in the vulnerability to warming between toxicity in
marine phytoplankton at all climate scenarios (Figure 4.14 C — F). The local maximum
temperature was projected to exceed the CTnax of non-toxic phytoplankton after 859.86
+ 71.46 years, 541.38 + 52.96 years, 529.85 + 114.20 years, and 251.02 + 26.57 years
at RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 climate scenarios, respectively, which
were similar to projections in potentially toxic phytoplankton, i.e. 944.83 + 241.78 years,
512.11 + 171.08 years, 367.21 + 253.43 years, and 218.01 + 81.76 years, respectively.
Toxicity alone had negligible effect on warming vulnerability. However, taking into
account the taxonomic affinity and study design, both the fixed and random effects
explained more than 78% of the variation. Between the random effects, majority of the

variation was also explained by strain identity.
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Figure 4.14. Variation in thermal sensitivity and vulnerability between toxicity in marine phytoplankton.
Box plots show the distribution of thermal sensitivity to cold and warm temperature (Smin and Smax,
respectively; A and B, respectively) and vulnerability to warming at RCP 2.6, RCP 2.6, RCP 2.6, and RCP
2.6 climate scenarios (V2.s, Va5, V6.0, and Vss, respectively; C — F, respectively) in non-toxic (blue) and
potentially toxic (red) strains from the combined present and published experimental data. Outliers are
indicated as grey crosses. Traits in strains (S2 — S3 refers to non-toxic strains of P. micans, and A.
tamutum, respectively; whilst S5 — S6 refers to potentially toxic strains of P. lima, and A. minutum,
respectively) used in this present study are labelled and indicated as black circles. Data for Prorocentrum
sp. (S1) and P. minimum (S4) were not available.
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4.4 DISCUSSION

4.4.1 Thermal dependence of growth in test organisms

The results of this study indicate the dependence of growth in non-toxic and
potentially toxic dinoflagellates on temperature as evidently depicted by the thermal
growth curves. These curves, also known as the thermal performance curves or the
thermal reaction norms, are often unimodal and negatively skewed in ectotherms
(Eppley, 1972; Kingsolver, 2009; Knies and Kingsolver, 2010). The shape of the curves
reflects the effect of temperature on enzymatic rate process and on enzyme activation
and stability at high temperatures (Knies and Kingsolver, 2010). Growth rates increase
gradually with increasing temperature below the thermal optimum (Topt), which is
attributed to the exponential increase of the reaction rates with increasing temperature
following the Arrhenius kinetics (Arrhenius, 1915). On the other hand, growth rate
decreases with further increase in temperature above Topt, Which is attributed to the
denaturation of essential proteins (Hochachka and Somero, 2002). The variability in the
trends in growth below or above Topt can be explained by the probability of the activation
of rate-limiting enzymes that declines at high and low temperature (Knies and
Kingsolver, 2010; Ratkowsky et al., 2005).

The asymmetrical pattern of the thermal growth curve is observed in the
majority of strains based on the estimates of the skewness of the curves which were
generally below zero. This suggests that their growth is more sensitive to warming than
cooling, which is an important trait given the projected change in temperature in the
next decades. On the contrary, few species exhibit a less skewed curve (i.e. nearly
symmetrical), a trait characterised by a constant growth over an optimal temperature

range that deceases at extreme temperatures at similar rates. The symmetrical thermal
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growth curve suggests that the growth of the species is equally sensitive to decreasing
and increasing temperature from the Topt.

The findings reveal differences in the growth rates across strains. Generally,
thermal traits were found to be vary across strains, toxicity, and experimental design.
Interspecific and intraspecific variations in growth rates and thermal traits of marine
phytoplankton have been demonstrated in several studies (Boyd et al., 2013; Chen and
Laws, 2016; Kremp et al., 2012; Thomas et al., 2016). These differences in the traits
among species and strains implies that the phytoplankton community composition may
be altered as a results of climate change. Species that are heat stress sensitive have
narrow thermal tolerance limit, whilst those that can survive through acclimation or
adaptation have a wider range (Chen, 2015). Thermal acclimation is part of the
phenotypic plasticity in phytoplankton to increase growth or survival under sub- and
supra-optimal conditions over short term periods (Raven and Geider, 1988; Staehr and
Birkeland, 2006), and is believed to be linked to the adaptive changes in their genes.
Thermal adaptation of phytoplankton has been developed as a result of the evolutionary
process (Hanelt et al., 2003), and has been demonstrated in several studies (Huertas et
al., 2011; Iglesias-Prieto et al., 1992). The difference in temperature dependence of
growth between the non-toxic and potentially toxic phytoplankton has an ecological
implication. Toxic species may dominate over the non-toxic species (or vice versa) in
the changing climate. Toxic species could employ thermal acclimation and adaptive
strategies to expand their thermal tolerance, and toxin production may provide toxic
species a selective advantage under future climate scenario.

However, the outcome of the experiments should be interpreted with caution as
there are several caveats as described subsequently. First, the rates derived from the

log increase of optical density and fluorescence over time may present two different
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measures of growth. Optical density-based growth may be governed by a set of
enzymes that are different from the enzymes acting on the fluorescence-based growth.
Hence, It is possible for different approaches to the measurement of growth rates to
yield different results. Second, one challenge of modeling the thermal growth response
is that there is no single equation that fits all data (Low-Décarie et al., 2017). This
suggests that different equations may describe different processes that are still
unresolved. Finally, extrapolation of the thermal response of dinoflagellates as model
organisms to the whole phytoplankton is inherently problematic. Although the majority of
toxic species belong to dinoflagellates, characterisation of the thermal response curves
in representatives from the other taxa, i.e. diatoms, haptophytes and cyanobacteria, is
crucial to advance our knowledge on the taxon-specific differences in the growth
thermotolerance between non-toxic and toxic phytoplankton. Pooling the experimental
data obtained from this study with the datasets compiled from other laboratory culture
experiments allows the comparison of thermal growth response between phytoplankton

groups with an adequate number of observations.

4.4.2 Differences in growth and thermal traits

Results of the analysis of the pooled datasets suggest the maximum growth
rates and thermal traits between non-toxic and potentially toxic phytoplankton are
comparable. However, toxicity explained only a small part of the variation in the all of
the traits. Generally, the majority of the variation in the traits is explained by strain
identity and source of experimental data. These results from the thermal growth curves
describe the growth constraint experienced by species at their maximum and minimum
temperature limits, and the range between these limits define their niche, which can

vary among strains and experiments, suggesting that growth and thermal traits are
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dependent to physiological plasticity and evolutionary history (Kremer et al., 2017;
Thomas et al., 2016, 2012). Overall, the results suggest that non-toxic and toxic
phytoplankton may co-exist in the same thermal condition, but in terms of growth rates,
toxic species are weak competitors against non-toxic species.

These findings may be somewhat biased in several ways. One of the limitations
includes the statistical uncertainty of the estimation of the thermal physiological limits
and thermal niche breadth, as these parameters are frequently extrapolated beyond the
data. This constrain our understanding of the responses of non-toxic and toxic
phytoplankton to climate extremes. There are also limitations linked with low
temperature resolution, incomplete observation of full thermal range, over
representation of non-toxic phytoplankton, and few observations on toxic species that
are mostly dinoflagellates. Furthermore, the multifaceted interference from different
protocols implemented across individual studies may also limit the usefulness of the
compiled datasets. However, the experimental results generated in this present study
provide the groundwork to evaluate of the value of the published datasets in comparing
traits between toxicity in marine phytoplankton. As observed, there is a discrepancy in
the findings between the analyses using the present and published experimental
results, which may be related to the data quality used in thermal trait analysis. For
instance, the present experiments reveal that that the maximum growth rates in toxic
strains are higher than the rates in non-toxic strains of dinoflagellates, which are found
to be comparable in the analyses of the pooled datasets. This suggests that the
maximum growth rates between non-toxic and toxic phytoplankton are not robust
across a range of the experimental protocols, which may be attributed to the sensitivity

of the trait to light or nutrient conditions (Boyd et al., 2013).
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4.4.3 Uncoupling of growth rates and thermal traits

The results demonstrate that maximum growth rates have no clear linear
relationship with thermal traits. The variation of the growth rates explained a negligible
variation in the thermal traits. This suggests that there is no clear trade-off between
maximum growth rate and thermal traits. The latest work reveals that there is a thermal
limit for thermal optimum and the maximum growth rate is highly constrained by this
limit, which is highly variable among functional groups in phytoplankton (Grimaud,
2016). The difference in maximum growth rate among the taxonomic groups was
attributed to the various physiological limits, photosynthesis yields, and biovolume
(Grimaud, 2016; Maranon et al., 2014; Raven and Geider, 1988). However, our current
understanding of the link between maximum growth rates and the thermal limits and

niche breadth is still limited.

4.4.4 Linking thermal traits with environment

The findings reveal a clear linear relationship between thermal traits and the
temperature experienced by marine phytoplankton at their local environment, except for
the temperature range. The ambient temperature explained significantly the variation in
cardinal temperatures. Results suggest that there is a strong link between the cardinal
temperatures and the ambient temperature experienced by marine phytoplankton at
their local habitat, indicative of local adaptation (Thomas et al., 2012). Recent work by
Chen (2015) found similar results and demonstrated the importance of the temperature
in shaping the physiology of phytoplankton. Chen (2015) emphasized that the these
thermal traits can be inherited for a long period of time even if the phytoplankton have

been cultured over multiple generations. Thermal traits obtained from physiology
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experiments are different from the traits derived from the temperature experienced by
organism in its local environment. As observed, all physiology-based thermal traits are
generally higher than the environmental temperatures, except for the lower temperature
limit. As examined in Chapter 2, this difference can be explained by the reduction of the
fundamental thermal niche in nature due to biotic interaction, species dispersal
limitation, and limited climate availability (Jankowski et al., 2013; Sanchez-Fernandez et
al., 2016; Soberén and Nakamura, 2009). Furthermore, the results suggest that this link
is highly variable among taxonomic groups in marine phytoplankton, but is less variable

between non-toxic and potentially toxic phytoplankton.

4.4.5 Vulnerability to climate change

Findings of this current study show that nearly all the non-toxic and potentially
toxic phytoplankton were thriving within the thermal safety zone in the present climate
scenario. Also, results show comparable estimates of thermal sensitivity and warming
vulnerability between non-toxic and potentially toxic phytoplankton. However, toxicity
explained insignificant variation in these estimates. Overall, the results indicates that the
vulnerability to climate change is highly variable among the strains, and less variable
between toxicity in marine phytoplankton.

Vulnerability of phytoplankton to climate change is attributed to the influence of
temperature change on the physiological processes and growth, which consequently
alter marine ecosystem structure and function (Regaudie-De-Gioux and Duarte, 2012;
Thomas et al., 2012; Toseland et al., 2013). Recent studies have demonstrated the
effect of elevated temperature on metabolic and growth rates in phytoplankton (de Boer
et al., 2004; Regaudie-De-Gioux & Duarte, 2012; Boyd et al., 2013; Toseland et al.,

2013). Typically, photosynthesis rises with elevated temperature until it reaches its
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optimum, and decreases with further warming; whilst respiration, on the other hand,
increases with increasing temperature. This elevation in metabolic rates is likely to
expand the growth rate of photoautotrophs in warming conditions (Hochachka and
Somero, 2002). Several species exposed to high temperature display higher
photosynthesis and lower respiration rates, but exhibit reduction in their cell size (Staehr
and Birkeland, 2006). Shrinking their size can neutralize the imbalance between these
metabolic processes (Peter and Sommer, 2013). Also, nutrient uptake by phytoplankton
becomes strongly limiting at elevated temperatures (Sterner and Grover, 1998). Cell
size reduction can improve nutrient uptake rates and lessen metabolic costs, which is a
good strategy in response to increasing resources demand due to warming (Atkinson et
al., 2006). Furthermore, cyst germination in dinoflagellate is controlled by temperature
(Anderson et al., 2005), which may be altered in changing climate. It can be increased
under warmed condition, and can be inhibited at extreme temperature (Anderson et al.,

2005).

4.4.6 Implication to future algal blooms

The effect of temperature change on their physiological processes and growth
may alter marine ecosystem structure and function. As observed, majority of the marine
phytoplankton are generally living in the present climate scenario within the thermal
safety zone. However, the warming temperature may likely exceed the physiological
limits of marine phytoplankton species. They must avoid the extreme temperatures or
else they are at risk of the thermal danger. They may either adapt or migrate to new
favourable habitats to survive, otherwise, their extinction is inevitable.

In the context of harmful algal blooms, warming may provide favourable

conditions for toxic algae to occur. It is likely that toxic blooms and their impacts may
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be exacerbated in the future where their duration, intensity, and frequency may increase
in response to changes in the climate. The possible impacts of climate change on toxic
blooms have important implications on how to manage and control harmful algal blooms
(HAB) in the future.

The findings of this study improve our predictive understanding on the
ecological responses of non-toxic and toxic marine phytoplankton to future climate
scenarios. The thermal performance curves (TPC) obtained in this study can be used to
develop a mechanistic ecological niche model to establish a causal relationship
between species distribution and temperature. This mechanistic model is useful in
predicting the climate-induced ecological trends such as changes in range, habitat

suitability, diversity, and community composition.

4.5 CONCLUSIONS

This chapter investigates the effect of temperature on growth and toxin
production in marine phytoplankton. Here, six strains of dinoflagellates were used as
model organisms to examine the temperature dependence of growth in non-toxic and
potentially toxic phytoplankton. Generally, the results of this study reveal a
asymmetrical pattern of the thermal growth curve in these model organisms, suggesting
that their growth is more sensitive to warming than cooling. The data obtained from this
present study was supplemented with the datasets compiled from laboratory culture
experiments to allow comparison with an adequate number of observations. The results
of the analysis of the pooled datasets show that the maximum growth rates and the
thermal traits are comparable. Furthermore, the findings reveal unclear trade-off

between the maximum growth rates and thermal traits in marine phytoplankton but
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show evident trait-environment relationships. The results also demonstrate that nearly
all the non-toxic and potentially toxic phytoplankton were thriving within the thermal
safety zone in the present climate scenario. However, the trait tradeoff, trait-
environment relationships, thermal sensitivity, and warming vulnerability are

comparable between non-toxic and potentially toxic phytoplankton.
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TEMPERATURE DEPENDENCE OF TOXIN PRODUCTION IN MARINE

DINOFLAGELLATES

ABSTRACT

Assessing the effect of temperature on toxin production in marine phytoplankton
is important to improve our predictive understanding of toxic blooms in the future ocean.
This present study examined the temperature dependence of toxin production in a
marine phytoplankton. Here, a tube-based growth experiment was conducted using
dinoflagellate strains as the test organism under different thermal conditions. Paralytic
shellfish poisoning (PSP) toxins such as saxitoxin (STX) and its derivatives and
lipophilic toxins such as okadaic acid (OA) and dinophysistoxins (e.g. DTX1 and DTX2)
were extracted from the algal samples collected at the end of the incubation period.
Standardised protocols using ultrahigh-performance liquid chromatography (UHPLC)
coupled to the mass spectrometer (MS/MS) were implemented to detect and quantify
toxins in the extracted algal samples. Among the test organisms, only the Prorocentrum
lima strain was detected for the presence of OA, DTX1, and DTX2. Results showed (1)
cell density dependence of toxin concentration, (2) inter-strain variability in cellular toxin
content, (3) temperature dependence of the concentration, cellular content, relative
composition, and cellular production rate of toxins, and (4) inverse linear relationship
between toxin production rates and growth rates. These findings improve our current
knowledge on the toxin production in marine phytoplankton in response to temperature,

advancing our understanding of toxic blooms in response to ongoing climate change.
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5.1 INTRODUCTION

Toxic blooms are already a global problem and their current distribution is
alarming. Climate change may provide favourable conditions for toxic algae to occur
(Hallegraeff, 2010). It is likely that toxic blooms and their impacts may be exacerbated
in the future where their duration, intensity, and frequency may increase in response to
changes in the climate (Moore et al., 2008; Tatters et al., 2013). The well-documented
effects of toxins to humans and to other organisms (Berdalet et al., 2015) and the
potential effect of climate change on toxic blooms in the future (Fu et al., 2012) have
stimulated studies on the ecophysiology of toxic phytoplankton (e.g. Kellmann et al.,
2010a; Perini et al., 2014; Ramsey et al., 1998; Stuken et al., 2011).

The advantages of toxin production would lead to the expectation of the ubiquity
of toxicity in phytoplankton. Surprisingly toxin production is only known for few
phytoplankton species (150 species in 50 genera listed in Moestrup et al. (2009)).
Despite the rarity of toxicity in phytoplankton lineage, the toxins are diverse with distinct
chemical structure, biosynthetic pathways and mode of actions (Rossini and Hess,
2010). The toxin diversity may be attributed to its widespread distribution in
phytoplankton lineage and may reveal putative physiological and ecological roles
beyond their assumed primary role as a defense mechanism. Physiological roles of
toxins may have evolved in response to stressful abiotic conditions to improve efficiency
in nutrient acquisition and storage, excretion, osmoregulation, scavenging mechanisms,
biosynthesis, structural organisation, and cell signalling (Alexova et al., 2011; Bar-Yosef
et al., 2010; Bates, 1998; Cembella, 1998). Ecological roles of toxins may have evolved

from the need for infochemicals for biotic interaction to improve efficiency in mating,

140



Chapter 5 — Temperature affects toxin production

alarm signals, defense/offense mechanism, and symbiosis (Bates, 1998; Cembella,
1998; Pohnert et al., 2007).

Toxin production is influenced by a number of abiotic factors such as
temperature, pH, light, nutrients and biotic factors such as competition and grazing.
Temperature is one of the most fundamental abiotic factors that may have a direct
effect, or an indirect effect if growth and toxin production is uncoupled (Cembella,
1998). Temperature dependence of toxin production is associated with species-specific
growth rate, and hence production of toxins is dependent on the thermal tolerance of
the species. Hence, the effect of temperature on toxin production has implication on
how toxic species may influence the structure and function of marine ecosystems in the
future climate scenarios. However, our current knowledge on how toxin production is
influenced by temperature is still lacking.

To improve our understanding on the microalgal toxin production, this study
was set out to examine (1) the temperature dependence of the concentration, cellular
content, relative composition, and cellular production rate of toxins, and (2) the
relationship between toxin production and growth. This study hypothesized that
concentration, cellular content, relative composition, and cellular production rate of
toxins are dependent on temperature. This study also hypothesized that there is an
inverse relationship between production of toxin and growth. To test these hypotheses,
a tube-based experiment using Prorocentrum and Alexandrium strains (see description
in Chapter 4) as the test organisms under different thermal conditions. Dinoflagellates
of genus Prorocentrum and Alexandrium are among the best-studied toxic
phytoplankton because of their production of toxins (Abdenadher et al., 2012; Ben-
Gharbia et al., 2016; Grzebyk et al., 1997; Quilliam et al., 1996; Vlamis et al., 2015).

Toxic Prorocentrum species are known producers of lipoliphic toxins such as okadaic
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acid (OA) and dinophysistoxins (e.g. DTX1 and DTX2), which are responsible for
diarrhetic shellfish poisoning (DSP. On the other hand, toxic Alexandrium species are
known producers of saxitoxins (STX) and its derivate, which are responsible for
paralytic shellfish poisoning (PSP). The findings of this study will improve our current
knowledge of how production of toxins will be affected by temperature that is expected

to change with climate.

5.2 MATERIALS AND METHOD

5.2.1 Test organisms

Cultures of Prorocentrum and Alexandrium strains were obtained from different
culture collections (see Chapter 4 for description). They are ecologically relevant
organisms belonging to the phytoplankton genera that make up the majority of the toxic
bloom-forming species (Abdenadher et al., 2012; Ben-Gharbia et al., 2016; Grzebyk et
al., 1997; Quilliam et al., 1996; Vlamis et al., 2015). To optimize growth for the conduct
of the experiment, the culture was maintained in 35 mL batch culture in artificial
seawater (ASW) (Berges et al., 2001) enriched with K minimum nutrients (Keller et al.,
1987). The culture was regularly transferred to a fresh K medium to maintain the
exponential growth. The culture was not axenic. To minimize contamination, all ASW
and K media were autoclaved, and all transfers were performed in a class |l biosafety
cabinet. The batch culture was maintained at a constant temperature of 15°C and under
a 12:12 hour light-dark cycle at a mean light intensity (+ standard error) of 221 + 12,
measured using a light meter (Li-Cor Li-250A). The culture was allowed to grow at this

condition for at least four transfers prior to experimental procedures.
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5.2.2 Growth experiments

Tube-based experiments were performed inside a growth chamber (Conviron
Adaptis CMP6010) with the following conditions: 20°C air temperature, 80% relative
humidity, 12:12 light to dark cycle in hours, and 251 £ 10 light intensity. The thermal
gradient in these experiments ranged from 5°C to 30°C at 5°C stepwise variation. Each
assay temperature was maintained inside a glass water-jacketed bath using circulating
distilled water. The temperature of the circulated distilled water was regulated by
external recirculating water baths connected via flexible PVC hoses.

Triplicates of 4 mL of each of the culture were inoculated into 36 mL K medium
contained in 50 mL glass test tubes. The tubes were capped with autoclaved foam
stoppers to allow gas exchange during the incubation period. Algal cells in the test
tubes were incubated in the above-mentioned temperature regulated water-jacketed
bath.

Two tube-based experiments were performed. In the first experiment, the cells
were incubated for 16 days without a stepwise acclimatisation. Whilst in the second
experiment, the strains were allowed to acclimatise to a new thermal condition for 14
days prior the incubations to another 14 days of incubation.

Growth of the cultures were determined using in in vivo fluorescence as a proxy
for phytoplankton biomass, which was measured daily (between 14:00 to 16:00) using a
Turner Designs Trilogy Fluorometer. Prior to the fluorescence measurement, each
culture in a test tube was homogenised using a vortex mixer. The test tube was
subsequently placed in the fluorometer and a fluorescence reading was obtained. The
estimated fluorescence in all samples was corrected with the fluorescence in a blank

sample (i.e. 0.04).
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The corrected estimates of fluorescence were used to compute for the growth
rates. Natural log of the fluorescence estimates were fitted against time in a linear

model to estimate the growth rate.

5.2.3 Toxin production experiments

5.2.3.1 Collection of toxin samples

Algal toxin samples were collected at the last day of the incubation period.
Here, 1 mL samples were collected for cell counting to determine the algal cell density
(cells mL"), and 30 mL samples were collected into 50 mL centrifuge tubes for toxin
measurement. The algal toxin samples were centrifuged at 5000 rpm for 10 min. The
cell pellets were stored at -20 °C until the sonication extraction method described in the

subsequent section.

5.2.3.2 Extraction of toxins from algal samples

The samples were thawed for toxin extraction. Toxins in Alexandrium spp. (i.e.
Paralytic Shellfish Poisoning (PSP) toxins) were extracted in 1.5 mL 0.05 M acetic acid,
whilst toxins in Prorocentrum spp. (i.e. lipoliphic toxins (LT) such as okadaic acid (OA)
and its derivatives) were extracted in 1.5 mL methanol:water (90:10 v:v). The resulting
solutions were transferred into 15 mL centrifuge tubes and were sonicated for 30
seconds using a sonicator. The supernatants were collected and filtered through 0.2 ym
pore size filters into 2 mL autosampler vials. The vials were covered with screw cap with

hole and septum. The samples were kept frozen at -20 °C prior to toxin analyses.
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5.2.3.3 Toxin analyses

The toxin analyses were conducted at the Centre for Environment, Fisheries
and Aquaculture Science (CEFAS) using their in house protocols for the detection and
quantification of PSP toxins (Turner et al., 2019) and lipophilic toxins (Dhanji-Rapkova
et al., 2019, 2018) using the Waters Corp. (Manchester, UK) Acquity ultrahigh-
performance liquid chromatography (UHPLC) coupled to the Xevo TQ-S tandem
quadrupole mass spectrometer (MS/MS). The UHPLC-MS/MS system was equipped
with (i) a binary solvent system capable of delivering up to four mobile phases with
uniform flow of up to 0.8 mL min™"; (ii) an autosampler capable of 2 uL injections; (iii) a
temperature-regulated liquid chromatography (LC) column compartment, capable of
holding the column at 60°C; (iv) a tandem mass spectrometer for operation in MS/MS
mode, capable of positive/negative mode switching; and (v) a software system for

instrument control and capable of processing quantitative data.

5.2.3.4 Analysis of PSP toxins in Alexandrium spp.

Samples of Alexandrium strains extracted in acetic acid were cleaned up
through amorphous polymer graphitized-carbon solid-phase extraction (SPE) cartridges
(i.e. Supelclean ENVI-Carb 250 mg/3 mL SPE cartridges; Sigma-Aldrich, St. Louis, MO)
following the method of Turner et al. (2019). The cartridges were conditioned with 3 mL
20% acetonitrile + 1% acetic acid at 6 mL min" and followed by 3 mL 0.025% ammonia.
These were eluted to the top of the frit and the eluents were discarded to waste. The
cartridges were loaded with 400 L acetic acid extract and eluted to the top of the frit at
a flow rate of 3 mL min"! and the eluents were also discarded to waste. The cartridges
were washed with 700 pL deionized water and eluted to dryness, discarding the eluent

to waste, with a flow rate of 3 mL min-'. The sample extracts were eluted and collected
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by adding 2 mL 20% acetonitrile and 1% acetic acid in a clean polypropylene tube at a
flow rate of 3 mL min'. The eluents were vortex-mixed, and 100 pL aliquots were
diluted with 300 uL acetonitrile in autosampler vials. The diluted extracts were then
analysed by UHPLC-MS/MS utilizing hydrophilic interaction LC (HILIC) following Turner
et al. (2019). This UHPLC-MS/MS system used a HILIC analytical column (i.e. 1.7 ym,
2.1 x 150 mm Waters Corp. (Manchester, UK) Acquity BEH Amide UPLC column
together with a Waters Corp. (Manchester, UK) VanGuard™ BEH Amide guard
cartridge) held at 60°C with all the mobile phases connected and reagent lines
assembled to eliminate air bubbles.

The instrument conditions for the use of the HILIC analytical column were as
follows: (i) mobile phases were A1 (i.e. water with 0.015% formic acid and 0.015%
ammonia), B1 (i.e. 70% acetonitrile + 0.01% formic acid), A2 (i.e. water with 0.5%
formic acid), and B2 (i.e. methanol); (ii) seal and needle washes were 10% and 70%
acetonitrile, respectively; (iii) injection volume was 2 pL; (iv) run time for conditioning,
start-up, shutdown, and analysis were 30, 17.5, 15, and 11 min, respectively; and, (v)
temperature for column and autosampler held at 60°C and 4°C, respectively. Mobile
phases were delivered at the gradient throughout the conditioning, start-up, shutdown,
and analysis runs as described in Turner et al. (2019). In conditioning run, new columns
were conditioned before use for the first time with 100% of mobile phase A1 (0% B1) at
a flow rate of 0.10, 0.20, 0.30, 0.35, and 0.35 mL min™" at time 0.0,1.5, 3.0, 4.0, and
30.0 min, respectively. If columns were already conditioned and used, the flow rate was
set to 0.35 ml min~! throughout the conditioning run. The column conditioning was
performed using a blank injection, followed by the shutdown gradient and then the start-
up gradient prior to the analysis of standards and samples. The gradient during the

start-up run was initially 50% A1 (50% B1) at 0.3 mL min™" for the first 4.0 min, and this
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rate flow rate was increased to 0.50 mL min™' starting at time 6.0 min for the next 9.0
min. Then, the gradient was decreased from 50% to 2.0% A1 (i.e. increased from 50%
to 98% B1) with a flow rate of 0.50 mL min-' for next 1.0 min until 16.0 min, and this rate
was slowed down to 0.40 mL min-! for the remaining 1.5 min. Whereas, the gradient
during the shutdown run was initially 100% A1 (0% B1) at 0.30 mL min™" for the first 4.0
min, and the concentration of A1 was dropped to 0% (100% B1) for the next 4.0 min.
This gradient was kept steady for a minute, and the flow rate was doubled (i.e. 0.60 mL
min') starting at the time 11.0 min for the remaining 4 min. The LC gradient used for the
analysis of standards and samples was initially 2% A1 (98% B1) at 0.4 mL min™" for the
first 5 min. Then, the gradient was increased from 2% to 50% A1 (dropped from 98% to
50% B1) for the next 2.5 min, before ramping the flow rate to 0.5 mL min-' over the next
1.5 min until 9.0 min. The gradient then decreased to 2% A1 (increased to 98%) by 9.5
min, increasing to a flow rate of 0.8 mL min-! at 10.0 min, holding until 10.6 min, and
dropping back to 0.4 mL min-! for the remaining 0.4 min.

The tandem quadrupole mass spectrometer (MS/MS) coupled to the UHPLC
was used for the quantification of PST toxins. The MS/MS acquisition methods are set
up using the specific multiple reaction monitoring (MRM) transitions recommended for
PSTI/TTX acquisition as summarized in Turner et al. (2019). Toxins were monitored
using positive and negative electrospray ionization modes (ES/+ and ESI-,
respectively). Saxitoxin (STX), neosaxitoxin (NEO), decarbamoyl saxitoxin (dcSTX),
decarbamoyl neosaxitoxin (dcNEO), deoxydecarbamoyl-STX (doSTX), and tetrodotoxin
(TTX) were monitored using ES/+ mode. Gonyautoxins 1 (GTX 1), gonyautoxins 2 (GTX
2), decarbamoyl gonyautoxins 1 (dcGTX 1), decarbamoyl gonyautoxins 2 (dcGTX 2),
and N-sulfocarbamoyl toxins (C7) are monitored in ES/- mode. The remaining

analogues of gonyautoxins (i.e. GTX3, GTX4, GTX5, GTX6), decarbamoyl
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gonyautoxins (i.e. dcGTX3, dcGTX4), and N-sulfocarbamoyl toxins (i.e. C2, C3, and
C4) are monitored with both ES/+ and ESI-. Validation protocol was applied to certified
reference toxins as described in Turner et al. (2019). Quantification of the PSP toxins
was not performed since their presence in the extracted samples of Alexandrium strains

were not detected.

5.2.3.5 Analysis of lipophilic toxins in Prorocentrum spp.

Samples of Prorocentrum strains extracted in methanol were remained
unhydrolysed. The crude methanolic extracts were analysed for the presence of
lipophilic toxins (LT) such as okadaic acid (OA), dinophysis toxins (DTX1 and DTX2),
pectenotoxins (PTX1 and PTX2), azaspiracids (AZA1, AZA2 and AZA3), and
yessotoxins (YTX, homo YTX, 45-OH YTX, and 45-OH homo-YTX) by UHPLC-
MS/MS using the method described in Dhanji-Rapkova et al. (2019, 2018).

The UHPLC-MS/MS system for LT analysis used a Waters Corp. (Manchester,
UK) BEH C18 column (50 x 2.1 mm, 1.7 ym) in conjunction with Waters Corp.
(Manchester, UK) VanGuard™ BEH C18 (5 x 2.1 mm, 1.7 ym) held at 50°C. The
chromatography was performed in an alkaline condition (pH 11), which was achieved
by adjusting the alkalinity of mobile phases A (2mM ammonium bicarbonate) and B
(2mM ammonium bicarbonate in 90% acetonitrile) to pH 11+ 0.2 with ammonium
hydroxide following the method by Gerssen, Mulder, McElhinney, & de Boer (2009) with
modifications described in Dhanji-Rapkova et al. (2019, 2018). The mobile phases were
delivered at 0.6 mL min"! in a gradient mode. The gradient was initially set at 75% A for
the first 0.2 min. This was decreased from 75% A to 50% A for the next 1.4 min and the
gradient was kept steady for 1.0 min. The composition of mobile phase A was

sequentially decreased by half every minute until it reached 0% by 3.0 min, holding it
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until 3.5 min. The composition was ramped from 0% A to 75% A for the next 0.5 min,
keeping It steady for the remaining 0.5 min. A total cycle run time of 4.5 min. The
injection volume was set to 3 pL.

The MS/MS acquisition methods were set up using the MRM transitions
recommended for LT acquisition as summarized in Dhanji-Rapkova et al. (2019, 2018).
OA, DTX1, DTX2, YTX, homo YTX, 45-OH YTX, and 45-OH homo-YTX were
monitored using negative electrospray ionization modes (ESI-). PTX1, PTX2, AZA1,
AZA2, and AZA3 were monitored using positive electrospray ionization modes (ES/+).
Certified reference materials for LT were obtained from the Institute of Biotoxin
Metrology, National Research Council Canada (NRCC, Halifax, Nova Scotia, Canada),
which were diluted in 100% methanol to form concentrated stock standard solutions
prior to further dilution to make the calibration standards. Among the lipoliphic toxins,
the presence of OA, DTX1, and DTX2 were detected in the Prorocentrum samples, and
hence, only these toxins were quantified.

The peak area response was measured using instrument quantitative data
processing software (i.e. Waters Corp. MassLynxTM v.4.1). The peak area response
data for the calibration standards were fitted against the concentration of the certified
reference toxins in linear regression curves. These linear regression models were used
to interpolate the concentration of the toxins in the sample using the following equation:

Equation 5.1 Toxin concenration ([T]; uygL™1) = %

where y is the peak response area, b is the intercept of the regression line, and a is the
slope of the calibration curve.
The cellular toxin content and cellular toxin production were computed using the

equations as shown below:

Equation 5.2 Cellular toxin content (T,; pgcell™!) = [17\;—]
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final T, — initial T,
t

Equation 5.3 Cellular toxin production (T,; pg cell"1 d™1) =

where [T] is the toxin concentration (ug L"), N is the cell density (cells L"), and t is the

incubation time (in days).

5.2.4 Data processing and analyses

Analysis of variance (ANOVA) and post hoc Tukey were used (1) to determine
the cell-density dependence of toxin concentration and whether this dependence varies
across thermal conditions (2) to determine the temperature dependence of the
concentration, cellular content, and relative composition of toxins and whether this
dependence varies between experiments without and with thermal acclimatisation, (3)
to test the main effect temperature on cellular toxin production rates. A simple linear
regression was used to examine the relationship between cellular toxin production rates
and growth rates. Data processing and analyses were implemented in R version 3.6.1

(R Core Team, 2019).

5.3 RESULTS

5.3.1 Variation in toxin production

5.3.1.1 Toxin concentration

This study revealed that P. lima CCAP 1136/11 strain is highly toxigenic. This
strain produced a detectable concentration of okadaic acid (OA; 713.49 + 106.12 ug L
1,116.80 — 2375.50 ug L), dinophysistoxins 1 (DTX7; 74.45 £ 10.72 ug L"; 17.30 —
241.50 ug L"), and dinophysistoxins 2 (DTX2; 0.63 £ 0.17 ug L"; 0.20 — 5.40 ug L").

Toxin concentration appeared to vary across cell density (Figure 5.1). Analysis of
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variance revealed cell density dependency in the concentration of OA (F1,26) = 6.88, p <
0.05) and DTX1 (F(1,26) = 16.14, p < 0.05), but not in DTX2 (F(1,26) = 1.08, p > 0.05).
Among the toxins, only the concentration of OA showed to vary between experimental
designs (F@1,26) = 7.60, p < 0.05). There was no significant interaction between the

effects of the cell density and the experimental design on the toxin concentration.
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Figure 5.1. Cell density dependence of toxin concentration. The concentration of okadaic acid (OA) and
dinophysistoxins (DTX1 and DTX2) in Prorocentrum lima CCAP 1136/11 strain were fitted against cell
density in a linear regression (A — C, respecitvely). Blue and red circles represent the toxin concentration
estimated in the tube-based experiments without and with stepwise acclimatisation, respectively. The
solid lines represent the linear fit with 95% confidence interval in grey shading.

The analysis of variance on the concentration of okadaic acid (OA) yielded
significant variation across temperatures (Fu4,21) = 10.15, p < 0.05), experimental
designs (F1,21) = 10.14, p < 0.05) and their interaction (F321) = 11.95, p < 0.05) (Figure
5.2 A). The mean concentration of OA at 25 °C was 1363.18 + 348.50 ug L', which
was significantly higher than the mean estimate at 10 °C (364.40 + 146.97 ug L"), 15
°C (517.33 + 127.01 ug L"), and 20 °C (640.08 + 129.69 ug L'"). On average, OA
concentration estimated from tube-based experiments without stepwise acclimatisation

(TB1) was 844 .42 + 161.84 pug L' that was significantly higher than the mean
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concentration estimated from the experiments with stepwise acclimatisation (7TB2)
(517.08 + 87.50 pg L"). The highest mean OA concentration was 2120 + 180 ug L' at
25 °C from TB1, which was 1222.60 — 1987.33 ug L™ greater than the mean estimates
from other groups of the two-way interaction.

The concentration of dinophysistoxins 1 (DTX1) also vary across temperatures
(F@4.21) = 10.39, p < 0.05), but did not vary between experiments (Figure 5.2 B).
However, the two-way interaction was significant (F,21) = 14.62, p < 0.05). Mean DTX1
concentration at 25 °C was 149.81 + 29.05 ug L', which was 71.17 — 117.80 pg L’
higher than the mean concentration at lower temperatures. The highest mean DTX1
concentration was 212.47 + 17.07 ug L' at 25 °C from TB17, which was 92.7 — 192.40
ug L' greater than the mean estimates from other groups of the two-way interaction.
Also, DTX1 concentration at 20 °C from TB17 was higher than the concentration at 20 °C
from TB71 and at 10 °C from TB2.

There was no significant variation in the concentration of dinophysistoxins 2

(DTX2) across temperatures and experimental designs (Figure 5.2 C).
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Figure 5.2. Temperature dependence of the concentration and cellular content of toxins. The mean
concentration of okadaic acid (OA) and dinophysistoxins (DTX1 and DTX2) in Prorocentrum lima CCAP
1136/11 strain across the temperature gradient in the tube-based experiments without and with stepwise
acclimatisation (colored blue and red, respectively) are presented (A — C) as circles with error bars that
represents the standard error of the mean. The mean cellular content of OA, DTX1 and DTX2 (D - F) and
their relative proportion (G — I) across the assay temperatures in the culture experiments are also
presented.

5.3.1.2 Cellular content of toxins

There was a significant difference in the cellular content of OA across
temperatures (Fa,21) = 26.44, p < 0.05) (Figure 5.2 D). Neither the experimental design
nor its interaction with temperature yielded a significant variation in the cellular content

of OA. Mean cellular content at 5 °C was 89.90 + 21.50 pg cell"', which was 63.12 —
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85.95 pg cell'" higher than the temperature in TB7 and TB2. Mean cellular content of
OA were the same across temperatures below 5 °C.

Similar pattern was observed in the cellular content of DTX1. It varied
significantly with temperature (Fu,21) = 105.69, p < 0.05) and not with experimental
design (Figure 5.2 E). Also, the two-way interaction was not significant. The mean
cellular content of DTX7 was 7.26 + 2.08 pg cell”", which was 5.27 — 6.78 pg cell"
higher than the temperatures in TB7 and TB2. There was no evident variation in mean
cellular content of DTX1 across temperatures below 5 °C.

Analysis of variance revealed no significant difference in the cellular content of
DTX2 across temperatures and experimental designs (Figure 5.2 F). However, post hoc
Tukey test showed significant variations between groups paired by temperature and its

interaction with experimental design.

5.3.1.3 Cellular content of toxins ratio

The relative proportion between cellular content of OA and DTX1 varied
significantly across temperatures (F4,21) = 3.45, p < 0.05) and between experiments
(F121) = 26.61, p < 0.05) (Figure 5.2 G). However, the two-way interaction between
variables were not significant. OA:DTX1 at 5 °C was 12.67 + 0.81, which was
significantly higher than the relative proportion at 20 °C (8.72 + 0.80) and 25 °C (8.46 +
0.70). Differences in OA:DTX1 between several of the paired groups in two-way
interaction were significant.

On the other hand, there was a significant variation in the ratio between OA and
DTX2 across temperatures (F@421) = 3.16, p < 0.05), experimental designs (F1,21) = 6.23,
p < 0.05), and their interaction (F,21) = 6.76, p < 0.05) (Figure 5.2 H). OA:DTX1 at 25

°C (2006 + 356.28) was significantly higher than the ratio at 10 °C (937.44 + 331.95).
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Also, significant differences in OA:DTX2 between several of the paired groups in two-
way interaction were found.

Ratio between DTX1 and DTX2 also differed significantly across temperatures
(Fa21)=7.21, p < 0.05) but not between experimental designs (Figure 5.2 1). There was
a significant interaction between the variables (F3,21) = 7.60, p < 0.05). However, the

post hoc Tukey tests did not reveal significant differences between paired groups.

5.3.1.4 Cellular toxin production rates

There was a significant effect of temperature on the production rate of OA
(F@,10) = 72.86, p < 0.05). On average, the highest production rate of OA was 6.37 +
1.54 pg cell'" d' at 5 °C, which was 4.51 — 6.12 pg cell'' d" greater than the rates at
higher temperatures (Figure 5.3 A). OA production drastically dropped to 1.86 + 0.61 pg
cell' d' at 10 °C, and it gradually declined to its lowest rate (0.03 + 0.01 pg cell'* d") at
20 °C. It then slightly increased to 1.21 + 0.07 pg cell'* d' at 25 °C. However, the
difference in OA production across temperatures above 5 °C was not significant.

The main effect of temperature on DTX7 production was also significant (F4,10)
=7.60, p <0.05). Similar trend was observed in DTX1 production in which the highest
rates (0.52 + 0.15 pg cell"' d"') was observed at 5 °C (Figure 5.3 B). Also, it steeply
declined to 0.14 + 0.03 pg cell"’ d"' at 10 °C and slowly dipped to 0.03 + 0.01 pg cell" d
T at 20 °C. Finally, it increased to 0.12 + 0.01 pg cell' d"' at 25 °C. Still, there was no
significant variation in DTX1 production across temperatures above 5 °C.

Furthermore, the significance of the effect of temperature on DTX2 production
was found (Fa,10) = 7.60, p < 0.05). DTX2 production at 5 °C was 0.005 + 0.0006 pg cell
1 d-1, which was 4x — 11x greater than the rates at higher temperatures (Figure 5.3 C).

Also, a sharp decline of rates was observed from 5 °C to 10 °C, followed by a gradual
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decline of the rates until it reached the lowest rate at 20 °C. Mean production of DTX2

were statistically similar across 10 °C — 25 °C.
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Figure 5.3. Temperature dependence of toxin production and growth rate and their relationship. The
mean rates of production (solid circles connected with solid lines) of okadaic acid (OA) and
dinophysistoxins (DTX1 and DTX2) and the mean growth rate (open circles connected with dashed lines)
in Prorocentrum lima CCAP 1136/11 strain across the temperature gradient in the first tube-based
experiments are presented (A — C) with error bars representing the standard error of the mean. Toxin
production rates were fitted against the log of growth rates in a linear regression (D — F). The solid lines
represent the linear fit with 95% confidence interval in grey shading.

5.3.2 Relationship between toxin production and growth rates

Trends in the production of toxins across the temperature was opposite to
observed patterns observed in growth rates (Figure 5.3 A — C). As presented in Figure
5.3 D — F, toxin production and growth rates appeared to be inversely related. A simple
linear regression was used to determine significance of the inverse relationship. A
significant linear relationship with the growth rate was found for the production of OA

(Fa,13) = 86.88, p < 0.05; adjusted R?of 0.86), DTX1 (F,13) = 57.36, p < 0.05; adjusted

156



Chapter 5 — Temperature affects toxin production

R?of 0.80), and DTX2 (F1,13) = 40.20, p < 0.05; adjusted R?of 0.74). For every log

increase in growth rate, production of OA decreased by 2.39 + 0.26 (with the intercept
of -5.84 +£0.89), DTX1 production decreased by 0.18 + 0.02 (with the intercept of -
0.45 £ 0.09), and DTX2 production decreased by 0.0016 + 0.0002 (with the intercept

of -0.0037 +0.0008).

5.4 DISCUSSION

5.4.1 Toxin production in dinoflagellates

This study examined the presence of saxitoxin (STX) and its derivatives in
Alexandrium spp. These toxins are comprised of a tri-cyclic perhydropurine, a nitrogen-
rich alkaloid (Gupta et al., 1989). Despite its similarity to purines of primary metabolism,
STX and its derivatives appears to be synthesized by a totally different pathway
(Shimizu et al., 1984). It has been suggested that arginine, acetate, and methionine
serve as the building blocks of this compound (Gupta et al., 1989; Shimizu et al., 1984).
STX modifies ion channels specifically by binding to voltage-gated sodium channels. It
blocks the opening and prevents the sodium ion flux across the membrane. This
neurotoxin alters the propagation of action potential generated across the nerve
membrane and thus prevents normal nerve function. STX is the causative agent for
paralytic shellfish poisoning (PSP) (Cusick and Sayler, 2013). As expected, these toxins
were not detected in A. tamutum. Surprisingly, the strain of A. minutum was tested
negative for the presence of PSP toxins. A. minutum is a dinoflagellate species known
to produce toxins (Flores-Moya et al., 2012; Wang et al., 2005), but non-toxic strains

are reported in several studies (Touzet et al., 2007; Yang et al., 2010). It is also likely
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that their ability to produce toxins have lost because they possibly have been cultivated
in the laboratory for a long period.

Among the model organisms in this present study, only Prorocentrum lima
CCAP 1136/11 strain was found to produce okadaic acid (OA) and dinophysistoxins
(DTX1 and DTX2). These toxins are linear polyethers that are linked to diarrhetic
shellfish poisoning (DSP) (Hackett et al., 2009; Quilliam et al., 1996). These lipoliphic
toxins are known to bind to the phosphatase proteins, specifically serine/threonine
phosphatases, and inhibit the activity of the protein by hyperphosphorylation that

modifies secretion of sodium ions and cell permeability of solutes (Garibo et al., 2013).

5.4.2 Cell density dependence of toxin concentration

The P. lima CCAP 1136/11 strain is highly toxigenic, with variable toxin
concentration across all experimental conditions. This variability can be attributed to the
cell density in the cultures. The results in this study show direct linear relationship
between toxin concentration and cell density (Figure 5.1). Only OA and DTX1 exhibit
this relationship, suggesting that the concentration of these toxins is dependent on the
cell density of the culture. The cell density dependence of OA and DTX1 concentration
substantiates the importance of population growth in promoting production of these
toxins in P. lima. As secondary metabolites, the synthesis of OA and its analogues is
completely uncoupled from cell growth (Lépez-Rosales et al., 2013). These toxins are
mainly accumulated during the stationary phase of growth at which cells are under long-
term starvation (Lopez-Rosales et al., 2013). However, it is assumed in this present
study that toxins are produced during the exponential growth phase. Hence, the
estimates of toxin concentration are lower compared to the values expected during the

stationary growth phase that takes time to achieve in sub- and supra- optimal
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conditions. It is therefore reasonable to take into account the effect of cell density when
comparing toxin production across treatments by normalising the toxin concentration by
cell density to produce the cellular toxin content that is expressed in pg cell”'. Figure
5.4 presents the variation of cellular content of OA, DTX1, and DTX2 in P. lima

observed in this study and in literature.

5.4.3 Inter-strain variability in cellular toxin content

The results from the present study show that the cultured P. lima CCAP
1136/11 strain is actively producing OA. Varkitzi et al. (2010) reported that the OA
cellular content for this CCAP 1136/11 strain ranges from 0.10 — 1.25 pg cell"" within 1 —
15 days of incubation at 20°C, and it reaches the maximum value of 11.27 + 3.30 pg
cell'" after 34 days of incubation. However, our findings show higher OA cellular
content, varying between 1.86 and 11.02 pg cell! after 14 — 16 days of incubation at
20°C. This P. lima CCAP 1136/11 strain was isolated from Ria de Vigo in Spain, similar
to the isolation location of the toxic P. lima strains reported in previous studies (Barbier
et al., 1999; Bravo et al., 2001; Lee et al., 1989; Martine Morlaix and Patrick Lassus,
1992). Bravo et al. (2001) reported a range of OA cellular content (0.19 — 12.87 pg cell
) in 19 strains of P. lima isolated in the Pontevedra and Ria de Vigo, which is
comparable to the present study. On the other hand, several studies have reported
higher OA cellular content (5 — 24.5 pg cell'") in the isolates from Ria de Vigo than the
reported estimates in CCAP 1136/11 strain (Barbier et al., 1999; Lee et al., 1989;
Martine Morlaix and Patrick Lassus, 1992). This discrepancy suggests the inter-strain
variability in OA cellular content within the same or adjacent isolation location, which
may be linked to the differences in the environment, including temperature, light, and

nutrient conditions employed in the cultivation.
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Figure 5.4. Inter-strain variability of cellular toxin content in Prorocentrum lima observed in this present
study and in literature. The circles indicate the reported estimates or the observed mean estimates of cell
toxin content with error bars representing the standard error. The red solid line indicates the
reported/observed range. Enclosed in the bracket is the isolation location followed the assayed
temperature in °C. This data is also summarised in Supplementary Table 5.1. [Abbreviations: (na) not
available/acquired; (a) within 1 — 15 days incubation; (b) after 34 days of incubation; (c) cultured cells; (d)
natural cells]

Comparing the results to other strains from other isolation locations, the mean
estimates of OA cellular content at 10 — 25 °C in this present study are higher than the
values reported for isolates from Fleet Lagoon, Dorset in UK (0.1 — 1.8 pg cell") (Foden
et al., 2005) but are generally within the reported range in several studies in the same
location (0.42 — 17.13 pg cell'") (Aquino-Cruz, 2012; Nascimento et al., 2005).

Furthermore, the mean estimates at 20 °C are also within the lower half of the range
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reported for isolates from Adriatic Sea in Italy (6.69 — 15.8 pg cell'") (Vanucci et al.,
2010) and Lisbon Bay in Portugal (8.8 — 41 pg cell'') (Vale et al., 2009), but are
generally lower than the reported value for isolates from Marseille in France (1.9 pg cell
1) (Barbier et al., 1999) and from Heron Island in Australia (1.31 — 5.88 pg cell') (Morton
and Tindall, 1995). The mean estimate 20 °C in the first test tube experiments (TB7) is
within the range of the OA cellular content for isolates from Virgin Islands in USA (2.33
— 7.06 pg cell'') (Morton and Tindall, 1995) and from Mahone Bay in Nova Scotia,
Canada (0.37 — 6.6 pg cell'") (Pan et al., 1999), but the mean estimate in the second
test tube experiment (TB2) is higher than the reported range in the same isolation
locations. At higher temperature (25 °C), the mean OA cellular content values observed
in TB2 is generally lower than the reported estimates for isolates from Bizerte Bay in
Tunisia (7.13 — 28.33 pg cell'') (Ben-Gharbia et al., 2016) and from Dry Tortugas in
Florida, USA (7.5 — 14.2 pg cell'!) (Tomas and Baden, 1993), but the mean value
observed in TB1 is generally within and higher than the estimates reported in these
isolation locations, respectively. Lee et al. (1989) recorded a cellular toxin content of 26
pg cell' in isolates from Okinawa, Japan, which was comparable to the mean estimate
at 10°C in TB1. Moreover, Mackenzie et al. (2011) reported OA cellular content for
isolates from Rangaunu Harbour in New Zealand, varying between 90 — 108 26 pg cell
. These values are the highest reported in literature, and are comparable to the range
of OA cellular content in P. lima strains incubated at 5 °C observed in this present
study. Overall, these results suggest the OA cellular content in P. lima strains is
contingent to the geographic locations where the strains are isolated, which may be
linked to variable environmental conditions that were experienced by P. lima strains at

that time.
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Furthermore, results of this present study revealed that the cultured P. lima
CCAP 1136/11 strain is also actively producing OA analogues such as lipophilic
dinophysistoxins (DTX7 and DTX2). To our knowledge, this is the first study that
demonstrated the presence of DTX1 and DTX2 in P. lima CCAP 1136/11 strain. DTX1
cellular content in P. lima CCAP 1136/11 strain is 1.69 + 0.40 pg cell"' on average,
varying between 0.25 and 11.26 pg cell"' across temperature range of 5 — 25 °C. Except
at 5°C, the mean estimates of DTX1 cellular content found in this present study are
lower compared to that of P. lima strain isolated from the same locations (i.e. Ria de
Vigo, Spain) with the value of 2.10 pg cell'* (Barbier et al., 1999). Furthermore, these
mean estimates are within the lower half of the range reported for the isolates from Ria
de Vigo, varying between 0 and 14.3 pg cell"’ (Bravo et al., 2001; Lee et al., 1989).
Comparing to isolates from other location, the results at 20°C are within the reported
range for the isolates from Mahone Bay (0.04 — 2.60 pg cell') (Pan et al., 1999), lower
than the values for isolates from Adriatic Sea (0.12 — 0.39 pg cell'") (Vanucci et al.,
2010), and higher than the estimates for isolates from Lisbon Bay (2.5 — 12 pg cell™")
(Vale et al., 2009). Moreover, the mean estimates observed in this present study are
generally within the lower half of the range of DTX1 cellular content observed for
isolates from Fleet Lagoon (0.2 — 11.29 pg cell'") (Aquino-Cruz, 2012; Foden et al.,
2005; Nascimento et al., 2005). Barbier et al. (1999) reported a DTX1 cellular content
value of 0.8 pg cell'' at 20 °C, which was higher and lower than the estimates observed
at 20 °C in TB1 and TB2, respectively. At 25 °C, the present study yields a lower
estimate of DTX1 cellular content compared to the values for isolates from Bizerte Bay,
which vary from 2.23 to 7.4 pg cell' (Ben-Gharbia et al., 2016). Delgado et al. (2005)
reported DTX1 cellular content for cultured (7.15 pg cell'') and natural population (4.20

pg cell'") of P. lima cells isolated from Havana City in Cuba (Delgado et al., 2005),
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which was generally higher than the observed values in this present study. Morton and
Tindall (1995) reported higher estimates of DTX7 cellular content for Heron Island
isolates, varying between 4 and 8 pg cell”’, which are also higher than observations at
10 — 25 °C in this present study. P. lima isolates from Okinawa is reported to contain 13
pg cell' of DTX1 (Lee et al., 1989), which is the highest value found in literature. On the
other hand, DTX2 cellular content in P. lima CCAP 1136/11 strain is 0.028 + 0.015 pg
cell'" on average, varying between 0.0023 and 0.45 pg cell"' across temperature range
of 5 — 25 °C. Bravo et al. (2001) reported the DTX2 cellular content for isolates from Ria
de Vigo, ranging from 0 to 1.14 pg cell"'. The mean estimates of DTX2 cellular content
observed in this present study is generally within the lowest extreme of the range
reported in Bravo et al. (2001). These findings also suggest inter-strain variability of
DTX1 and DTX2 in P. lima and this large variability may also be explained by the
varying environmental conditions experienced by strains in the different isolation
locations.

As observed, both the content and composition in P. lima CCAP 1136/11 strain
are variable across the experimental conditions. Cellular content of OA is 9.70 £ 0.50
times (6.17 — 15.40 times) higher than DTX1, and it is 1446.16 + 137.29 times (21.63 —
3159.30 times) higher than the DTX2. On the other hand, cellular content of DTX1 is
151.83 £ 14.41 times (3.20 — 355 times) higher than DTX2. Studies on the relative
composition of cellular toxin in P. lima is limited. OA:DTX1 of P. lima CCAP 1136/11
strain observed in this present study is higher than the reported estimates in P. lima
isolates from Mahone Bay in Nova Scotia, Canada (OA:DTX1 is nearly 1:1) (Jackson et
al., 1993; Marr et al., 1992) and from El Pardito in Gulf of California, Mexico (OA:DTX1
is 1:2) (Heredia-Tapia et al., 2002). This suggests variability in the relative composition

of toxins within the P. lima species.
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Cellular toxin content indicates the amount of toxin initially accumulated in a cell
and the gross toxin production that reflects the balance between the net production and
loss of toxins (Kamiyama et al., 2010). Catabolism, leakage, and/or cell division
contribute to the net toxin loss (Anderson et al., 1990), and among these processes,
cell division is thought to be crucial in laboratory experiments (Kamiyama et al., 2010).
In this present study, cellular toxin production rates were determined to examine further
the dynamics of toxin production in P. lima CCAP 1136/11 strain for each of the thermal
condition in TB1. The initial cellular toxin content was not obtained in TB2, and hence,
the cellular toxin production rate for this experimental condition cannot be computed.
However, it is assumed that the rates will be the same with the estimates in TB1, since
the variation in cellular toxin content between the experimental designs was not
significant. Results showed the cellular toxin production for OA is 2.09 + 0.66 pg cell”' d-
1(0.045 —9.38 pg cell'" d'), for DTX7 is 0.18 + 0.05 pg cell' d-* (0.01 — 0.80 pg cell! d-
1), and for DTX2 is 0.0014 + 0.0004 pg cell* d* (0.0001 — 0.0059 pg cell'* d'). Cellular
toxin production rate in P. lima is not well studied, but it expected to vary among strain
since the cell toxin content is highly variable. Comparing the results of this study to the
rates of other species found in literature, the mean cellular production rate of OA in P.
lima is within the reported range of rates in Dinophysis acuminata (1.18 — 2.31 pg cell”’
d') (Kamiyama et al., 2010). However, DTX1 cellular production rates in P. lima
estimated in this present study is higher than the reported values in D. acuminate (0.06
—0.08 pg cell'' d'') (Kamiyama et al., 2010). This suggests inter-species variability of
the cellular toxin production rates in toxic dinoflagellates.

P. lima is not only known to accumulate intracellular toxins, but it also releases
considerable amount of toxins to the surrounding (Nascimento et al., 2005; Vale et al.,

2009). Furthermore, the filtration employed in the extraction of algal toxins may have
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produced enough pressure on cells, forcing to leak extracellularly. In this study, toxins
were not obtained, hence our findings may be biased by this, which underestimates the

toxin production in P. lima CCAP 1136/11 strain.

5.4.4 Thermal dependence of toxin production

Another objective of this study was to examine the effect of varying temperature
on the total concentration, cellular content, composition, and production rates of toxins
in marine phytoplankton, using Prorocentrum lima as a model organism. The results
revealed that the concentration of OA and DTX7 in P. lima CCAP 1136/11 strain are
temperature dependent (Figure 5.2 A). The temperature dependence in the OA and
DTX1 concentration was contingent on whether the test organism was drastically or
gradually (without or with stepwise acclimatisation, respectively) exposed to new
thermal condition. Drastic exposure of P. lima strain to 25 °C yielded higher OA and
DTX1 concentration than the estimates at 15°C, but the gradual exposure produced no
difference from the estimates at 15°C. However, this is unlikely an indication of
response to heat stress since the total toxin concentration is also dependent on cell
density (Figure 5.1). Furthermore, the findings show temperature dependence of the
cellular content of OA and DTX17 in P. lima CCAP 1136/11 strain (Figure 5.2 B). This
dependence on temperature is attributed to cellular toxin content at 5 °C, which was
greater than the estimates at higher temperature. However, no difference in the cellular
content across 10 — 25 °C, regardless of whether the strain is exposed drastically or
gradually to new temperature. This suggest that the cellular accumulation of OA and
DTX1 in P. lima strain is not a response of heat stress. However, production of these
toxins in response to cold stress warrants further investigation. The relative proportion

between OA and its analogues (DTX7 and DTX2) in P. lima CCAP 1136/11 strain varies
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across thermal conditions (Figure 5.2 C). Across all temperatures, drastic exposure to
new temperature yielded higher estimates of OA:DTX7 as compared to the ratios
produced by strains that undergo a stepwise acclimatisation. These findings suggest
that the relative toxin composition is also dependent on the thermal exposure
conditions. Cellular production rate of OA, DTX1, DTX2 in P. lima CCAP 1136/11 strain
exhibit temperature dependence (Figure 5.3 A). Low cellular toxin production rates are
observed at thermal optimum for growth (20°C), whilst higher production rates are
observed at sub- and supra-optimal temperatures. This suggests that temperature may
indirectly affect toxin production and that the temperature-dependence of population

growth influences toxin production in P. lima strain.

5.4.5 Inverse relationship between growth and toxin production

The results of this study indicate there is an inverse linear relationship between
toxin production rates and growth rates in P. lima CCAP 1136/11 strain (Figure 5.3 B),
suggesting that the toxin production rate increases with decreasing growth rates. Toxin
production is postulated to dispense with excess photosynthetic energy when toxic
species growth is no longer optimal (Bates, 1998; Pan et al., 1996). Growth at the sub-
optimal thermal range was observed to favour a high cell PSP toxin quota in
Alexandrium spp. (Usup et al., 1994), which may suggest that cellular nitrogen is more
allocated to toxin synthesis than protein biosynthesis at this condition (Anderson et al.,
1990). The same observation was found in Pseudo-nitzchia seriata where growth at
lower temperature produce higher levels of cellular DA, but it is still unclear whether this
is due to physiological stress at this condition (Bates, 1998). It is also observed that
cellular OA/DTX content is increased in P. lima at lower temperature which may be also

attributed to a division rate rather an increase in production (Wright and Cembella,
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1998). Furthermore, cell growth in Pseudo-nitzchia multiseries at higher temperature
and light did increase the cellular DA content, which may suggest increase supply of
photosynthetic energy to enhance DA production (Bates, 1998). Some species produce
toxin in response to stressful thermal conditions when growth is strongly inhibited
(Aquino-Cruz, 2012). Long-term starvation allows toxic species to accumulate toxins
(Lee et al., 2016), which can be induced when increased temperature limits their

capacity to uptake nutrients (Sterner and Grover, 1998).

5.5 CONCLUSIONS

This present study demonstrated the toxigenicity of Prorocentrum lima CCAP
1136/11 strain. The strain has variable concentrations of okadaic acid (OA) and
dinophysistoxins (DTX1 and DTX2) across all experimental conditions, which can be
attributed to the cell density in the cultures. The strain also has cellular contents of OA,
DTX1, and DTX2 that were comparable to the reported values in the literature.
Furthermore, the concentration, cellular content, relative composition, and cellular
production rate of toxins in this strain was temperature dependent. The findings also
present an inverse linear relationship between toxin production rates and growth rates
in this strain. Overall, the results in this present study improve our current
understanding on the toxin production in marine phytoplankton, which have a potential

implication on the toxic blooms in the future climate scenarios.

167



Chapter 5 — Temperature affects toxin production

168



CHAPTER 6



Chapter 6 — Warming alters interspecific competition

170



Chapter 6 — Warming alters interspecific competition

THE EFFECT OF WARMING ON GROWTH AND COMPETITION IN MARINE

DINOFLAGELLATES

ABSTRACT

Ocean warming is having a profound impact on the physiology and ecology of
phytoplankton. This present study examines how warming affects the growth and
competition of marine dinoflagellate, some of which are responsible for toxic algal
blooms. Specifically, this study sets out to determine (1) the growth responses of
species to warming, (2) the species specificity of the temperature dependence of growth
and competition, and (3) the relationship between growth response and competition
response to warming. Six phytoplankton species representing two co-occurring genera
of dinoflagellates (i.e. Prorocentrum and Alexandrium) were incubated at three
temperatures(15, 20, and 25 °C) in monocultures and pairwise mixed cultures. Results
showed that (1) temperature is a limiting factor for growth and competition in marine
dinoflagellates, (2) temperature dependence of growth and competition is specific to the
species identity of the focal and competitor strain, and not to their toxicity, (3)
interspecific competition influence the growth responses to temperature, (4) warming
affects interspecific competition, (5) strong direct relationship between growth and
competition, and (6) ecological response is predictable from growth responses. In light
of these findings, it is expected that interspecific competition of marine phytoplankton is

likely to change the community structure under a future climate scenario.
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6.1 INTRODUCTION

Climate change is recognised as a major threat to global biodiversity and
predicted to be the main cause of the extinction of thousands of species over the next
century (Bellard et al., 2012; Thomas et al., 2004). There has been recent advancement
of our understanding of the ecological consequence of climate change (Hoegh-
Guldberg and Bruno, 2010; McCarty, 2001; Pecl et al., 2017). In fact, a rapid increase in
the number of experiments has been conducted in the last decades with the aim to
establish mechanistic understanding of how climate change might transform the
biological world (Wernberg et al., 2012). Despite the considerable efforts, our current
knowledge of the role of species interactions in responses to climate change is still
limited, especially the ecological responses of the aquatic primary producers to ocean
warming.

Due to climate change, the oceans are warming at a rate of ~0.13 °C per
decade (Rhein et al., 2013), and is having a profound effect on phytoplankton from its
physiology to ecology (Regaudie-De-Gioux and Duarte, 2012; Thomas et al., 2012;
Toseland et al., 2013). Most phytoplankton studies are focused on the response of
single-species population that reflect the direct physiological response of organism to
changing temperature (e.g. Boyd et al., 2013; Coello-Camba and Agusti, 2017; Huertas
et al., 2011), but often disregarded the contribution of species interaction that may
either improve or aggravate a species’ response to increased temperature. Warming
affects species interaction, and changes in species interaction may influence the
impacts of climate change on populations (Bellard et al., 2012; Cahill et al., 2013;

Tylianakis et al., 2008). Hence, understanding how warming affects species interaction
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is critical for predicting how climate change will alter the structure and function of
phytoplankton communities in the future oceans.

Competition exists in nature between organisms with similar needs and habits
living in the same environment (Keddy, 2001). This interaction occurs when more than
one organisms demand for the same resources of the environment that are limited in
availability, causing a negative effect to one or more organisms (Crombie, 1947). At the
species level, two species that are competing for the same limited resources in the
same environment cannot survive together unless they have equal competitive ability
(Crombie, 1947). Hence, competition can cause the exclusion of a species that has
lower competitive ability than other species (Chesson, 2000). Several studies have
demonstrated the significance of competition and the environment in predicting the
community composition and diversity (Durant et al., 2012; Grover, 2000; Hodge and
Fitter, 2013; Kennedy, 2010; Stenseth et al., 2015), but there have been very few
empirical studies that assess how temperature influences community structure through
its effects on interspecific competition.

Temperature has effects on species interaction, mainly through its influence on
the metabolism of organism (Brown et al., 2004; Van Der Meer, 2006). Several life
history traits that determine fitness (e.g. population growth and biotic interactions) are
governed by the most fundamental biological rate — the metabolic rate (Brown et al.,
2004). Temperature dependence of metabolic rates vary across species, and this
interspecific differences in the thermal performance curves can greatly influence
species interactions (Dell et al., 2014). The key role of metabolic traits, i.e. the
temperature dependence of growth and resource acquisition can be used to predict the
outcome of interspecific competition in phytoplankton (Bestion et al., 2018). The

temperature dependence of growth rate is directly relevant to species interactions, and
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the effect of temperature on growth rate is expected to change the competitive
interactions among species in a community (Lord and Whitlatch, 2015). Changes in
growth with temperature can be used to predict the outcome of competition (Clusella-
Trullas et al., 2011; Milazzo et al., 2013). The growth responses to temperature are
typically characterised as asymmetrical curves, known as the thermal performance
curves or the thermal reaction norms, which are often unimodal and negatively skewed
in ectotherms (Eppley, 1972; Kingsolver, 2009; Knies and Kingsolver, 2010). The range
of temperature at which organism can survive defines the thermal niche of species
(Boyd et al., 2013; Chen, 2015). Vulnerability to warming is dependent on the thermal
niche of species, and it is expected that those with narrower thermal tolerance range
are more susceptible to warming (Magozzi and Calosi, 2015; Pacifici et al., 2015).

Different growth responses to temperature drive the changes in the interspecific
competition in several groups of organism including bacteria, phytoplankton, plants, and
invertebrates (Bestion et al., 2018; Chu et al., 1978; Johannes et al., 1983; Nedwell and
Rutter, 1994). Thermal tolerance differs between toxic and non-toxic phytoplankton
within genus (Rhodes et al., 1994), but not within species (Huisman et al., 2005).
Hence, it is expected that the warming will have an effect the competitive interaction
between non-toxic and toxic species.

Hence, in this chapter, the main objective is to examine the effect of warming on
the growth and competition in phytoplankton using marine dinoflagellates as test
organisms. Specifically, this chapter aims to (1) evaluate the growth responses of
species to warming in the absence and presence of competitors, (2) test whether the
growth and competitive responses to different temperature treatments are dependent or

not on the taxonomic identity and toxicity of focal and competitor species, and (3)
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assess the relationship between growth rates and competition coefficients across the

different temperature treatments.

6.2 MATERIALS AND METHOD

6.2.1 Experimental design

Six phytoplankton species representing two co-occurring genus of
dinoflagellates (i.e. Prorocentrum and Alexandrium) were used as model organisms, i.e.
(1) Prorocentrum sp. NRR 188, (2) Prorocentrum micans CCAP 1136/15, (3)
Alexandrium tamutum PARALEX 242, (4) Prorocentrum minimum Poulet, (5)
Prorocentrum lima CCAP 1136/11,and (6) Alexandrium minutum PARALEX 246, which
were obtained from different culture collections. The first three species are categorised
as non-toxic, whereas the remaining three species are categorised as potentially toxic.
Further information about their origin, culture condition, and toxicity is available in
Chapter 4. These species belonging to a taxonomic group that consist the majority of
the toxic bloom-forming species. The ecological and economic relevance of
dinoflagellates are very important and understudied. Dinoflagellates can be mixotrophic
and endosymbiotic, but can cause economically damaging tides.

Cultures were maintained in 30 mL stock cultures in artificial seawater (ASW)
enriched with K minimum nutrients (K medium), which were stored in T25 cell culture
flask with filter caps. They were kept inside a growth chamber at 15 °C, under a
continuous light cycle at irradiance levels of 221 + 12 umol m=2 s™'. All stock cultures
were maintained in exponential growth with a 1:10 dilution every 14 days.

Prior to the experiment (see Figure 6.1 for schematic representation of the

experimental design), each strain was acclimated for two weeks at three different
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temperature treatments (i.e. 15, 20, and 25 °C) under 12:12 hr light:dark cycle at
irradiance levels of 251 + 10 umol m™2 s™". In each temperature treatment, six stocks of
monocultures (single-species cultures) and 15 stocks of pairwise co-cultures (mixed-
species cultures) were prepared (Figure 6.1 A). These stock cultures were prepared by
inoculating the same biomass (using fluorescence as proxy) of the pre-acclimated
cultures into 250 mL Erlenmeyer flask. All experiments were conducted in triplicates in
T25 cell culture flask (with filter caps), containing 20 mL of the stock cultures. The
single- and mixed-species cultures were incubated for 20 days at three different
temperature treatments (i.e. 15, 20, and 25 °C) inside custom-built water baths (Figure
6.1 B) with circulating water. The temperature of the circulated water was regulated by
external recirculating water baths. The water baths were placed on platform rockers set
to 70 rotations per minute (rpm) and kept inside a growth chamber (Adaptis CMP6010,
Conviron, Canada).

To monitor changes in the cultures throughout the experiment, 200 uL samples
were collected from all cultures every 48 hours for 20 days (the cultures were shaken to
homogenise the cells prior to collection). The samples were placed into 96-well
microtiter plates and were immediately fixed with Lugol’s solution (1% final
concentration). For every sampling, each sample was consistently inoculated into a well
following the well plate format in Figure 6.2. The samples were then stored at 4°C until

they were analysed through microscopy.
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Figure 6.1. Schematic representation of the experimental designs to examine effect of temperature on
the competition in marine phytoplankton.

6.2.2 High throughput microscopy

Microscopy was performed with a Leica DMI6000B inverted light microscope
equipped with Leica DFC310FX camera (Figure 6.2 A), and the acquisition and device
control were performed by Leica AF6000 Modular Systems (LAS AF) v4.6 (Leica

Microsystems CMS GmbH, Ernst-Leitz-Strasse, Wetzlar, Germany).
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Figure 6.2. Workflow of high throughput microscopy and image processing and analysis. The samples in
the 96-well microplate were examined under a Leica DMI6000B inverted light microscope at 100x
magpnification (A). Each sample in a well was scanned (the red lines indicate the scanning path) on a 3x5
rectangular pattern producing 15 image tiles per sample (B). Each microscope image (C1) was processed
(C2 - C7) by executing an ImageJ macro in FIJI to produce a spreadsheet of parameters (C8) and an
image overlaid with outlines (C9). Input and output files for each samples for every sampling date were
organised in a directory with a structure shown in D.
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The 96-well plate without the lid was placed securely on a multi-well plate stage
insert. The samples were initially examined through the eyepiece under 50x
magnification with a bright field illumination and to have a clear view of the stained
specimen. We then switched to a colour camera under 100x magnification to have a live
view of the specimen on the LAS AF screen and the focus was adjusted to obtain
optimal image quality. A 3x5 rectangular pattern was constructed repeatedly for each of
96 wells to acquire 15 image tiles for each well (Figure 6.2 B). Images were acquired
with an automated scanning of the pattern with autofocus. All images were saved as
bitmap files in best resolution of 1392 x 1040 pixels and kept in a directory with a
structure shown in Figure 6.2. In this directory, the images were organised by folders
that correspond to the sampling date (e.g. ./Data/20190412). Within these folders are
subfolders that correspond to the well position of the sample in the microplate
(./Data/20190412/A1), which in every subfolder contains all the 15 image tiles from

each replicate in every sample.

6.2.3 Image processing for cell characterisation

FIJI (FIJI is Just ImageJ) software was used to process and analyse the
microscope image data (Schindelin et al., 2012). The processing was automated using
a script written in Imaged Macro programming language (Supplementary Information
6.1). The script was executed one sampling date at a time in the macro interface in FIJI
as soon as the image data were acquired. The script requires the path of the working
directory. The function in the macro script has 9 major steps to process and analyse an
image (Figure 6.2 C Step 1 —9): (1) opening and duplication of an image file; (2)
enhancement of contrast of the image; (3) converting to 8-bit image and inverting the

look-up table; (4) setting the threshold using MaxEntropy; (5) converting to Mask; (6)
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opening, filling the holes, and watershading; (7) setting the measurements, analysing
particles with parameters set to size = 50 — Infinity and circularity=0.50-1.00, and
displaying the outputs; and saving the outputs that includes (8) a spreadsheet (in .csv
format) enumerating all the detected cells and their corresponding size and shape
parameters and (9) an image overlaid with outlines of the detected cells (in .tif format)
that were labelled with identification number matching to the identification number in the
spreadsheet. The script performs a for loop of this function for every image in every
subfolder in the specified directory (Figure 6.2 D).

The spreadsheet data produced in FIJI were processed and analysed in R
version 3.6.1 (R Core Team, 2019) . We collated all spreadsheet data into one data
frame and curated it to retain records within the expected range of species-specific
dimensions. This resulted to a data frame with observations for 45 variables. Five
identification parameters (treatment, date, trial, culture, code) and 13 morphometric
features (Area, Perimeter, Width, Height, Circularity, Feret, FeretX, FeretY, Feret Angle,
Mini, AR, Roundness, and Solidity; see
https://imagej.nih.gov/ij/docs/menus/analyze.html for description) were selected and

used for the succeeding analysis.

6.2.4 Deep learning for species identification

A deep neural network model for each pairwise combination was developed
using the 13 morphometric features to predict the species identity in mixed-species
cultures. In each combination, a dataset of 30,000 observations for each species
sampled randomly from the single-species dataset was assembled. The dataset was
split into training (80%) and test (20%) datasets using the R package rsample (Kuhn et

al., 2019). The predictor variables were normalised (scaled and centered), whilst the
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categorical response variables were one-hot encoded. Both the training and test
datasets were pre-processed using the recipes package in R (Kuhn and Wickham,
2019).

The training dataset was used to train and validate a four-layer neural network
model using the keras package in R (Allaire and Chollet, 2019). A sequential model was
initialised, and an input layer with 13 variables, three hidden layers with 16, 8, and 4
nodes, and an output layer with 2 nodes were applied (Figure 6.3). All hidden layers
were set with a uniform kernel initialiser and a rectified linear unit activation function.
The input shape in the first hidden layer was set to the number of variables in the input
layer (i.e. 13). A dropout layer after each hidden layer was added at a rate of 0.10,
which eliminate weights below the cut-off threshold (i.e. 10%) to prevent overfitting.
Also, the output layer was set with a uniform kernel initialiser and a sigmoid activation
function. The model was compiled with a common optimisation algorithm (i.e. adam),
categorical cross entropy loss, and accuracy metrics. The model was trained with a
training cycle set to 100 epochs (i.e. iterations), a batch size set to 100 samples per
gradient update within each epoch, and a validation split set to 0.10 to include 10% of
the data for model validation. All the settings for the neural network model described
above are results of tuning.

The model was assessed based on the cross entropy loss and accuracy of the
training and validation (Figure 6.4 A). Also, the true performance of the model was
assessed by generating the class predictions from the model on the test datasets using
the yardstick package in R (Kuhn and Vaughan, 2020), which was then inspected using
a confusion matrix (Figure 6.4 B). From the confusion matrix, the accuracy of the model
was calculated by determining the proportion of correctly classified individuals against

the total population (i.e. total number of individuals that have been classified). The
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accuracy of the models used to classify species in pairwise mixed-species cultures is
summarised in Supplementary Table 6.1. The model accuracy was used as inclusion
criteria for the succeeding data analysis. Pairs with average model accuracy of <0.80
(highlighted in grey) were included in the dataset (referred as filtered dataset
hereinafter), which was used in the succeeding data analysis. The identity of species in
a mixed-species culture was predicted using the morphometrics data (centered and
scaled similar to the normalisation rule of the training dataset) observed in the co-

culture dataset, which were fed into the trained model.

Input Layer € R™ Hidden Layer € R"® Hidden Layer € R® Hidden Layer € R* Output Layer € R?

Figure 6.3. A deep neural network architecture showing an input layer with 13 variables, three hidden
layers with 16, 8, and 4 nodes, and an output layer with 2 nodes used to classify species in pairwise
mixed cultures.
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Figure 6.4. Diagnostic plots used to assess the performance of the deep neural network models used in
this study. The line plots (A) show the cross-entropy loss and classification accuracy over epochs for the
training (blue) and validation (red) datasets. The confusion matrix heat map (B) shows the counts of
correct and incorrect classification of species in a pairwise mixed-species culture. The loss and accuracy
of models used to classify species in pairwise mixed-species cultures at three different temperature
treatments are shown in Supplementary Figure 6.1 — 6.3. The confusion matrices of these models are
shown in Supplementary Figure 6.4 — 6.6.

6.2.5 Quantitation of growth and competition

Growth for each species in monocultures and co-cultures was quantified in
terms of change in total biomass accumulated per day as described subsequently. First,
the biovolume (BV) for each cell was computed using the linear dimensions (i.e. length
and width) following the equation of Sun and Liu (2003) (BV = 1/6 x 3.1416 x length x
width x height) and was converted to biomass (BM) using the equation of Eppley et al.
(1970) (BM = 0.251 x BV%4). It was assumed that the height of the cell is equivalent to
its width in Alexandrium spp. whilst it is equal to one-third of the width in Prorocentrum
spp. The total biomass (pg C) was estimated by multiplying the sum of the biomass or
cellular carbon content (pg C cell") and total cell count. Finally, the log of total biomass
within the exponential phase was fitted against time in a linear model to estimate the
growth rate in monocultures and co-cultures (r and r*, respectively; expressed in d-)
(Supplementary Figure 6.7). Relative growth index (RG) was determined by the

proportion between growth rate in monocultures and co-cultures (RG = r*/r). RG was
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used to examine whether the presence of the competitors has decreased (RG < 1) or
increased (RG > 1) the growth of species. The nature of the species interaction
between pairs in the mixed-species growth experiments was also examined RG. RG < 1
indicates a fitness cost incurred by interspecific competition since growth rate in co-
culture is lower than the rate that the species achieved in monoculture. On the other
hand, RG > 1 indicates facilitation since growth rate is increased in the presence of
other species.

Competition coefficients (c) of two competing species, i.e. (1) focal species and

(2) its competitor were computed following Low-Decarie et al. (2011) using the equation

below:
blfinal
Equation 6.1 co= T2 1, P2finar | _ iy
. 1 Tc dc b1initial 2

bzinitial

The predicted competition coefficients or PCC (c7and c2) were calculated as the
difference between the growth rates of species in monocultures (rs and r2) standardised
by the growth rate of the community (rc). The realised competition coefficients or RCC
(c1*and c2*) were calculated as a function of observed change in relative total biomass
(b) of each species in a co-culture through time accounting for the growth of the
community overall (gc, number of generations across the community). Competition

coefficients were used to examine whether focal species outcompete competitors (PCC

or RCC > 0).

6.2.6 Data analyses
Response of growth rates and relative growth index were assessed using an
analysis of variance (ANOVA). The main effects and interactions of temperature and

competition on the response variables among six different species, between two
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different genera, and between non-toxic and potentially toxic dinoflagellates were
tested. Also, the main effects and interactions of the focal species and competitors
taxonomic identity and toxicity on the response variables among the three different
temperature treatments (i.e. 15, 20, and 25 °C) were tested. Post hoc Tukey tests were
also conducted to determine the significant difference in the mean estimates between
paired groups. A total of 18 analyses were conducted using ANOVA and post hoc
Tukey tests (see Supplementary Table 6.2 for description). Results of ANOVA are
summarised in Supplementary Table 6.3 — 6.7, whereas the results of post hoc Tukey
tests are visualised in Supplementary Figure 6.8 — 6.12. Generally, the statistical results
for filtered and full datasets were comparable. Hence, the results for the filtered dataset
are preferably reported in the main text. Finally, to examine the relationship between
growth rates and competition coefficients, a simple linear regression was used. Data
processing and analyses were implemented in R version 3.6.1 (R Core Team, 2019)

using packages implemented in the previous chapters.

6.3 RESULTS

6.3.1 Growth response in monocultures

The main effect of temperature on growth in monocultures was significant in all
six species (Figure 6.5; ANOVA 1 in Supplementary Table 6.3). All six species showed
a significant increase in growth at higher temperature (Supplementary Figure 6.8 A),
except for the growth in Prorocentrum sp. and Prorocentrum micans that declined at 25
°C. On average, growth of Prorocentrum increased at 20 °C and then declined at 25 °C
whereas growth of Alexandrium increased with increasing temperature (ANOVA 2 in

Supplementary Table 6.3; Supplementary Figure 6.8 B). Similarly, non-toxic
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dinoflagellates showed increase in growth at 20 °C, which subsequently declined at 25
°C; however, potentially toxic dinoflagellates had higher growth at higher temperature

(ANOVA 3 in Supplementary Table 6.3; Supplementary Figure 6.8 C).
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Figure 6.5. Growth rates of marine dinoflagellates in monocultures and co-cultures across temperature
treatments. The points represent the growth rates of focal species in monocultures (black) and co-
cultures (coloured), whereas the lines represent the trend of growth in monocultures (broken) and co-
cultures (solid) over temperature.

Significance of the main effects of taxonomic identity and toxicity of
dinoflagellate species on growth in monoculture were found in all temperature
treatments, except for the effect of genus identity and toxicity at 15 °C (ANOVA 4 — 6 in
Supplementary Table 6.3). Growth in pure culture in all temperature treatments were
different across dinoflagellate species, ranging from 0.11 — 0.48 d”'. Among
dinoflagellate species, P. lima had the lowest growth across all temperature, whilst P.
minimum, A. tamutum and A. minutum had the highest growth at 15, 20, and 25°C,
respectively (Supplementary Figure 6.8 D). There was no difference in growth between

the two genus of dinoflagellate at 15 °C, but growth of Alexandrium was significantly
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higher than the growth of Prorocentrum at higher temperature (Supplementary Figure
6.8 E). Similarly, growth between non-toxic and toxic dinoflagellates were similar at 15
°C but different at higher temperature. Non-toxic dinoflagellates had a higher growth at
25°C, whilst potentially toxic dinoflagellates had a higher growth at 25°C

(Supplementary Figure 6.8 F).

6.3.2 Growth response in co-cultures

Generally, the main effects of temperature and competitor species identity and
their interaction effect on growth in co-cultures were significant in all species (Figure
6.5; ANOVA 7 in Supplementary Table 6.4) with few notable exceptions (e.g. interaction
effect on growth in Alexandrium tamutum and Prorocentrum lima). Growth in co-
cultures significantly increased at higher temperature in most dinoflagellate species.
Trends in the growth in co-cultures were generally comparable to the patterns observed
in monoculture. Notably, a different trend was observed in the growth of Prorocentrum
sp. at 25 °C where growth had increased when paired with P. minimum. Similar
increasing pattern was observed in the growth of P. micans when paired with A.
tamutum, P. minimum, and P. lima. On the other hand, growth of P. minimum at 25 °C
had decreased when paired with P. micans, which is different from pattern observed in
monoculture. All species differed in growth response to temperature that is generally
dependent on the identity of competitor species (Supplementary Figure 6.9 A).

Temperature and competitors had significant effect on growth in both the
dinoflagellate genera but their interaction effect on growth was significant only in
Alexandrium (ANOVA 8 in Supplementary Table 6.4). The average growth in

Prorocentrum species in co-cultures increased at 20°C that subsequently decreased at

25°C whilst average growth in Alexandrium in increased with increasing temperature,
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which is a similar pattern observed in monocultures (Supplementary Figure 6.9 B).
Average growth of Prorocentrum species in co-cultures was higher when paired with P.
lima compared to the growth when paired with P. micans and A. minutum. On the other
hand, average growth of Alexandrium species in co-cultures was lower when paired
with P. minimum compared to the growth when paired with the other Prorocentrum
species. Furthermore, the average growth in Prorocentrum species in co-cultures
increased at 20°C that subsequently decreased at 25°C whilst average growth in
Alexandrium in increased with increasing temperature, which is a similar pattern
observed in monocultures. The effect of temperature on the average growth in
Alexandrium was dependent on the competing species.

Also, the significance of the effects of temperature and competitors on growth
was found in non-toxic and potentially toxic dinoflagellates, but the interaction effect on
growth was significant only in non-toxic species (ANOVA 9 in Supplementary Table
6.4). Average growth of non-toxic and potentially toxic dinoflagellates in co-cultures at
15°C was higher than the average growth at higher temperatures, but average growth in
co-cultures at 20°C and at 25°C were comparable, deviating from the patterns observed
in monocultures (Supplementary Figure 6.9 C). Average growth of non-toxic species in
co-cultures was lower when paired with A. minutum compared to the growth when
paired with other species except for P. lima. On the other hand, average growth of
potentially toxic dinoflagellates in co-cultures was higher when paired with P. lima
compared to the growth when paired with the other species. Unlike non-toxic species,
average growth of potentially toxic dinoflagellates differed across temperature
independent of the competitors.

The growth was dependent on the taxonomic identity of focal and competitor

species in all temperature treatments (ANOVA 10 — 11 in Supplementary Table 6.4).
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The range of the difference in growth across focal species identity was from -0.28 d' to
0.33 d" across temperature (Supplementary Figure 6.9 D). On the other hand, the
difference in growth across competitor species identity ranged from —0.063 d-! to 0.073
d' across temperature. The difference in growth across the interaction between focal
and competitive species identity ranged from —0.39 d' to 0.42 d-" across temperature.
The average growth in Prorocentrum and Alexandrium were different across all
temperature and the scale of difference was independent on the genus of competitor
species at higher temperature (Supplementary Figure 6.9 E). Alexandrium had a higher
growth compared to the estimate in Prorocentrum, and this difference increased with
increasing temperature. Average growth in co-cultures had decreased when a
dinoflagellate was competing against Alexandrium at 15 °C. Furthermore, the average
growth was independent of toxicity of focal and competitor species in all temperature

treatments (ANOVA 12 in Supplementary Table 6.4; Supplementary Figure 6.9 F).

6.3.3 Relative growth index

Sensitivity of relative growth index (RG) to temperature and competitor species
identity was generally significant (Figure 6.6; ANOVA 13 in Supplementary Table 6.5).
Generally, RG significantly increased at higher temperature in all species, except for
Alexandrium species (Supplementary Figure 6.10 A). The difference in relative growth
across the competitive species identity ranged from -0.46 to 0.50. Prorocentrum sp. had
lower RG when paired with A. tamutum than with P. minimum and P. lima, but it had
higher RG when paired with P. minimum than with other potentially toxic dinoflagellates.
On the other hand, RG in P. micans was higher when paired with P. minimum
compared to RG when paired to P. minimum and Alexandrium species. A. tamutum had

lower RG when paired with P. minimum than with other Prorocentrum species. P.
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minimum had higher RG when paired with P. lima than with non-toxic Prorocentrum
species. It also had higher RG when paired with A. tamutum than with P. micans.
Furthermore, RG in P. lima was higher when paired with A. minutum compared to the
index when paired with P. micans. A. minutum had higher RG when paired with P.
micans than with Prorocentrum sp. Prorocentrum species differed in growth response to
temperature that is generally dependent on the identity of competitor species.

The main effects of temperature and competitors and their interaction on RG
were generally significant in Prorocentrum species (ANOVA 14 in Supplementary Table
6.5). However, only the significance of the effect of competitor was found in
Alexandrium species. RG in Prorocentrum species was significantly higher at higher
temperature whilst RG in Alexandrium species was similar across temperature
treatments (Supplementary Figure 6.10 B). Furthermore, Prorocentrum species had
higher RG when paired with P. minimum than with other species, except with A.
minutum. However, they had lower RG when paired with P. micans than with P. lima
and A. minutum. On the other hand, Alexandrium species had lower RG when paired
with P. minimum than with other Prorocentrum species. The effect of temperature on
RG in Prorocentrum species was dependent on the identity of competing species.

Significance of the effect of temperature and competitors and their interaction
on the RG was found in both non-toxic and potentially toxic dinoflagellates (ANOVA 15
in Supplementary Table 6.5). RG in non-toxic species was highest at 25 °C
(Supplementary Figure 6.10 C). Whereas, RG in potentially toxic species was lowest at
15 °C. Relative growth varied across temperature in both non-toxic and toxic
dinoflagellate dependent of the toxicity of competitor species.

The main effects of the species identity of focal and competitor species and

their interaction effect on RG were significant in all temperature treatments (ANOVA 16
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in Supplementary Table 6.5). The difference in relative growth ranged from -1.23 to 1.43
across focal species identity whilst it ranged from -0.29 to 0.36 across competitor
species identity across temperature (Supplementary Figure 6.10 D). Significance of the
effect of the genus identity of focal and competitor species was found (ANOVA 17 in
Supplementary Table 6.5). Alexandrium had higher RG compared to the RG in
Prorocentrum at 15°C, opposite to the trend at 25 °C (Supplementary Figure 6.10 E).
RG was decreased when a dinoflagellate was competing against Alexandrium at lower
temperature. Toxicity of focal species had significant effect on RG in all temperature
treatments, except at 25 °C (ANOVA 18 in Supplementary Table 6.5). At 25 °C, toxicity
of competitor species had significant effect on RG. Non-toxic dinoflagellates had higher
RG compared to potentially toxic counterparts at 15 °C, opposite to the trend at 20 °C
(Supplementary Figure 6.10 F). Surprisingly, RG was higher when competing against
potentially toxic species at 25 °C. Interaction effect between toxicity of focal and
competitor species on RG was not significant.

Based on the RG estimates, three species interaction scenarios were observed.
Overall, 14 % of pairs demonstrated a mutual competition scenario, 63 % of pairs fell
into intermediate scenario where one species was facilitated while the other
experienced interspecific competition, and the remaining 23 % of pairs exhibited a full
facilitation scenario. Hence, the interactions in the experiment are mostly competitive

sensu stricto.
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Figure 6.6. Relative growth rates of marine dinoflagellates across temperature. The points represent the
growth rates of focal species in monocultures (black) and co-cultures (coloured), whereas the lines
represent the trend of growth in monocultures (broken) and co-cultures (solid) over temperature. Points
above the horizontal line indicate higher growth in co-culture than in monoculture.

6.3.4 Relationship between growth and competition

There were direct proportional relationship between growth and competition in
all temperature treatments (Figure 6.7). The slope between the growth in monocultures
and predicted competition coefficient (PCC) had decreased with increasing temperature
(Figure 6.7 A). On the other hand, the slope between the growth in co-cultures and
realised competition coefficient (RCC) was lower at 25 °C compared to the slope at
lower temperatures (Figure 6.7 B). Among the dinoflagellate species, P. lima had the
lowest growth rates in monocultures and co-cultures across all temperature treatments.
Hence, it had the lowest PCC and RCC across all temperature treatments (except for
RCC at 25 °C), which were below zero regardless of its competitors. On the other hand,
growth of non-toxic Prorocentrum species (i.e. Prorocentrum sp., and P. micans) in

monocultures and co-cultures were higher than the estimates in P. lima. Similar trend to
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their PCC and RCC in all temperatures, which were either below or above zero
depending on their competitors. Among Prorocentrum species, the potentially toxic P.
minimum had the highest growth rates in monocultures and co-cultures across all
temperature treatments. Their PCC and RCC were generally above zero across all
temperatures. Furthermore, growth of Alexandrium species in monocultures and co-
cultures were the higher than the estimates in Prorocentrum species across all
temperatures. They had the highest PCC ad RCC across all temperatures, which above

zero regardless of their competitors.

6.3.5 Relationship between predicted and realised competition

Also, there were direct proportional relationships between predicted and
realised competition coefficient in all temperature treatments (Figure 6.7 C). The slope
of the linear relationship between PCC and RCC peaked at 20 °C (i.e. ~0.17), whilst the
slopes at extreme temperatures were comparable (i.e. ~0.10). Generally, P. minimum
and Alexandrium species outcompeted other dinoflagellates species, whereas P. lima
and non-toxic Prorocentrum species fell behind the competition. These outcomes of the
competition inferred from PCC and RCC were comparable at 20 °C. However, a few
discrepancy of the outcomes was observed at extreme temperatures. For instance,
PCC and RCC differed from their outcomes of competition in several co-cultures that
paired with Prorocentrum sp. at 15 °C. Also, PCC and RCC had a mismatch of the
outcomes of the competition in several co-cultures that paired with P. micans and P.

minimum at 25 °C.
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Figure 6.7. Linear relationship between growth and competition in marine dinoflagellate in three
temperature treatments. Relationship between growth in monocultures and predicted competition
coefficient (PCC) and the relationship between growth in co-cultures and realised competition coefficient
(RCC) are presented (A and B, respectively). Also, the relationship between PCC and RCC is also
presented (C). The colour-coded points represent the estimates obtained from focal species in the
competition. The solid lines represent the fits with the linear model displayed at the bottom. The points
above the horizontal broken lines or at the right side of the vertical broken lines indicate that focal species
outcompetes competitor, whilst points below or at the left side of the broken lines indicates that
competing species outcompetes focal species.
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6.4 DISCUSSION

6.4.1 Temperature as a limiting factor

Competitive performance of a species can be measured in terms of growth rate,
which is dependent on temperature (Amarasekare and Savage, 2011; Savage et al.,
2004). The findings in this study reveal the temperature dependence of growth and
competition in marine dinoflagellates, suggesting that temperature is a limiting factor.
These results are not surprising since existing studies recognised the critical role of
temperature on the physiology, growth, species interaction, biogeographical distribution
in phytoplankton (Bestion et al., 2018; Brun et al., 2015; Coello-Camba et al., 2015;
Grimaud et al., 2017; Raven and Geider, 1988). This present study provides new
empirical evidence of the effect of temperature on interspecific competition in non-toxic

and potentially toxic dinoflagellates, which is limited in literature.

6.4.2 Focal and competitor species-specificity of responses to temperature

Generally, the main effects of temperature and competitor species identity and
the interaction effect on growth and competition were significant, suggesting that the
temperature dependence of the responses in the pairwise mixed-species cultures is
contingent on the identity of the competitor species.

In single-species growth experiments, there were significant differences in
growth rates across the focal species identity and toxicity, suggesting the dependence
of the growth on the focal species identity and toxicity. These patterns were observed in
warmer temperature, but not evident in 15 °C where no significant variation in the
average growth was found between the genera Alexandrium and Prorocentrum and

between non-toxic and potentially toxic dinoflagellates.
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On the other hand, in the mixed-species growth experiments, there were
significant variations in growth rates and competition across the taxonomic identity of
the focal and competitor species, but no significant difference in the responses between
non-toxic and potentially toxic species. The results suggest the dependence of growth
on both the focal and competitor species identity and not on their toxicity. These
patterns were observed across all temperature treatments.

Overall, these findings suggest the importance of focal and competitor species-
specificity of the competitive response to warming. This species-specificity of
competition is expected since the temperature dependence of metabolic rates varies
across species, and this interspecific differences in the thermal performance can greatly
influence species interactions (Dell et al., 2014). Furthermore, the results suggest that
the toxicity of focal species influence growth in the absence of competition at elevated
temperature. These results are anticipated since the average thermal optimum (Topt ) in
potentially toxic species was higher than the average Topt in non-toxic species (see
previous chapter). The toxicity of the focal and competitor species does not influence
the growth and competition across all temperature. This findings does not provide
evidence to support the hypothesis that warming will affect the competitive interaction

between non-toxic and toxic dinoflagellates.

6.4.3 Competition effect on growth responses to temperature

Interspecific competition is defined here as the interaction between species,
which leads to a decline in the growth rate of a species by the presence of another. In
this study, the relative growth (RG) index was used to identify the nature of the species
interaction between pairs in the mixed-species growth experiments. RG is referred here

as the ratio between the growth rates in mixed- and single-species cultures, which
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similar at some extent to the relative density or yield reported in recent studies (Bestion
et al., 2018; Fritschie et al., 2014). Based on the relative growth (RG) index, majority of
the interactions in the experiment are competitive.

Moreover, this present study used the relative growth index to investigate the
competition effect on temperature response. The results show the significance of the
main effects of temperature and competitor species identity and their interaction effect
on RG in all species, generally. These indicate the dependency of the effect of
competition on the growth to temperature, which is contingent on the competitors
identity. Also, the findings generally reveal the significance of the main effects of the
taxonomic identity of focal and competitor species on RG in all temperature treatments.
These results suggest that the competition effect on growth depends on the interacting
species. However, RG is independent on the toxicity of focal and competitor species.

Overall, the findings of this study support the hypothesis that interspecific
competition modifies temperature dependence of growth in marine dinoflagellates.
Previous studies have demonstrated the dependence of growth rates on interspecific
interactions (e.g. Anholt and Werner, 1995; Baker, 1982). A recent study found that
temperature responses are modified by competitive interactions, and the strength of
their effect is species-specific (Nilsson-Ortman et al., 2014). Therefore, temperature
dependence of growth rates in laboratory may be different at some extent from the
temperature responses in natural conditions (Gilman et al., 2010; Moenickes et al.,
2012). Moreover, species-specific variation in physiological response leads to a
surprising shift in species interactions with increasing temperatures (Davis et al., 1998;

Lang et al., 2012).
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6.4.4 Effect of warming on interspecific competition

In this study, the competitive interaction is also expressed as predicted and
realised competition coefficients (PCC and RCC, respectively). Results of the study
reveal that warming alters the competitive interaction in marine dinoflagellates, which
further suggest that the competitive response is dependent on temperature. The
temperature dependence of competition can be explained by the metabolic theory of
ecology (MTE). MTE attempts to provide mechanistic links between the different levels
of organisation in biology and ecology, e.g. from organelles to ecosystems (Brown et
al., 2004). As a fundamental dimension of the MTE, temperature plays a key role in
shaping the ecosystem structure and function (Brown et al., 2004; Gillooly, 2001). The
effect of temperature on interspecific interactions such as competition is recognised in
prior works (e.g. Dunson and Travis, 1991; Park, 1954; Tilman, 1981) and in recent
studies (e.g Amarasekare, 2008, 2007; Gilman et al., 2010; Kordas et al., 2011;
Tylianakis et al., 2008; Woodward et al., 2010).

This temperature dependence of competition coefficients is also contingent on
the competitors species identity. This can be explained by the species specificity of the
growth responses to temperature. The thermal performance curves (TPC) between two
species can be compared to predict the outcome of competition. In a given temperature,
patterns of species replacement with the dominance of species with the higher growth
rate can be observed along a thermal gradient, which can occur in several ways. One
way is when both species are generalists with similar TPC but have different thermal
optimum (Topt). Another way is when one species is a specialist and the other is a
generalist, but both have the same Top:. In both ways, dominance of a species is
dependent on local temperature. Species replacement patterns can also occur when

the competing species have unequal strengths of density dependence that differ with
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temperature. In this scenario, a species can be outcompeted by competitor due to its
sensitivity to the per capita effects of the competing species in a given temperature, and
not because it has low carrying capacity (Reuman et al., 2014).

A most recent study has developed a simple theoretical model that
demonstrated the key role of metabolic traits, i.e. the temperature dependence of
growth and resource acquisition, in determining the effect of temperature on
interspecific competition in phytoplankton (Bestion et al., 2018). The model assumes
that the population are initially rare and the cells are exponentially growing at a constant
rate (Bestion et al., 2018). This model differs in several aspects from the assumption of
resource competition (Tilman, 1981) and adaptive dynamic (Dieckmann and Law, 1996)
theories that assume that a rare species must have lower equilibrium resource
requirements (R*) than that of the resident (at population dynamics equilibrium) in order
to successfully invade. Moreover, the model is able to predict the outcomes of the
competition experiment with good accuracy, suggesting that metabolic rates are useful
in predicting the effects of warming on the ecological dynamics of phytoplankton

communities (Bestion et al., 2018).

6.4.5 Direct relationship between growth and competition

The findings reveal the strong direct proportional relationships between growth
rates and competition coefficients, suggesting that growth clearly influence competition
in marine dinoflagellates. This direct effect of growth on competition is also
demonstrated in bacteria (Nedwell and Rutter, 1994), plants (Goldberg and Landa,
1991), marine invertebrates (Johannes et al., 1983; Lord and Whitlatch, 2015).
Furthermore, the slope of the linear relationship between growth and competition were

found to vary across temperature, suggesting the temperature dependence of the effect
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of the growth on competition. This further imply that warming could lead to shift in
community composition in marine dinoflagellates where growth rates strongly influence
competition. The results also show that the variation in growth explain the majority of
the variation in competition, however more than 25% of variation remained unexplained.
These results suggest that other than the growth, other factors may also influence
competition.

However, the complexity of the effect of temperature makes it challenging to
develop a mechanistic model to predict responses to climate change. This is because
the processes at different biological and ecological levels (i.e. from organism to
ecosystem) do not just depend on the direct effects of temperature on physiology, but
also on how these direct effects occur in the context of other processes. For example,
the species distribution along the environmental temperature reflects interactions of
species, not just the direct effects of temperature (e.g. Gross and Price, 2000; Price and

Kirkpatrick, 2009).

6.4.6 Predictable ecological response

The findings also reveal the direct proportional relationships between predicted
and realised competition coefficients (PCC and RCC, respectively) in all temperature
treatments (with average R? = 0.64), suggesting the predictability of the realised
competition. Hence, the growth rates of species in monocultures can be used to predict
the outcomes of competition in co-cultures. The outcomes of the competition inferred
from PCC and RCC were comparable with 92% of the outcomes are matched.
Generally, the results show that P. minimum and Alexandrium species outcompete
other dinoflagellates species, whereas P. lima and non-toxic Prorocentrum species fall

behind the competition.
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The study attempts to use competition coefficients to infer the possible
community composition at three different temperature treatments. In each treatment,
the number of instances that a focal species outcompete competitors is determined
based on PCC and RCC and is expressed as relative frequency. Figure 6.8 shows the

PCC- and RCC-based relative frequency of species in all temperature treatments.

PCC RCC
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Figure 6.8. Predicted community structure of marine dinoflagellates in three temperature treatments.
Filled bars represent the relative frequency of non-toxic and potentially toxic dinoflagellate species
across, which were based from the predicted and realised competition coefficients (PCC and RCC,
respectively).

Based on PCC, A. tamutum is expected to dominate across all temperatures
(i.e. 33%), except at 15 °C. This is followed by A. minutum with relative frequency of
25% that remains constant in all temperatures. It is expected that P. minimum will
dominate at 15 °C (33%), but it is predicted to decreased at higher temperatures (19% —
25%). Relative frequency of Prorocentrum sp. peaks at 20 °C (14%) whilst the
estimates at extreme temperatures are comparable (8%). P. micans yields a relative
frequency of 11% at 15 °C, and is expected to decrease at higher temperatures (8%).
P. lima is expected to be extinct across all temperatures. Potentially toxic species is

expected to dominate over non-toxic species at 15 °C, whilst non-toxic species is
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predicted to dominate at 20 °C. Both non-toxic and potentially toxic species are
expected to co-exist at 20 °C. These PCC-based patterns are comparable to RCC-
based relative frequency with few exceptions. For instance, RCC-based relative
frequency of Prorocentrum sp. is expected to decrease with increasing temperature.
Also, RCC-based relative frequency of P. micans is expected to be higher at 15 °C than
the estimates at lower temperatures.

On the other hand, P. lima is expected to contribute the least to the community
composition 25 °C but predicted to be extinct at lower temperature. Both non-toxic and
potentially toxic species are expected to co-exist at 15 °C. RCC-based relative
frequency of non-toxic species is expected to increase with temperature, opposite to the
pattern observed in potentially toxic species. Therefore, competition coefficients can be
used to predict the structure of the community. However, the accuracy of the prediction
cannot be determined since the study is limited to pairwise competition. A full
community competition experiment (e.g. Low-Décarie et al., 2011; Pardew et al., 2018)

is required to test accuracy of the prediction.

6.4.7 Caveats

The findings presented in this study should be interpreted with caution in
consideration of the following caveats with the design: (1) Marine dinoflagellates
species were used because they are ecologically relevant organisms comprising the
majority of the toxic bloom-forming species. Expanding the results to other taxonomic
phytoplankton groups (e.g. diatoms, cyanobacteria, haptophytes) certainly needs
additional experimental validation. (2) These test organisms are also easy to keep in
good condition over many transfers; however, they are not maintained in axenic

cultures. The results may be suffered from the interference from the possible effect of
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the presence of bacteria in the culture. (3) Among the test organisms, only P. lima is
confirmed to produce toxins (see the previous chapter) and it is grouped with P.
minimum and A. minutum as potentially toxic species. Extending the results to toxic
phytoplankton species also requires further experimental validation. (4) Prior the
experiment, the cultures were pre-acclimated at three different temperature treatments
and two weeks may not be enough to fully acclimatised to the new thermal conditions.
(5) In few samples, low quality of image data acquired through high throughput
microscopy affects the image processing to detect the cells. It is for this reason why the
image acquisition is done semi-automatedly per well and not completely automated per
plate in order to improve the quality of the image data. (6) Few of the deep learning
models yielded a low accuracy in discriminating one species from another species in
pairwise mixed cultures (Supplementary Table 6.1), and pairs with low model accuracy
were excluded in the analysis. The results of the analysis using the filtered dataset were
comparable to that of the full dataset, and hence the findings presented in this study
were robust. (7) Growth rate was used as proxy for fitness, which are dependent on
specific experimental conditions that vary for different organisms and from lab to lab. (8)
The design allows the treatment effect to be partitioned among species, genera, and
toxicity and the replication is small. Additional experiments are needed to establish the
generality of the conclusions.

With these caveats, the experiment can be used to evaluate the effect of
warming on the growth rate in monocultures and the competitive response of two

species in mixed cultures.
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6.5 CONCLUSIONS

This chapter concludes the following: (1) temperature limits growth and
competition, (2) growth response to temperature depends on the interacting focal and
competitor species, (3) interspecific competition modifies temperature dependence of
growth, (4) warming alters interspecific competition, (5) growth rates strongly influence
competition, (6) ecological response to warming is predictable. The results provide new
empirical evidence of the effect of warming on growth and competition in marine
dinoflagellates. Concisely, this study helps the advancement of our current knowledge
on how species respond to climate change, and challenges the use of single-species

laboratory experiments for predicting community responses to climate change.
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GENERAL DISCUSSION

Climate change poses a serious threat to phytoplankton communities.
Recognising the beneficial and harmful impacts of phytoplankton to the environment, to
humans, and to other organisms, it is crucial to understand how physiology and ecology
of phytoplankton are affected by temperature, which is expected to change with climate.
In this thesis, | have addressed some of the existing gaps in our knowledge of the
thermal responses in marine phytoplankton. Specifically, | analysed species occurrence
data (Chapters 2 and 3), published temperature-growth data (Chapter 3), and data from
laboratory experiments (Chapters 4 to Chapter 6) to provide new information on the
thermal limitation to the distribution, growth, toxin production, and competition in marine
phytoplankton. In the following sections, key findings of the research and their
implications are discussed, and future research directions that have come to light from

the work are presented.

7.1KEY RESEARCH FINDINGS
7.1.1 Temperature limits the current biogeography

In Chapter 2, an analysis of the global dataset of species occurrence data was
conducted to examine the global patterns in the realised thermal niche and geographic
range of marine phytoplankton. Overall, the findings shed light on the complexity of
biogeographical patterns of marine phytoplankton species, which do not necessarily

conform to classical macroecological rules. Below are the key results of this chapter:

Thermal niches vary non-monotonously with latitude. This trend is due to the

latitudinal variation in the difference between the minimum and maximum average
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annual SST or in the difference between the seasonal temperature extremes
experienced by phytoplankton in the contemporary ocean. This pattern in the thermal
niche breadth reflects the asymmetrical variation in the thermal limits, in which the
irregular monotonous behaviour of the lower and upper thermal limits leads to the non-

monotonous latitudinal pattern in the niche breadth.

Thermal niches in the tropics are narrower. The thermal niches of phytoplankton
species in the tropics are narrower than those in higher latitudes following Janzen’s
rule. Thermal limits are influenced by climate variability and in turn affect the distribution
of marine phytoplankton. In general, temperature is linked to the role of phytoplankton in
regulating biological processes and patterns in ecology as per the metabolic scaling
hypothesis, therefore impacting the extent and rate of their metabolic performance rate.
Tropical phytoplankton species achieve ecological success in warmer conditions
(Payne and Smith, 2017), due to their ability to perform over a narrower thermal range

based on the scaling of physiological rates in higher temperatures.

Latitudinal variation in geographic range is not evident. The results showcase a
complex relationship between latitude and geographic size range that contradicts
Rapoport’s rule which dictates that tropical species have small range sizes due to their
adaptation to little seasonal variation in climate whereas temperate species are
expected to occupy a larger range size due to their tolerance to greater climate
variability. This contradiction of the results to the theory suggests that several factors
(such as transport or thermal niche breadth) may influence the geographic range size in

marine phytoplankton other than climate variability.

Thermal niches and geographic range are related. A weak trend of
geographical range size increasing with increasing thermal niche breadth in marine

phytoplankton was detected in the data, suggesting that niche breadth to some extent
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limits the geographic distribution of these communities. This observation supports the
validity of the niche breadth—range size hypothesis, which suggests that marine
phytoplankton become more widespread when they can utilise resources (e.g. light and

nutrients) within a wider thermal condition (Slatyer et al., 2013).

Patterns are explained by temperature and other environmental factors.
Temperature and climate variability are important explanatory variables for the trends in
thermal niche breadth. The diversity and habitat availability are relatively more
influential as variables for range size than the climate variability since geographic range
size decreases with increasing diversity which in turn increases with higher habitat
availability. Thus, species may have large range size without adapting to high climate
variability if exposed to the environment with low diversity and more thermally suitable

habitats.

7.1.2 Biogeography and phylogeny explain variability in thermal attributes

In Chapter 3, the global patterns of physiology- and occurrence-based thermal
traits (TTp and TT,), thermal sensitivity, and warming exposure and vulnerability in
marine phytoplankton were examined. Generally, the findings indicate that the variation
of these thermal attributes can be attributed to biogeography and phylogeny of marine

phytoplankton. The key findings in this chapters are as follows:

Physiology- and occurrence-based thermal traits are congruent but not equal.
These support the hypothesis that TT, and TT, express different aspects of species
thermal niche. TT, is expected to estimate the fundamental niche of a species, defined
by their physiological tolerance range to environmental factors (e.g. temperature) in the

absence of biotic interactions (Hutchinson, 1957). However, the fundamental niche may
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be reduced in the presence of biotic interaction such as predation, competition,
mutualisms, species dispersal limitation (Sanchez-Fernandez et al., 2016), and limited
climate availability (Soberén and Nakamura, 2009), resulting in TT, becoming higher

than TTo..

Thermal attributes vary across latitude. Generally, thermal traits in marine
phytoplankton vary across latitude as demonstrated in previous studies using data on
algal physiology (Chen, 2015; Thomas et al., 2016, 2012) and occurrence (Chapter 2).
As observed, the difference between TT, and TT, generally vary non-monotonously
with latitude, suggesting that the inequality between these traits may increase or
decrease depending on the geographic locations where the species are
collected/isolated. Thermal sensitivity in marine phytoplankton also varies across
latitude, indicating that temperate species experience low cold safety margins and
therefore they are at risk to live beyond the limit of their cold tolerance as compared to
species in the tropics. On the other hand, tropical species have low heat safety margins
and hence they are more vulnerable to warming than the species thriving at higher
latitudes (Clusella-Trullas et al., 2011; Deutsch et al., 2008; Diamond et al., 2012; Huey
et al., 2009). This is further supported by the latitudinal trend in warming vulnerability,
indicating that the local temperatures will surpass the physiological upper thermal limits
in tropical species faster than the temperate species, despite the warming rate being

slower in the lower latitudes.

Interspecific variations in thermal attributes is evident. The results reveal that a
significant proportion of the variation in all thermal attributes is mainly explained by
taxonomic identity, suggesting that the thermal attributes are most variable among
species within genera. Although the variation is largely explained by species, the supra-

specific taxonomic levels frequently explained more variation than expected by the tip-
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randomisation null-models. This indicates presence of phylogenetic signal in the
physiology- and occurrence-based thermal traits, their inequalities, and thermal

sensitivity in marine phytoplankton.

Phylogenetic conservatism in the thermal attributes is absent. The results
suggest that phylogenetic signals are present, but too weak to detect the presence of
phylogenetic conservatism. These results further suggest that the thermal attributes are
more similar among closely related species than expected from a null model from the
same phylogeny, but there is no evidence of the tendency of species to retain their

ancestral thermal traits more than expected from a Brownian null model of evolution.

7.1.3 Temperature influences the algal growth

In Chapter 4, laboratory experiments were conducted to examine the
temperature dependence of growth in marine dinoflagellates. In general, the findings
reveal the comparison between non-toxic and potentially toxic phytoplankton in terms of

how temperature change affects their growth. Below are the key results in this chapter:

Growth is temperature-dependent. Generally, the results revealed an
asymmetrical pattern of the thermal growth curve indicating that their growth is more
sensitive to warmer conditions. This can be attributed towards the physiological
processes in phytoplankton that is mainly driven by the kinetics of enzymes which is
influenced by temperature. When temperature increases, it affects the enzyme
activation and its process rate finding stability at high temperatures (Knies and
Kingsolver, 2010). This in turn impacts growth rates which increase exponentially with

increasing temperature below the thermal optimum (Top), following the Arrhenius
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kinetics (Arrhenius, 1915). Once the Topt is reached, growth rate decreases due to the

denaturation of essential proteins (Hochachka and Somero, 2002).

Thermal traits in non-toxic and toxic species are comparable, but not their
growth rates. This variation in temperature dependence of growth between the non-
toxic and potentially toxic phytoplankton has an ecological implication especially in the
changing climate, as toxic species may dominate over the non-toxic species (or vice
versa). Under future climate scenarios, toxic species could employ adaptive strategies
to expand their thermal tolerance, while toxin production may provide toxic species a

selective advantage.

Maximum growth rates and thermal traits are unrelated. Results suggests that
there is no clear trade-off between maximum growth rate and thermal traits. The
relationship between the maximum growth rate of phytoplankton and temperature is
initially described by an exponential envelope function (Eppley, 1972), which the “hotter
is better” hypothesis is based on. Under this hypothesis, the maximum growth rate is

expected to be greater at higher optimal temperature.

Thermal traits are linked to environmental temperatures. Results suggest that
there is a strong link between the cardinal temperatures and the ambient temperature
experienced by marine phytoplankton at their local habitat, indicative of local adaptation
(Thomas et al., 2012). This shows the importance of the environment in shaping the

physiology of phytoplankton.

Warming vulnerability in non-toxic and toxic species is comparable. Nearly all
the non-toxic and potentially toxic phytoplankton species were thriving within the
thermal safety zone in the present climate scenario. Thermal sensitivity also remain

comparable between non-toxic and potentially toxic phytoplankton. Overall, vulnerability
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to climate change is highly variable among the strains, and less variable between

toxicity in marine phytoplankton.
7.1.4 Temperature affects toxin production

In Chapter 5, laboratory experiments were also conducted to examine the
temperature dependence toxin production in marine dinoflagellates. The findings
elucidate how change in temperature influences the production of toxins in a toxic

phytoplankton. Below are the key results in this chapter:

Toxin production is temperature-dependent. The concentration, cellular content,
relative composition, and cellular production rate of toxins are dependent on
temperature. The temperature dependence of toxin production is contingent on whether
the test organism is drastically or gradually exposed to new thermal conditions. Drastic
exposure to higher temperature yielded higher toxin concentration than the estimates at
lower temperature, but the gradual exposure produced no difference from the estimates
at lower temperature. The results of this study indicate there is an inverse linear
relationship between toxin production rates and growth rates, suggesting that the toxin
production rate increases with decreasing growth rates. Toxin production is believed to
dispense with excess photosynthetic energy when toxic species growth is no longer

optimal (Bates, 1998; Pan et al., 1996).

7.1.5 Warming alters growth and competition

In Chapter 6, laboratory experiments were conducted to examine the effect of
increased temperature on growth and competition in marine phytoplankton using
dinoflagellates as test organisms. Overall, the findings provide a new insight on how

warming influences interspecific competition in marine phytoplankton, which is crucial

213



Chapter 7 — General Discussion

for predicting the change in the phytoplankton communities in response to climate

change. The key results of this chapter are as follows:

Temperature is a limiting factor for growth and competition. The findings reveal
the temperature dependence of growth and competition in marine dinoflagellates,
suggesting that temperature is a limiting factor. These results are not surprising since
existing studies recognised the critical role of temperature on the physiology, growth,
species interaction, biogeographical distribution in phytoplankton (Bestion et al., 2018;
Brun et al., 2015; Coello-Camba et al., 2015; Grimaud et al., 2017; Raven and Geider,

1988).

Temperature dependence of growth and competition is specific to the species
identity of the focal and competitor species, and not to their toxicity. The results suggest
the importance of focal and competitor species-specificity to the competitive response
to warming. This species-specificity of competition is expected since interspecific
differences in the thermal performance can greatly influence species interactions (Dell
et al., 2014). However, the toxicity of the focal and competitor species does not
influence the growth and competition across all temperatures. The results are
insufficient to support the hypothesis that warming will affect the competitive interaction

between non-toxic and toxic dinoflagellates.

Interspecific competition influences the growth responses to temperature.
Results support the hypothesis that the interspecific competition modifies temperature
dependence of growth in marine dinoflagellates. Previous studies demonstrate the
dependence of growth rates on interspecific interactions (e.g. Anholt and Werner, 1995;
Baker, 1982) while recent studies report that temperature responses are modified by
competitive interactions, and the strength of their effect is species-specific (Nilsson-

Ortman et al., 2014). Therefore, there may be slight variations between the temperature
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dependence of growth rates in laboratories compared to those in natural conditions

(Gilman et al., 2010; Moenickes et al., 2012).

Warming affects interspecific competition. Warming alters the competitive
interaction in marine dinoflagellates, which further suggests that the competitive
response is temperature dependent. This could be explained by metabolic theory of
ecology (MTE) that attempts to provide mechanistic links between the different levels of
organisation in biology and ecology (Brown et al., 2004). Temperature plays a key role
in shaping the ecosystem structure and function as a fundamental dimension of the
MTE (Brown et al., 2004; Gillooly, 2001) and its effect on interspecific interactions such
as competition is recognised in previous studies (e.g. Dunson and Travis, 1991; Park,
1954; Tilman, 1981; Amarasekare, 2008, 2007; Gilman et al., 2010; Kordas et al., 2011;

Tylianakis et al., 2008; Woodward et al., 2010).

Growth and competition is are related. There were strong direct proportional
relationships between growth rates and competition coefficients, suggesting that growth
clearly influences competition in marine dinoflagellates. The slope of the linear
relationship between growth and competition were found to vary across temperature,
suggesting the temperature dependence of the effect of the growth on competition. This
further implies that warming could lead to shifts in community composition in marine

dinoflagellates where growth rates strongly influence competitive ability.

Ecological response is predictable from growth responses. There were also
direct proportional relationships between predicted and realised competition coefficients
(PCC and RCC, respectively) in all temperature treatments, suggesting the predictability
of the realised competition. Hence, the growth rates of species in monocultures can be
used to predict the outcomes of competition in co-cultures. The competition coefficients

can be used to predict the structure of the community.
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7.2 IMPLICATIONS TO CLIMATE CHANGE ECOLOGY

The vulnerability of phytoplankton to climate change is attributed to the impact
of temperature change on their physiological processes and growth, which may alter
marine ecosystem structure and function. Marine phytoplankton are generally living in
the present climate scenario within the thermal safety zone. However, with the ongoing
climate change, the warming temperature may likely exceed the physiological limits of
marine phytoplankton species. They must avoid the extreme temperatures or else they
are at risk of the thermal danger. They may either adapt or migrate to new favourable

habitats to survive, otherwise, their extinction is inevitable.

The findings of this thesis reinforce the current thought that ocean warming will
likely trigger the poleward shifts in thermal niches of marine phytoplankton species
(Barton et al., 2016), the decline of phytoplankton diversity in the tropics (Thomas et al.,
2012), the occupancy of non-indigenous and invasive species in new thermally defined
habitats (Sorte et al., 2010), and the shift in phytoplankton community structure
(Acevedo-Trejos et al., 2015). Hence, highly diverse communities of phytoplankton in
the tropics may be the most at threat from global warming. The high biodiversity of
marine phytoplankton in the tropics (Righetti et al., 2019) entails intensification of the
biotic interaction in the tropical phytoplankton community and hence may narrow the
realised thermal niche in the tropics. Narrowing of the niche in tropics may also be
attributed to the rates of biotic interactions and processes, or the rate of evolutionary
diversification, which are higher in a warmer climate than in a colder climate (Allen et
al., 2002; Mittelbach et al., 2007). The findings further imply that species in the tropics
are thermal specialists and have a higher affinity to warm temperature than the
temperate species. Despite the advantage of having these traits, tropical species have

a low heat safety margin, which makes them more vulnerable to warming.
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The warming of the climate is likely affecting the distribution of marine
phytoplankton in time and space. Consequently, the climate-induced changes in the
phenology and biogeography of the phytoplankton bloom are likely to impact the
primary production and carbon cycling in the future ocean. It is expected that
phytoplankton species will advance their timing of the spring bloom and will persist
during fall because of the ocean warming. This advanced timing will be relevant to the
subsequent productivity of the marine ecosystems. Along with the shift in phenology,
biogeographical distribution and community structure of phytoplankton are also
expected to shift in the warming ocean due to alteration in their thermal tolerance. It is
expected that species range will shift towards the poles and may contract or expand in

response to climate change.

The changes in phenology and biogeography due to warming are also likely to
change the ecological interactions. Since different phytoplankton species have different
ecological responses to temperature, it is expected that they differ in vulnerability to
warming and dispersal capability, and hence changes in the community composition are
inevitable in the future. It is predicted that climate change will decrease diversity in the
lower latitudes and increase diversity in higher latitudes. Also, it is expected that more
changes in phytoplankton community composition will occur in tropics as compared to

the temperate regions in response to climate change.

The shifts in the structure and function of the ecosystem are inevitable under
the climate change. It is expected that the primary production will be enhanced in many
regions in the future since phytoplankton growth is enhanced at an increased
temperature below their thermal optimum. This change in the primary productivity will
support more aquatic life in the future, and therefore the present biodiversity can be

sustained. However, the enhancement of primary production has possible feedback on
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global warming. A sink for carbon dioxide may be formed due to higher primary
production of phytoplankton. Increased emission of carbon dioxide and increased

temperature can enhance primary production by phytoplankton.

In the context of harmful bloom-forming phytoplankton, climate change may
provide favourable conditions for toxic algae to occur (Hallegraeff, 2010). It is likely that
toxic blooms and their impacts may be exacerbated in the future where their duration,
intensity, and frequency may increase in response to changes in the climate. The
possible impacts of climate change on toxic blooms have important implications on how
to manage and control harmful algal blooms (HAB) in the future. At present, our
projections of the HAB response to the future climate scenarios are highly speculative.
Our predictive understanding can be improved if evidence for the effect of change in
environmental and ecological factors, not just temperature change, on the biogeography

and phenology of toxic phytoplankton species is obtained.

7.3 FUTURE RESEARCH DIRECTIONS

7.3.1 Predicting ecological response to climate change

This thesis provides new information on how marine phytoplankton respond to
temperature. However, our current understanding on the ecological responses of non-
toxic and toxic marine phytoplankton to future climate scenarios is still limited. Other
than simple inductive reasoning, further studies are required to advance our knowledge
of the climate change ecology of marine phytoplankton. Correlative and mechanistic
ecological niche modeling (introduced in Chapter 1) can be applied to examine the
effect of climate change on non-toxic and toxic phytoplankton species. In correlative

ENM, the species occurrence data collected in Chapters 2 and 3 can be linked to
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environmental data (e.g. temperature, salinity, nutrients, photosynthetically active
radiation, salinity, current velocity, and others) to forecast the suitability of a particular
habitat for the species. In mechanistic ENM, the thermal performance curves (TPC)
obtained in Chapters 3 and 4 can be used to establish a causal relationship between
species distribution and temperature. Mechanistic ENM can be further improved by
integrating the findings in Chapter 6 to take into account the effect of biotic interaction
on the temperature dependence of growth. Both the correlative and mechanistic ENM
can be projected into the present and future climate scenarios and can be compared to
provide a better insight on the ecological responses of non-toxic and toxic
phytoplankton to climate change. Hence, the correlative and mechanistic ENM
projections can be used to examine the following climate-induced trends in marine

phytoplankton:

Latitudinal range shifts. Latitudinal limits and range of species can be projected
in the present and future climate scenarios (Figure 7.1). The projected limits can be
compared to investigate the magnitude and direction of the climate-induced shift in the
equatorial and polar boundaries of species range. Furthermore, the projected latitudinal
range can be compared to examine the extent of expansion or contraction of species

range in response to climate change.
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Figure 7.1. Predicted shifts in the latitudinal limits and range of marine phytoplankton. These are
projected using correlative and mechanistic ecological niche models (ENM) based on the present and
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future climate scenarios (RCP 2.6 and RCP 8.5). The points indicate the projected estimates in non-toxic
and potentially toxic species (coloured blue and red, respectively). The points above the 1:1 dashed line
indicate a poleward shift in the lower and upper limits of latitudinal range (A and B, respectively) and
expansion of latitudinal range (C). On the other hand, the points below the 1:1 dashed line indicate a shift
towards the equator in the limits of species range (A and B) and a range contraction (C). As shown, most
of the species are expected to experience no change or poleward shift in the lowest and highest latitude
at which they can exist. It is also expected that the species range may expand, contract, or remain
unchanged in the future climate scenarios. The shifts in the latitudinal limits and range may be dependent
on the taxonomic identity and toxicity of phytoplankton species. The results are based on the preliminary
analysis, which will not be discussed in detail since it is not within the scope of this chapter. This figure is
for demonstration purpose only to show how correlative and mechanistic ENM projections are used to
examine ecological response of marine phytoplankton to climate change.

Changes in habitat suitability. The number of suitable and unsuitable habitats
can also be estimated from the ENM projections (Figure 7.2 A and B). The relative
change in the predicted number of suitable habitats can be determined to examine how
habitat suitability of marine phytoplankton is shifted in response to changes in the
climate. This can be expressed by finding the difference between the number of suitable
habitats projected in the future and present climate scenarios over the present
projections. Based on the implemented ENM, that relative change in habitat suitability
differ across latitude and the latitudinal variation may also vary across species’
taxonomic identity and toxicity. Furthermore, the percentage of habitat loss and gain
can also be investigated to examine how much of the suitable habitats can be

disappeared or emerged in the future climate scenario (Figure 7.2 C).
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Figure 7.2. Predicted changes in the habitat suitability for marine phytoplankton. The number of suitable
and unsuitable habitats are projected using correlative and mechanistic ecological niche models (ENM)
based on the present and future climate scenarios (RCP 2.6 and RCP 8.5). The points indicate the
projected estimates in non-toxic and potentially toxic species (coloured blue and red, respectively). The
points above the 1:1 dashed line indicate an increase in number of suitable and unsuitable habitats, and
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points below this line indicate the decline in the estimates (A and B). The latitudinal variation of the
relative change in the predicted number of suitable habitats is also presented (C). It is predicted that the
percentage of new and loss habitats in the future may vary across phytoplankton species and between
non-toxic and toxic species. The results are based on the preliminary analysis, which will not be
discussed in details since it is not within the scope of this chapter. This figure is for demonstration
purpose only to show how correlative and mechanistic ENM projections are used to examine ecological
response of marine phytoplankton to climate change.

Changes in the community structure. Phytoplankton diversity in terms of
species richness can be obtained by summing the ENM projections of all species. In
this, the total number of unique species that are projected to exist in a particular location
(0.08° spatial resolution) is determined. To examine the climate-induced change in
diversity, the difference in species richness between the present and future projections
can be estimated, which can be expressed as change in species richness per decade
(Figure 7.3). Furthermore, Sorensen’s index in each location can be estimated to
examine how similar the phytoplankton community in the present and future climate

(Figure 7.4).

Changes in relative composition of toxic species. The difference between the
relative proportion of the number of non-toxic and potentially toxic species can also be
estimated (Figure 7.5). This projected estimates in the present and future climate
scenarios can be compared to examine how climate change affect the dominance of

toxic species.
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Figure 7.3. Predicted changes in the diversity of marine phytoplankton. The species richness (SR) is
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projected using correlative and mechanistic ecological niche models (ENM) based on the present and
future climate scenarios (RCP 2.6 and RCP 8.5). The colour gradient represents the change in species

richness per decade (ASR) (A to D). The latitudinal variation of ASR is also presented (E). It is predicted
that climate change will decrease of diversity in the lower latitudes and increase diversity in higher
latitudes. The results are based on the preliminary analysis, which will not be discussed in details since it
is not within the scope of this chapter. This figure is for demonstration purpose only to show how
correlative and mechanistic ENM projections are used to examine ecological response of marine
phytoplankton to climate change.

A. Correlative model B. Mechanistic model E.
sl Models
e — Correlative )
08 Mechanistic ¢
e : &
o~ 06 o
& Scenarios P
g o ” RCP 2.6 < ; (
0.2 ) \
RCP 85 >
0.0 >
= 4
°© .
2 5
C. 3 N d
3
sl (4

-50

o
®

RCP 8.5

070 0.80 0.90 100
Sorensen's index

Figure 7.4. Predicted changes in the community composition of marine phytoplankton. The Sorensen’s
index (S/) is projected using correlative and mechanistic ecological niche models (ENM) based on the
present and future climate scenarios (RCP 2.6 and RCP 8.5). The colour gradient represents the
projected estimates of S/ (A to D). The latitudinal variation of S/ is also presented (E). It is predicted that
more changes in phytoplankton community composition is expected in tropics as compared to the
temperate regions in response to climate change. The results are based on the preliminary analysis,
which will not be discussed in details since it is not within the scope of this chapter. This figure is for
demonstration purpose only to show how correlative and mechanistic ENM projections are used to
examine ecological response of marine phytoplankton to climate change.

Correlative model . Mechanistic model

= === 5 Models
APT-NT <L P - APT-NT — Correlative

0.005 < 0.005 Mechanistic
0.000 0.000
-0.005 -0.005

RCP 2.6
5
A

504 Scenarios
— RCP26
RCP 85

-0.010 -0.010
-0.015 -0.015

-0.020 - - -0.020

(2]

o

Latitude [°]
°

Y 2RGa

- -
= APTAT ; 2 ” e APT-NT

. : o ;
0 A ||| 0.005 0.005 Y
© R ot ===l (|- 0.000 * X 0.000 -50
8 . : -0.005 _ g T m -0.005 ‘ ;f
3 - > & i -0.010 [ -0.010 e s

- s o0 -0.015 0,015 I
~ : -0.020 _ ~ L e et~ -0.020
 R——— T et - -0.008 -0.004 0.000

Change in PT - NT
per decade

Figure 7.5. Predicted changes in the relative proportion of potentially toxic and non-toxic phytoplankton
(A PT - NT). The relative proportion of the number of non-toxic and potentially toxic species are projected
using correlative and mechanistic ecological niche models (ENM) based on the present and future
climate scenarios (RCP 2.6 and RCP 8.5). The colour gradient represents the projected estimates of A
PT - NT (A to D). The latitudinal variation of A PT - NT is also presented (E). As per mechanistic ENM, it
is expected that the relative composition of toxic species decreased in lower latitude. However, this
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projection is different from the correlative ENM that show a complex latitudinal pattern in A PT — NT. The
results are based on the preliminary analysis, which will not be discussed in details since it is not within
the scope of this chapter. This figure is for demonstration purpose only to show how correlative and
mechanistic ENM projections are used to examine ecological response of marine phytoplankton to
climate change.

However, the ecological niche models are only as good as the data that were
used for calibration. As discussed in the previous chapters, there are a number of
caveats associated with the use of species occurrence data (Chapter 2 and 3) and
temperature-growth data (Chapter 3 and 4), which are needed to be considered when

interpreting the findings of ENM.

7.3.2 Assessing the thermal growth curve in toxic species from other major taxa

Even though the majority of harmful bloom-forming species and toxigenic
strains belong to dinoflagellates (Anderson et al., 2012), characterisation of the thermal
response curves in representatives from other phytoplankton taxa, i.e. diatoms,
haptophytes and cyanobacteria, is crucial to advance our knowledge on the taxon-
specific differences in the growth thermotolerance between non-toxic and toxic
phytoplankton. Pooling the experimental data obtained from this study with the datasets
compiled from published laboratory culture experiments allows the comparison of
thermal growth response between phytoplankton groups with an adequate number of
observations (Chapter 4). However, there are still limitations linked with this dataset
even if this was compiled from several studies. The limitations include studies with low
temperature resolution, incomplete observation of full thermal range, over
representation of non-toxic phytoplankton, few observations on toxic species that are

mostly dinoflagellates, and insufficient number of freshwater species. Hence, future
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work will include examination of growth thermotolerance in toxigenic algal strains from

other major taxa.

7.3.3 Determining the physiological responses across thermal gradients

Physiological responses across thermal gradient have to be determined in order
to examine the trade-offs between toxicity-related traits (i.e. toxin production and
reactive oxygen species (ROS)) and biomass-related traits (i.e. photophysiology,
photosynthesis and respiration), which may provide ecological advantages for toxigenic
strains to survive thermal stress. These additional physiological measurements will
improve our understanding of the bloom-forming capacity of toxic phytoplankton to
adjust to changing ocean conditions and will provide insights of the phenotypic

responses in current and future climate scenarios.

7.3.4 Determining the combined effects of warming and acidification

This study only accounts the effect of increasing temperature. Single factor
experiments (e.g. de Boer et al., 2004; Hikosaka et al., 2005; Low-Décarie et al., 2011)
may not lead to an accurate predictions of the physiological and ecological responses of
phytoplankton in natural habitats, where phytoplankton are under the influence of the
interacting multiple environmental stressors like warming and acidification (Hader &
Gao, 2015). The possible additive or multiplicative effects of warming and acidification
suggest that single-factor experiments may provide misleading implications about
ecophysiological responses of phytoplankton in a multivariate natural environment.
However, information about the combined effects of warming and acidification on the

ecophysiology of phytoplankton, especially relative success of non-toxic and toxic
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species, is scarce but of critical importance for linking ecological shift of toxic blooms

with climate change.

7.3 CONCLUDING REMARKS

In this thesis, | have provided new information about the thermal responses of
marine phytoplankton. The main findings of this thesis are as follows: (1) the current
distribution of marine phytoplankton is limited by temperature, (2) their thermal traits are
contingent on their biogeography and phylogeny, (3) their growth and toxin production is
affected by temperature, and (4) interspecific competition in dinoflagellates is altered by
increasing temperature. The findings of this thesis advance our current predictive
understanding on the ecological responses of marine phytoplankton to climate change.
In particular, the information collected in this thesis can be used to develop models to
predict climate-induced ecological trends such as changes in range, habitat suitability,
diversity, and community composition. Accurate predictions are challenging to produce,
but the existing models are useful to improve our insights of the climate change biology

of marine phytoplankton.
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Supplementary Table 2.1. Total number of observations and unique phytoplankton taxa in the raw and processed data (i.e. data before and after spatial
filtering, respectively) across hemispheres, climate zones, and habitats.

No. of observations

No. of unique taxa

Datasets Factors Levels (% contribution) Species Genus Family Order Class Phylum
Raw Hemispheres  North 665058 (86.23) 1514 468 191 84 16 8
South 106228 (13.77) 975 351 151 69 16 8
Climate zones Polar 7533 (0.98) 204 124 85 51 12 6
Temperate 704462 (91.34) 1561 466 190 83 16 8
Tropics 59291 (7.69) 917 338 144 69 16 8
Habitats Coastal 711113  (92.20) 1644 488 195 84 16 8
Ocean 60173 (7.80) 469 209 107 56 14 7
Processed Hemisphere North 53799 (85.95) 247 125 74 41 13 7
South 8798 (14.05) 178 96 58 34 8 5
Climate zones Polar 787 (1.26) 12 7 4 4 3 3
Temperate 52877 (84.47) 318 151 86 47 13 7
Tropics 8933 (14.27) 171 82 53 31 10 6
Habitats Coastal 45705 (73.01) 306 149 85 47 13 7
Ocean 16892 (26.99) 147 75 49 32 6 5
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Supplementary Table 2.2. Summary statistics of the likelihood ratio (LR) test used to determine the significance of the linear and quadratic terms in the
generalized linear mixed model (GLMM) (i.e. intercept only (M1: y ~ 1), linear term of the predictor (M2: y ~ x), and linear and quadratic terms of the predictor
(M3: y ~ x + x2). Akaike information criterion (A/C) was used to determine whether a full model with linear and quadratic terms would describe the relationship
better than a reduced model. Coefficient of determination for each model was estimated to describe the proportion of variance explained by the fixed factor
alone (i.e. mariginal R?) and by both the fixed and random factors (i.e. conditional R?). Summary of GLMMs can be found in Supplementary Table 2.3.

Coefficient of

GIIII;IM Variables AlC Likelihood ratio test statistics Determination
Dependent Independent Model Structure ID Test X? df p-value R%cvv™  RZcLmm®

GLMM 01 LTL LM M1 4350.01
M2 4059.87 M1vs M2 29214 1 <0.01 0.13 0.39
M3 4002.03 M2vs M3  59.83 1 <0.01 0.19 0.42

GLMM 02 UTL LM M1 4831.28
M2 4448.57 M1vs M2 38471 1 <0.01 0.19 0.31
M3 4411.02 M2vs M3  39.55 1 <0.01 0.25 0.34

GLMM 03 RTN LM M1 5063.91
M2 5054.62 M1vs M2  11.29 1 <0.01 <0.01 0.05
M3 5056.54 M2 vs M3 0.08 1 0.78 <0.01 0.05

GLMM 04 LTL* LM M1 4971.27
M2 4702.36 M1vs M2 27091 1 <0.01 0.14 0.27
M3 4645.52 M2vs M3  58.84 1 <0.01 0.19 0.33

GLMM 05 UTL* LM M1 4517.39
M2 4153.92 M1vs M2 36547 1 <0.01 0.17 0.34
M3 4136.46 M2vs M3 1945 1 <0.01 0.21 0.35

GLMM 06 RTN* LM M1 5360.44
M2 5360.14 M1 vs M2 2.30 1 0.13 <0.01 0.10
M3 5356.41 M2 vs M3 5.73 1 0.02 <0.01 0.12

GLMM 07 LTL ™ M1 4350.01
M2 3562.92 M1vs M2 789.08 1 <0.01 0.51 0.54
M3 3506.42 M2vs M3  58.51 1 <0.01 0.55 0.57

GLMM 08 UTL ™ M1 4831.28
M2 3562.53 M1vs M2 1270.75 1 <0.01 0.63 0.65
M3 3506.20 M2 vs M3  58.33 1 <0.01 0.64 0.66

GLMM 09 RTN ™ M1 5063.91
M2 5034.49 M1vs M2 3142 1 <0.01 0.02 0.08
M3 4978.14 M2vs M3  58.35 1 <0.01 0.03 0.09
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GLMM 10 LTL* T™* M1 4971.27

M2 3844.69 M1vs M2 1128.57 <0.01 0.55 0.60

M3 3738.40 M2 vs M3 108.30 <0.01 0.58 0.61
GLMM 11 uTL* T™* M1 4517.39

M2 3844.03 M1vs M2 675.35 <0.01 0.38 0.45

M3 3737.62 M2 vs M3 108.41 <0.01 0.43 0.47
GLMM 12 RTN* T™* M1 5360.44

M2 5316.47 M1vs M2  45.97 <0.01 0.03 0.13

M3 5210.16 M2 vs M3 108.30 <0.01 0.05 0.12
GLMM 13 GR LM M1 3438.61

M2 3439.39 M1 vs M2 1.22 0.27 <0.01 0.01

M3 3428.36 M2vs M3 13.02 <0.01 <0.01 0.01
GLMM 14 GR ™ M1 3438.61

M2 3439.68 M1 vs M2 0.92 0.34 <0.01 0.01

M3 3441.60 M2 vs M3 0.08 0.77 <0.01 0.01
GLMM 15 GR T™* M1 3438.61

M2 3436.80 M1 vs M2 3.81 0.05 <0.01 0.01

M3 3438.74 M2 vs M3 0.06 0.81 <0.01 0.01
GLMM 16 GR LTL M1 3438.61

M2 3418.38 M1vs M2  22.22 <0.01 <0.01 0.01

M3 3412.32 M2 vs M3 8.06 <0.01 0.01 0.02
GLMM 17 GR uTL M1 3438.61

M2 3431.01 M1 vs M2 9.60 <0.01 <0.01 0.01

M3 3429.97 M2 vs M3 3.04 0.08 <0.01 0.02
GLMM 18 GR RTN M1 3438.61

M2 3328.30 M1vs M2 112.30 <0.01 0.01 0.02

M3 3280.41 M2 vs M3 49.89 <0.01 0.01 0.02
GLMM 19 GR LTL* M1 3438.61

M2 3429.16 M1vs M2 1145 <0.01 <0.01 0.01

M3 3431.10 M2 vs M3 0.06 0.81 <0.01 0.01
GLMM 20 GR uTL* M1 3438.61

M2 3440.58 M1 vs M2 0.02 0.88 <0.01 0.01

M3 3438.51 M2 vs M3 4.08 0.04 <0.01 0.01
GLMM 21 GR RTN* M1 3438.61

M2 3421.71 M1vs M2  18.90 <0.01 <0.01 0.01

M3 3360.28 M2vs M3 63.43 <0.01 0.01 0.02
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Supplementary Table 2.3. Summary of the generalised linear mixed models (GLMM) models used to determine the effect of latitude (expressed as absolute

latitudinal midpoint, LM, °) and the effect of temperature (expressed as thermal midpoint, TM, °C) on the thermal niche parameters (i.e. lower thermal limit

(LTL, °C), upper thermal limits (UTL, °C), and realised thermal niche breadth (RTN, °C) derived from long-term annual average and seasonal extreme
(indicated by an asterisk) sea surface temperature (SST) ) (GLMM 01 — 12) and geographic range size (GR, km? in log1o scale) (GLMM 13 — 15) of marine
phytoplankton. GLMMs were also used to test the relationship between thermal niche parameters and geographic range size (GLMM 16 — 21). Random
effects taxonomic class nested in ocean realms was incorporated in all GLMMs that were weighted by the number of unique occurrence locations. (Notes: SE
= standard error; t = t value; SD = standard deviation).

GLMM Dependent hlilpdels with linear term only (M2) Models yvith linear and quadratic terms (M3)
D Variables ixed Random Fixed Random

Coefficients Estimates SE t Variables SD Coefficients Estimates SE t Variables SD

GLMM 01 LTL Intercept 23.61 0.82 28.75 class:region 0.61 Intercept 20.62 0.86 23.93 class:region 0.73
LM -0.23 0.01  -19.03 region 4.58 LM 0.06 0.04 1.49 region 4.28

residual 7.15 LM? <-0.01 <0.01  -7.96 residual 6.91

GLMM 02 UTL Intercept 31.04 0.74 41.85 class:region 0.90 Intercept 28.28 0.81 34.89 class:region  0.87
LM -0.32 0.01 -22.87 region 3.53 LM -0.05 0.04 -1.17 region 2.93

residual 8.67 LM? <-0.01 <0.01 -6.48 residual 8.58

GLMM 03 RTN Intercept 6.52 0.71 9.19 class:region 1.02 Intercept 6.35 0.96 6.64 class:region  1.01
LM -0.06 0.02 -3.38 region 2.39 LM -0.04 0.06 -0.72 region 2.39

residual 11.92 LM? <-0.01 <0.01  -0.26 residual 11.93

GLMM 04 LTL* Intercept 22.36 0.85 26.33 class:region 0.73 Intercept 18.26 0.99 18.44 class:region  0.82
LM -0.30 0.02 -18.83 region 4.11 LM 0.08 0.05 1.61 region 4.18

residual 9.89 LM? -0.01 <0.01 -7.83 residual 9.56

GLMM 05 UTL* Intercept 32.57 0.73 44.69 class:region 0.79 Intercept 30.86 0.78 39.45 class:region 0.78
LM -0.27 0.01 -21.50 region 3.76 LM -0.10 0.04 -2.48 region 3.31

residual 7.48 LM? <-0.01 <0.01 -4.53 residual 7.46

GLMM 06 RTN* Intercept 10.32 1.01 10.23 class:region 1.02 Intercept 12.17 1.27 9.56 class:region  1.05
LM 0.03 0.02 1.51 region 4.35 LM -0.14 0.07 -1.99 region 4.71

residual 13.61 LM? <0.01 <0.01 2.53 residual 13.52

GLMM 07 LTL Intercept -0.17 0.43 -0.40 class:region 0.49 Intercept 3.20 0.60 5.32 class:region  0.49
™ 0.88 0.02 43.75 region 1.44 ™ 0.34 0.07 4.57 region 1.35

residual 5.87 T™? 0.02 <0.01 7.74 residual 5.72

GLMM 08 UTL Intercept 0.18 0.43 0.42 class:region 0.49 Intercept -3.18 0.60 -5.30 class:region  0.49
™ 1.12 0.02  55.61 region 1.44 ™ 1.66 0.07  22.67 region 1.35

residual 5.87 T™? -0.02 <0.01 -7.73 residual 5.72

GLMM 09 RTN Intercept 0.35 0.85 0.41 class:region 0.97 Intercept -6.38 1.20 -5.31 class:region  0.97
™ 0.24 0.04 5.92 region 2.88 ™ 1.33 0.15 9.04 region 2.70

residual 11.74 T™? -0.03 <0.01  -7.73 residual 11.43

GLMM 10 LTL* Intercept -8.71 0.57 -15.27 class:region 0.52 Intercept -2.24 0.75 -2.98 class:region  0.47
T™* 1.17 0.02 47.06 region 2.26 T™* 0.23 0.09 2.62 region 1.69

residual 6.64 TM*2 0.03 <0.01  10.88 residual 6.39

GLMM 11 UTL* Intercept 8.71 0.57 15.28 class:region 0.52 Intercept 2.24 0.75 2.98 class:region  0.47
T™* 0.83 0.02  33.33 region 2.26 T™* 1.77 0.09  20.07 region 1.69

residual 6.64 TM*2 -0.03 <0.01  -10.89 residual 6.38

GLMM 12 RTN* Intercept 17.41 1.14 15.27 class:region 1.04 Intercept 4.48 1.50 2.98 class:region  0.94

232



Supplementary Tables

T™* -0.34 0.05 -6.87 region 4.52 T™* 1.54 0.18 8.72 region 3.38

residual 13.28 TM*2 -0.06 0.01  -10.88 residual 12.77

GLMM 13 GR Intercept 5.21 0.20 26.05 class:region 0.28 Intercept 6.23 0.35 18.01 class:region  0.29
LM 0.01 <0.01 1.09 region 0.39 LM -0.07 0.02 -3.27 region 0.39

residual 5.84 LM? <0.01 <0.01 3.62 residual 5.80

GLMM 14 GR Intercept 5.57 0.19 29.31 class:region 0.29 Intercept 5.50 0.35 15.84 class:region  0.29
™ -0.01 0.01 -0.93 region 0.39 ™ <0.01 0.05 0.03 region 0.39

residual 5.84 TM2 <-0.01 <0.01  -0.24 residual 5.84

GLMM 15 GR Intercept 5.75 0.20 29.24 class:region 0.29 Intercept 5.69 0.38 15.04 class:region  0.29
T™* -0.02 0.01 -