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ABSTRACT 

 
 

Phytoplankton are ecologically significant as primary producers and as 

regulators of the biogeochemical cycle. However, some may form harmful algal blooms 

that are a global problem due to the production of toxins that pose a risk to public 

health, the environment, and our economy. Climate change poses a serious threat to 

phytoplankton communities. It is, therefore, crucial to advance our knowledge on how 

they respond to the changes in temperature that is projected to increase in the next 

decades. The main aim of this thesis is to investigate how temperature limits 

biogeography, growth, toxin production, and competition in marine phytoplankton. To 

achieve this aim, the thesis presents a series of chapters with independent objectives. 

In Chapter 2, I analysed a global dataset of species occurrence data to examine the 

global patterns in the realised thermal niche and geographic range of marine 

phytoplankton. In Chapter 3, I investigated the global patterns of thermal traits, thermal 

sensitivity, and exposure and vulnerability to warming in marine phytoplankton. In 

Chapter 4 and 5, I conducted laboratory experiments to examine the temperature 

dependence of growth and toxin production in marine dinoflagellates. In Chapter 6, I 

also conducted laboratory experiments to test the effect of increased temperature on 

growth and competition in marine phytoplankton using dinoflagellates as test 

organisms. The key results of this thesis are as follows: (1) the current distribution of 

marine phytoplankton is limited by temperature, (2) their thermal traits are contingent on 

their biogeography and phylogeny, (3) their growth and toxin production is affected by 

temperature, and (4) interspecific competition in dinoflagellates is altered by increasing 

temperature. The findings of this thesis advance our current predictive understanding of 

the ecological responses of marine phytoplankton to climate change. 
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RCP 2.6 climate scenarios (V2.6, V4.5, V6.0, and V8.5, 
respectively; C – F, respectively) in non-toxic (blue) and 
potentially toxic (red) strains from the combined present and 
published experimental data. Outliers are indicated as grey 
crosses. Traits in strains (S2 – S3 refers to non-toxic strains of 
P. micans, and A. tamutum, respectively; whilst S5 – S6 refers 
to potentially toxic strains of P. lima, and A. minutum, 
respectively) used in this present study are labelled and 
indicated as black circles. Data for Prorocentrum sp. (S1) and 
P. minimum (S4) were not available. 
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Figure 5.1   Cell density dependence of toxin concentration. The 
concentration of okadaic acid (OA) and dinophysistoxins 
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(DTX1  and DTX2) in Prorocentrum lima CCAP 1136/11 strain 
were fitted  against cell density in a linear regression (A – C, 
respecitvely). Blue and red circles represent the toxin 
concentration estimated in the tube-based experiments without 
and with stepwise acclimatisation, respectively. The solid lines 
represent the linear fit with 95% confidence interval in grey 
shading. 

 
Figure 5.2   Temperature dependence of the concentration and cellular 

content of toxins. The mean concentration of okadaic acid 
(OA) and dinophysistoxins (DTX1  and DTX2) in Prorocentrum 
lima CCAP 1136/11 strain across the temperature gradient in 
the tube-based experiments without and with stepwise 
acclimatisation (colored blue and red, respectively) are 
presented (A – C) as circles with error bars that represents the 
standard error of the mean. The mean cellular content of OA, 
DTX1 and DTX2 (D – F) and their relative proportion (G – I) 
across the assay temperatures in the culture experiments are 
also presented. 
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Figure 5.3   Temperature dependence of toxin production and growth rate 
and their relationship. The mean rates of production (solid 
circles connected with solid lines) of okadaic acid (OA) and 
dinophysistoxins (DTX1  and DTX2) and the mean growth rate 
(open circles connected with dashed lines) in Prorocentrum 
lima CCAP 1136/11 strain across the temperature gradient in 
the first tube-based experiments are presented (A – C) with 
error bars representing the standard error of the mean. Toxin 
production rates were fitted against the log of growth rates in a 
linear regression (D – F). The solid lines represent the linear fit 
with 95% confidence interval in grey shading. 
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Figure 5.4   Inter-strain variability of cellular toxin content in Prorocentrum 
lima observed in this present study and in literature. The 
circles indicate the reported estimates or the observed mean 
estimates of cell toxin content with error bars representing the 
standard error. The red solid line indicates the 
reported/observed range. Enclosed in the bracket is the 
isolation location followed the assayed temperature in °C. This 
data is also summarised in Supplementary Table 5.1. 
[Abbreviations: (na) not available/acquired; (a) within 1 – 15 
days incubation; (b) after 34 days of incubation; (c) cultured 
cells; (d) natural cells] 
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Figure 6.1  Schematic representation of the experimental designs to 
examine effect of temperature on the competition in marine 
phytoplankton. 
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Figure 6.2   Workflow of high throughput microscopy and image processing 
and analysis. The samples in the 96-well microplate were 
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examined under a Leica DMI6000B inverted light microscope 
at 100x magnification (A). Each sample in a well was scanned 
(the red lines indicate the scanning path) on a 3x5 rectangular 
pattern producing 15 image tiles per sample (B). Each 
microscope image (C1) was processed (C2 – C7) by executing 
an ImageJ macro in FIJI to produce a spreadsheet of 
parameters (C8) and an image overlaid with outlines (C9). 
Input and output files for each samples for every sampling 
date were organised in a directory with a structure shown in D.  

 
Figure 6.3   A deep neural network architecture showing an input layer with 

13 variables, three hidden layers with 16, 8, and 4 nodes, and 
an output layer with 2 nodes used to classify species in 
pairwise mixed cultures.  
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Figure 6.4   Diagnostic plots used to assess the performance of the deep 
neural network models used in this study. The line plots (A) 
show the cross-entropy loss and classification accuracy over 
epochs for the training (blue) and validation (red) datasets. 
The confusion matrix heat map (B) shows the counts of correct 
and incorrect classification of species in a pairwise mixed-
species culture.  The loss and accuracy of models used to 
classify species in pairwise mixed-species cultures at three 
different temperature treatments are shown in Supplementary 
Figure 5.1 – 5.3. The confusion matrices of these models are 
shown in Supplementary Figure 5.4 – 5.6.  
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Figure 6.5   Growth rates of marine dinoflagellates in monocultures and co-
cultures across temperature treatments.  The points represent 
the growth rates of focal species in monocultures (black) and 
co-cultures (coloured), whereas the lines represent the trend 
of growth in monocultures (broken) and co-cultures (solid) over 
temperature.  
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Figure 6.6   Relative growth rates of marine dinoflagellates across 
temperature. The points represent the growth rates of focal 
species in monocultures (black) and co-cultures (coloured), 
whereas the lines represent the trend of growth in 
monocultures (broken) and co-cultures (solid) over 
temperature. Points above the horizontal line indicate higher 
growth in co-culture than in monoculture.  
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Figure 6.7   Linear relationship between growth and competition in marine 
dinoflagellate in three temperature treatments. Relationship 
between growth in monocultures and predicted competition 
coefficient (PCC) and the relationship between growth in co-
cultures and realised competition coefficient (RCC)  are 
presented (A and B, respectively). Also, the relationship 
between PCC and RCC is also presented (C). The colour-
coded points represent the estimates obtained from focal 
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species in the competition. The solid lines represent the fits 
with the linear model displayed at the bottom. The points 
above the horizontal broken lines or at the right side of the 
vertical broken lines indicate that focal species outcompetes 
competitor, whilst points below or at the left side of the broken 
lines indicates that competing species outcompetes focal 
species.   

Figure 6.8   Predicted community structure of marine dinoflagellates in 
three temperature treatments. Filled bars represent the relative 
frequency of non-toxic and potentially toxic dinoflagellate 
species across, which were based from the predicted and 
realised competition coefficients (PCC and RCC, respectively).  
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Figure 7.1   Predicted shifts in the latitudinal limits and range of marine 
phytoplankton. These are projected using correlative and 
mechanistic ecological niche models (ENM) based on the 
present and future climate scenarios (RCP 2.6 and RCP 8.5). 
The points indicate the projected estimates in non-toxic and 
potentially toxic species (coloured blue and red, respectively). 
The points above the 1:1 dashed line indicate a poleward shift 
in the lower and upper limits of latitudinal range (A and B, 
respectively) and expansion of latitudinal range (C). On the 
other hand, the points below the 1:1 dashed line indicate a 
shift towards the equator in the limits of species range (A and 
B) and a range contraction (C). As shown, most of the species 
are expected to experience no change or poleward shift in the 
lowest and highest latitude at which they can exist. It is also 
expected that the species range may expand, contract, or 
remain unchanged in the future climate scenarios. The shifts in 
the latitudinal limits and range may be dependent on the 
taxonomic identity and toxicity of phytoplankton species. The 
results are based on the preliminary analysis, which will not be 
discussed in detail since it is not within the scope of this 
chapter. This figure is for demonstration purpose only to show 
how correlative and mechanistic ENM projections are used to 
examine ecological response of marine phytoplankton to 
climate change. 
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Figure 7.2   Predicted changes in the habitat suitability for marine 
phytoplankton. The number of suitable and unsuitable habitats 
are projected using correlative and mechanistic ecological 
niche models (ENM) based on the present and future climate 
scenarios (RCP 2.6 and RCP 8.5). The points indicate the 
projected estimates in non-toxic and potentially toxic species 
(coloured blue and red, respectively). The points above the 1:1 
dashed line indicate an increase in number of suitable and 
unsuitable habitats, and points below this line indicate the 
decline in the estimates (A and B). The latitudinal variation of 
the relative change in the predicted number of suitable 
habitats is also presented (C). It is predicted that the 
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percentage of new and loss habitats in the future may vary 
across phytoplankton species and between non-toxic and toxic 
species. The results are based on the preliminary analysis, 
which will not be discussed in details since it is not within the 
scope of this chapter. This figure is for demonstration purpose 
only to show how correlative and mechanistic ENM projections 
are used to examine ecological response of marine 
phytoplankton to climate change. 

 
Figure 7.3   Predicted changes in the diversity of marine phytoplankton. 

The species richness (SR) is projected using correlative and 
mechanistic ecological niche models (ENM) based on the 
present and future climate scenarios (RCP 2.6 and RCP 8.5). 
The colour gradient represents the change in species richness 
per decade (DSR) (A to D). The latitudinal variation of DSR is 
also presented (E). It is predicted that climate change will 
decrease of diversity in the lower latitudes and increase 
diversity in higher latitudes. The results are based on the 
preliminary analysis, which will not be discussed in details 
since it is not within the scope of this chapter. This figure is for 
demonstration purpose only to show how correlative and 
mechanistic ENM projections are used to examine ecological 
response of marine phytoplankton to climate change. 
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Figure 7.4   Predicted changes in the community composition of marine 
phytoplankton. The Sorensen’s index (SI) is projected using 
correlative and mechanistic ecological niche models (ENM) 
based on the present and future climate scenarios (RCP 2.6 
and RCP 8.5). The colour gradient represents the projected 
estimates of SI (A to D). The latitudinal variation of SI  is also 
presented (E). It is predicted that more changes in 
phytoplankton community composition is expected in tropics 
as compared to the temperate regions in response to climate 
change. The results are based on the preliminary analysis, 
which will not be discussed in details since it is not within the 
scope of this chapter. This figure is for demonstration purpose 
only to show how correlative and mechanistic ENM projections 
are used to examine ecological response of marine 
phytoplankton to climate change. 
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Figure 7.5   Predicted changes in the relative proportion of potentially toxic 
and non-toxic phytoplankton (D PT - NT). The relative 
proportion of the number of non-toxic and potentially toxic 
species are projected using correlative and mechanistic 
ecological niche models (ENM) based on the present and 
future climate scenarios (RCP 2.6 and RCP 8.5). The colour 
gradient represents the projected estimates of D PT - NT (A to 
D). The latitudinal variation of D PT - NT is also presented (E). 
As per mechanistic ENM, it is expected that the relative 
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composition of toxic species decreased in lower latitude. 
However, this projection is different from the correlative ENM 
that show a complex latitudinal pattern in D PT – NT. The 
results are based on the preliminary analysis, which will not be 
discussed in details since it is not within the scope of this 
chapter. This figure is for demonstration purpose only to show 
how correlative and mechanistic ENM projections are used to 
examine ecological response of marine phytoplankton to 
climate change.  
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GENERAL INTRODUCTION 

 

1.1 PHYTOPLANKTON AND THEIR IMPACTS 

Phytoplankton are unicellular photosynthetic microorganisms that are drifting 

with the current in the euphotic layer of the oceans (Falkowski and Raven, 2007). They 

are widespread and diverse group of organisms, which are distributed across the major 

taxonomic groups including the prokaryotes (i.e. cyanobacteria) and the eukaryotes 

(e.g. diatoms, dinoflagellates, and chlorophytes) that acquired photosynthesis via 

endosymbiosis (Simon et al., 2009). These autotrophic organisms are ecologically 

important as primary producers, biological carbon pump regulators, and biogeochemical 

cycle mediators  (Barsanti and Gualtieri, 2005; Behrenfeld et al., 2006; Falkowski, 2012; 

Falkowski and Oliver, 2007).  

As the base of aquatic food web, they make their own food by harnessing 

sunlight to combine carbon dioxide and water, and produce excess carbohydrates and 

oxygen that are made available to organisms at higher trophic levels, fueling the entire 

(Falkowski and Raven, 2007). They account for 1% of the photosynthetic biomass at a 

global scale and contribute almost half of our planet’s annual net primary production 

(Falkowski, 2012). As regulator in the biological carbon pump, they transfer tons of 

carbon dioxide from the atmosphere to the water bodies each year. They fix inorganic 

carbon (Falkowski and Oliver, 2007) into more usable organic material, transfer it to 

other organisms when they are consumed, and deposit it into the sea floor when they 

die or decompose (Behrenfeld et al., 2006). As mediator of the biogeochemical 

cycles, they also provide a link between metabolic processes and the flux of nutrients 

other than carbon (C), such as nitrogen (N), phosphorus (P), silicon (Si), sulfur (S), iron 
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(Fe), and other trace elements (Barsanti and Gualtieri, 2005). Key functional 

phytoplankton groups have their role in various marine biogeochemical cycles. Silicifiers 

(e.g. diatoms and silicoflagellates) play a major role of the biogeochemical cycle of C, 

Si, N, and Fe in open ocean, and some are chain forming species that contribute to the 

downward export of Si especially after bloom events (Tréguer and De La Rocha, 2013). 

Calcifiers (e.g. coccolithopores)  control the air-sea carbon dioxide equilibrium, 

alkalinity, and surface carbonate chemistry and contribute for more than the marine 

carbonate export (Schiebel, 2002). Nitrogen fixers (e,g. Trichodesmium spp. and 

diazotrophs) regulate the balance of total oceanic nitrogen and drive new and export 

production by providing a new bioavailable nitrogen source to the ocean (Montoya et 

al., 2004). Dimethyl sulfate (DMS) producers (e.g. diatoms, dinoflagellates, and 

Phaeocystis spp.) influence the atmospheric sulfur cycle by converting dimethyl-

sulfoniopropionate (DMSP) to DMS (Simó, 2001). Picoautotrophs (e.g. Synechococcus  

spp. and Prochlorococcus spp.) play a significant role in microbial food web, ocean 

nitrogen cycles, and global carbon biogeochemistry (Boyd et al., 2010). 

Regardless of their ecological importance, some phytoplankton species, under 

certain circumstances, may form harmful algal bloom (HAB) that pose human health 

risks, environmental degradation, and economic losses (Berdalet et al., 2016). HAB 

species (HABs) may harm marine organisms by production of excessive biomass. The 

bacterial degradation of high biomass during the decline phase of the bloom can 

diminish the concentration of dissolved oxygen in coastal waters. This results to hypoxic 

condition that may cause massive mortalities of fish and invertebrates (Hallegraeff et 

al., 2004). Furthermore, high algal biomass in coastal waters may also reduce light 

penetration and produce excessive ammonia. This condition degrades the coastal water 
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with scums and bad odours, making the area unsuitable for recreation (Berdalet et al., 

2016).  

Other HABs produce compounds (e.g. reactive oxygen species (ROS), 

polyunsaturated fatty acids (PUFAs, mucilage) that are noxious to fish and invertebrates 

(Hallegraeff et al., 2004). Fish kills by these harmful species has been suggested to be 

caused by impairment in fish respiratory system by: (1) mechanical damage to the gills 

due to serrated algal spines, (2) clogging of gills by the excess mucus produced at the 

site of penetration by the spines, and (3) hemorrhage of gill capillaries due to hemolytic 

substance produce by the algae (Kent et al., 1995; Yang and Albright, 1992). Some fish 

kill is associated with algal blooms that produce extracellular toxins (Bourdelais et al., 

2002).  

Some HABs present risk to human health by production of potent biotoxins, 

which have been linked to food-borne poisonings. They can be filtered from the water 

by bivalve mollusks, which bio-concentrate the algal toxins.  These toxic HABs, 

especially dinoflagellate species, can cause harm at low abundances by contaminating 

shellfish with toxins that are harmful or even lethal to humans (Hallegraeff et al., 2004). 

Economic impacts of toxic HABs include commercial fishery losses due to closure of 

aquaculture, fish mortalities, and shellfish poisoning scare, and the associated high cost 

of monitoring and management of toxic harmful blooms (Anderson et al., 2000).  

The well-documented impacts of phytoplankton to the marine environment, to 

humans and to other organisms have generated ongoing interests in the physiology and 

ecology of phytoplankton, but more especially their response to changes in temperature 

(e.g. Litchman et al., 2012; Righetti et al., 2019; Thomas et al., 2012), and particularly in 

the context of contemporary climate change (IPCC, 2013).  
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1.2 PHYTOPLANKTON IN THE WARMING OCEAN 

Excessive emissions of CO2 in the atmosphere from anthropogenic activities 

lead to ocean warming (IPCC, 2013). The ocean absorbs more than 93% of the 

enhanced heat since 1970s which warms the ocean at a rate of ~0.13 °C per decade 

(Rhein et al., 2013). Ocean warming is not just an increase in the sea surface 

temperature (SST); in fact, two thirds of the excess heat has been absorbed by the 

upper ocean whilst one third is taken up into deep ocean (Laffoley and Baxter, 2016). 

Ocean heat uptake is not uniform spatially with warming greater in mid-latitude regions 

and greatest in the southern hemisphere (Laffoley and Baxter, 2016; Rhein et al., 

2013). These changes in temperature in ocean is likely to have a profound effect on 

phytoplankton physiology and ecology, and consequently altering marine ecosystem 

structure and function (Regaudie-De-Gioux and Duarte, 2012; Thomas et al., 2012; 

Toseland et al., 2013).  

Phenology is regarded as the simplest process to track changes in response to 

climate change (Rosenzweig et al., 2007). It refers to a naturally recurring phenomenon 

in organisms governed by seasonal and interannual variations in climate. The shifts in 

phenology are widely recorded impacts of global warming (Root et al., 2003). It is 

expected that the increasing temperature allows organisms to initiate activity earlier in 

spring and maintain the activity later in fall (Angilletta, 2009). A recent study that 

conducted a meta-analysis of recorded impacts of climate change on marine organisms 

suggests that phytoplankton phenology have shifted earlier in the year (Poloczanska et 

al., 2016). Several phytoplankton species have advanced their timing of the spring 

bloom, which may be crucial to the subsequent productivity of the marine ecosystems 

(Edwards and Richardson, 2004). The annual phytoplankton spring bloom governs the 

seasonal cycle of primary production in many regions (Gran and Braarud, 1935). 
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Furthermore, the timing of oceanic CO2 uptake is considered to be under the influence 

of phytoplankon phenology (Bennington et al., 2009; Palevsky and Quay, 2017), and 

the carbon export and storage efficiency is controlled by the seasonal variability in 

primary production (Lutz et al., 2007). Hence, the climate-induced changes in the timing 

of the phytoplankton bloom are likely to impact the primary production and carbon 

cycling in the future ocean.  

Aside from the changes in the timing of biological events,  activities of 

organisms are also expected to shift in space due to the warming climate. In recent 

decades, many plant and animal species have shifted their geographical ranges in 

response to climate change (Parmesan et al., 2003).  Biogeographical distribution and 

community structure of phytoplankton are also expected to shift in the warming ocean 

due to alteration in their thermal tolerance. Recent studies have demonstrated the effect 

of elevated temperature on metabolic and growth rates in phytoplankton (Boyd et al., 

2013; de Boer et al., 2004; Krol et al., 1997; Levasseur et al., 1990; Maxwell et al., 

1994; Mortain-Bertrand et al., 1988; Regaudie-De-Gioux and Duarte, 2012; Thomas et 

al., 2017; Toseland et al., 2013) and on phytoplankton biogeographical repartition 

(Chen, 2015; Righetti et al., 2019; Thomas et al., 2016). Increasing SST enhances 

stratification that variably affects nutrient and light availability for phytoplankton growth 

in the global ocean (Behrenfeld et al., 2006).  Growth of the phytoplankton in the tropics 

and mid-latitudes will be limited by nutrients because the increased stratification 

reduces upwelling of nutrient-rich water to the surface. On the other hand, 

phytoplankton growth will be light-limited at higher latitudes, and the increased 

stratification retains phytoplankton within the euphotic zone. Certain phytoplankton 

species will likely be favoured if the increased thermal stratification will deplete 

resources for growth within the euphotic zone. For instance, flagellated phytoplankton, 
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such as most harmful dinoflagellates, are capable to vertically migrate to nutrient replete 

regions, and therefore are expected to dominate over non-motile species (Falkowski et 

al., 2004; Tozzi et al., 2004). Increasing SST will likely trigger the poleward shifts in 

thermal niches of phytoplankton species (Barton et al., 2016). It may also trigger to the 

decline of phytoplankton diversity in the tropics (Thomas et al., 2012). Warming may 

also result to the occupancy of non-indigenous and invasive species in new thermally 

defined habitats (Sorte et al., 2010). Furthermore, it may cause the shift towards a 

smaller size community structure (Acevedo-Trejos et al., 2015). 

In the context of harmful bloom-forming phytoplankton, some specie produce 

toxin in response to stressful thermal conditions when growth is strongly inhibited 

(Aquino-Cruz, 2012). Long-term starvation also allows toxic phytoplankton to 

accumulate toxins (Lee et al., 2016), which can be induced when increased 

temperature limits their capacity to uptake nutrients (Sterner and Grover, 1998). 

Increased toxicity to elevated temperature could be attributed to the reduction of toxin-

consuming bacterial symbionts (Ashton et al., 2003). Furthermore, warming may also 

shift the abundance, distribution, and timing of toxic bloom forming phytoplankton. 

Abundance of Gambierdiscus toxicus, a tropical HAB, increases with elevated SST 

during El Niño events (Hales et al., 1999), and its range may expand to higher latitudes 

as the ocean gets warmer (Tester, 1994). Moreover, toxic bloom of Alexandrium 

catenella occurs usually at SST greater than 13°C in late summer and early fall in Puget 

Sound (Washington) (Gessner and Middaugh, 1995), and the annual occurrence of this 

bloom in this region may expand as a result of warming (Moore et al., 2008).  Ocean 

warming may also indirectly influence phytoplankton blooms. It can cause coral-

macroalgal phase shifts (Hughes et al., 2007),  that may increase habitat for toxic HAB 

epiphytes like G. toxicus (Moore et al., 2008).   Climate change may provide favourable 
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conditions for toxic algae to occur  (Hallegraeff, 2010). It is likely that toxic blooms and 

their impacts may be exacerbated in the future where their duration, intensity, and 

frequency may increase in response to changes in the climate (Moore et al., 2008; 

Tatters et al., 2013). 

With these known effects of ocean warming due to climate change to 

phytoplankton, it is crucial to advance our understanding on the physiological and 

ecological adaptations of marine phytoplankton to temperature. 

 

1.3  DIRECT EFFECTS OF TEMPERATURE  

 

Growth of phytoplankton depends on the abiotic factors such as light, nutrients, 

temperature, as well as biotic factors such as competition and predation. Among these 

variables, temperature is one of the most fundamental factors that determines the niche 

of phytoplankton (Boyd et al., 2013; de Boer et al., 2004). The direct effect of 

temperature on metabolic and growth rates in phytoplankton are well recognised in 

literature (Baker et al., 2016; Boyd et al., 2013; de Boer et al., 2004; Geider et al., 1997; 

Krol et al., 1997; Levasseur et al., 1990; Maxwell et al., 1994; Mortain-Bertrand et al., 

1988; Regaudie-De-Gioux and Duarte, 2012; Thomas et al., 2017; Toseland et al., 

2013).  

Growth of phytoplankton is contingent on the two temperature-dependent 

metabolic fluxes: photosynthesis and respiration (Raven and Geider, 1988). Typically, 

photosynthesis rises with elevated temperature until it reaches its optimum, and 

decreases with further increase in temperature; whilst respiration, on the other hand, 

increases with increasing temperature. The influence of temperature on metabolic 
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processes in phytoplankton is mainly driven by the kinetics of enzymes.  One important 

temperature-sensitive enzyme is ribulose-1,5-bisphosphate (Rubisco) with carboxylase 

and oxygenase activity that catalyzes two competing biochemical reactions  - 

photosynthesis and photorespiration, respectively  (Hikosaka et al., 2005).  

Modification of Rubisco activity is one of the acclimation strategies of 

phytoplankton in response to changes in temperature. Some phytoplankton species that 

are acclimated to low temperature reduce Rubisco carboxylase activity to decrease the 

energy transfer efficiency between the antennae and photosystem II (PS II) reaction 

centers and consequently prevent photoinhibition (Krol et al., 1997; Levasseur et al., 

1990; Maxwell et al., 1994), whilst others enhance this enzymatic activity to ensure the 

utilization of excess energy and increase photosynthetic rates (Mortain-Bertrand et al., 

1988). Phytoplankton that grow beyond the optimal growth temperature inactivates or 

denatures their photosynthetic enzymes that unbalances ATP consumption and 

production, and eventually affects photosynthesis, respiration and growth (Raven and 

Geider, 1988). Furthermore, adaptation to varying temperature for growth in 

phytoplankton involve changes in the quantity of enzymes, light-harvesting pigments 

and thylakoid membrane integrity (Raven and Geider, 1988).  

Increasing temperature enhances growth until it reaches the optimal 

temperature, whilst elevated temperature beyond the optimal is lethal and declines 

growth. These thermal responses characterise the typical asymmetry of growth-

temperature curve (Figure 1.1), with asymptotic increase in one side, and an abrupt 

decline in another side (Ras et al., 2013). The curves can be used to estimate 

maximum growth rate (rmax) and the thermal traits such as the  (i) the cardinal 

temperatures that corresponds to the boundaries of thermal tolerance (i.e. thermal 

optima (Topt), critical thermal minima (CTmin), and critical thermal maximum (CTmax), and 
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(ii) the fundamental thermal niche breadth (FTN) that correspond to the thermal range 

on which the species can physiologically tolerate. The shape of the curves reflects the 

effect of temperature on enzymatic rate process and on enzyme activation and stability 

at high temperatures (Knies and Kingsolver, 2010). Growth rates increase gradually 

with increasing temperature below the thermal optimum (Topt), which is attributed to the 

exponential increase of the reaction rates with increasing temperature following the 

Arrhenius kinetics (Arrhenius, 1915). On the other hand, growth rate decreases with 

further increase in temperature above Topt, which is attributed to the denaturation of 

essential proteins (Hochachka and Somero, 2002).  

The physiological range of temperature at which phytoplankton can survive 

defines the thermal “window” or thermal tolerance limit of species (Boyd et al., 2013; 

Chen, 2015). This temperature range is species-specific that reflects the physiological 

plasticity of species in response to changes in temperature (de Boer et al., 2004). 

Species that are heat stress sensitive have narrow thermal tolerance limit, whilst those 

that can survive through acclimation or adaptation have wider range (Chen, 2015).  
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Figure 1.1. A typical thermal growth curve which can be used to estimate the maximum growth rate 
(rmax), the cardinal temperatures i.e. thermal optima (Topt), critical thermal minima (CTmin), and critical 
thermal maximum (CTmax), and the fundamental thermal niche breadth (FTN). This figure was drawn 
using the temperature growth data of Emiliana huxleyi available in the R package temperatureresponse 
(Low-Décarie et al. 2017). 

 

The fundamental thermal niche of a species is defined by species’ physiological 

tolerance range to temperature in the absence of biotic interactions (Hutchinson, 1957).  

However, the presence of biotic interactions (Jankowski et al., 2013), species dispersal 

limitation (Sánchez-Fernández et al., 2016), and limited climate availability (Soberón 

and Nakamura, 2009) reduce the fundamental niche to realised niche. Most 

phytoplankton studies are focused on the single-species population responses that 

reflect the direct physiological response of organism to changing temperature (e.g. 

Boyd et al., 2013; Coello-Camba and Agustí, 2017; Huertas et al., 2011),  but often 

disregarded the contribution of biotic interaction that may either improve or aggravate a 

species’ response to increased temperature. The effect of temperature on interspecific 

interactions such as competition is recognised in prior works (e.g. Dunson and Travis, 

1991; Park, 1954; Tilman, 1981) and in recent studies (e.g Amarasekare, 2008, 2007; 

Gilman et al., 2010; Kordas et al., 2011; Tylianakis et al., 2008; Woodward et al., 2010). 

Temperature influences species interaction, and changes in species interaction may 
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influence the impacts of climate change on populations (Bellard et al., 2012; Cahill et 

al., 2013; Tylianakis et al., 2008). Hence, understanding how temperature influences 

species interaction is critical for predicting how climate change will alter the structure 

and function of phytoplankton communities in the future oceans. 

Metabolic theory of ecology (MTE), also known as the metabolic scaling theory 

(MST), attempts to provide mechanistic links between the different levels of 

organisation in biology and ecology, e.g. from organelles to ecosystems (Brown et al., 

2004). Generally, MTE utilises the fundamental roles of size, temperature, and 

metabolism of organisms in determining various patterns within and across individuals, 

species, population, community (Brown et al., 2004). Based on this theory, the effect of 

temperature on competitive interaction is mainly through its influence on the metabolic 

traits of the organisms (Brown et al., 2004; Van Der Meer, 2006).  As a fundamental 

dimension of the MTE, temperature plays a key role in shaping the ecosystem structure 

and function (Brown et al., 2004; Gillooly, 2001).  

However, the complexity of the effect of temperature makes it challenging to 

develop a mechanistic model to predict responses to climate change. This is because 

the processes at different biological and ecological levels (i.e. from organism to 

ecosystem) do not just depend on the direct effects of temperature on physiology, but 

also on how these direct effects occur in the context of other processes. For example, 

the species distribution along the environmental temperature reflects interactions of 

species, not just the direct effects of temperature (e.g. Gross and Price, 2000; Price and 

Kirkpatrick, 2009). The effect of temperature on interspecific interactions such as 

competition is recognised in prior works (e.g. Dunson and Travis, 1991; Park, 1954; 

Tilman, 1981) and in recent studies (e.g Amarasekare, 2008, 2007; Gilman et al., 2010; 

Kordas et al., 2011; Tylianakis et al., 2008; Woodward et al., 2010). Despite these 
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efforts, more studies are needed to elucidate the physiological mechanism of 

interspecific competition in response to temperature. 

The thermal performance curves (TPC) between two species can be compared 

to predict the outcome of competition. In a given temperature, patterns of species 

replacement with the dominance of species with the higher growth rate can be observed 

along a thermal gradient, which can occur in several ways. One way is when both 

species are generalists with similar TPC but have different thermal optimum (Topt). 

Another way is when one species is a specialist and the other is a generalist, but both 

have the same Topt. In both ways, dominance of a species is dependent on local 

temperature. Species replacement patterns can also occur when the competing species 

have unequal strengths of density dependence that differ with temperature. In this 

scenario, a species can be outcompeted by competitor due to its sensitivity to the per 

capita effects of the competing species in a given temperature, and not because it has 

low carrying capacity (Reuman et al., 2014).  

In the context of toxic species, temperature is one of the most fundamental 

abiotic factors that may have a direct effect, or an indirect effect if growth and toxin 

production is uncoupled (Cembella, 1998). Temperature-dependent effect of toxin 

production is associated with species-specific growth rate, and hence production of 

toxins is dependent on the thermal tolerance of the species. Hence, the effect of 

temperature on toxin production has implication on how toxic species may influence the 

structure and function of marine ecosystems in the future climate scenarios. 

Supplementary Information 1.1 presents a review that summarises our current 

knowledge on the evolution and ecology of toxin production by phytoplankton, and 

provided ecophysiological insights into the expected change in toxic bloom formation 

with climate change, which brings issues to the debate whether toxin production may 
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provide a competitive advantage among phytoplankton in the future climate change 

scenarios.  

Concisely, the critical roles of temperature on the physiology, growth, and 

species interaction of phytoplankton are recognised in numerous studies (e.g. Bestion 

et al., 2018; Brun et al., 2015; Coello-Camba et al., 2015; Grimaud et al., 2017; Raven 

and Geider, 1988). Despite these efforts, our knowledge is still limited, particularly on 

how toxic phytoplankton respond to changes in temperature. Elucidating the thermal 

response of non-toxic and toxic marine phytoplankton will advance our ability to predict 

the biogeographic distribution of harmful blooms in the future climate scenarios.  

 

1.4 PREDICTING BIOGEOGRAPHY IN THE FUTURE CLIMATE 

In recent years, there have been an impressive growth in use of modeling 

approaches to predict the biological impacts of climate change (for reviews see Araújo 

and Guisan, 2006; Austin, 2006, 2002; Guisan and Thuiller, 2005; Guisan and 

Zimmermann, 2000; Jiménez-Valverde et al., 2008; Morin and Lechowicz, 2008; 

Peterson, 2006; Rushton et al., 2004). These modeling approaches are empirical or 

mathematical approximations to ecological niche of a species (Márcia Barbosa et al., 

2012), and are often termed as ecological niche models (ENM), species distribution 

models (SDM), habitat distribution models (HDM), or climate envelope models (CEM). 

These models use the concept of ecological niche to predict the distribution of species 

in geographic space.  

There are several definitions of ecological niche that have been proposed over 

the years. The earliest definition is by Grinnell (1917) who proposed that a niche is a 

portion of the habitat that contains the environmental conditions necessary for the 
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survival and reproduction of individuals of a species. Conversely, Elton (1927) defined a 

niche with the emphasis of the functional role of species in community, particularly its 

position in food webs. Grinell’s niche concept is based on the broad-scale variables 

such as the climate that are not affected by the density of species, whereas Elton’s 

niche concept is based on fine-scale variables such as the nutrients that a species can 

consume or modify (Soberón, 2007). Hence, these two niche concepts associated the 

term niche with the environmental space for species to occupy. Contrary to this, 

Hutchinson (1957) defined the niche as an innate property of a species not of the 

environment. The Huchinson’s concept of fundamental and realised niches is widely 

used in the modeling to predict the geographic distributions in the changing climate. The 

fundamental niche represents the abiotic factors (i.e. one dimension for each variable) 

that regulate the success of a species (Wiens and Graham, 2005).  

In practice, a limited number of factors is used to define the niches, and among 

the abiotic factors, temperature have played a critical role in characterising the 

fundamental niches of species (Lima et al., 2007; Thomas et al., 2012; Walther et al., 

2002). The fundamental niche of a species is reduced into realised niche when a 

species does not occupy the entirety of the fundamental niche due to niche exclusion by 

competition (Hutchinson, 1957). The concept of realised niche is replaced by Jackson 

and Overpeck (2000) who introduced potential niche, which is the intersection between 

available environmental space and the fundamental niche space.  Some part of the 

fundamental niche space may lie outside the environmental space at a given time. 

Hence, the realised niche is a subset of the potential niche. Three different niches, i.e. 

fundamental niche, potential niche, and realised niche, have been adapted in several 

studies (e.g. Colwell and Rangel, 2009; Soberón and Nakamura, 2009).  
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Another theory is the occupied niche concept that postulates that the species 

distribution are constrained by geographical and historical factors, as wells as biotic 

interactions, such as competition, predation, symbiosis and parasitism (Pearson, 2007). 

Unlike the realised niche as defined by Hutchinson (1957) was only limited by species 

competition, not by other factors such as dispersal limitations. Therefore, it is expected 

that the occupied niche is smaller than the realised niche. Another important concepts 

to consider are the source-sink theory and the dispersal limitation. In a source-sink 

theory, some populations may occupy unsuitable habitats (sinks) because of the 

immigration from healthier nearby populations (sources), and individuals in the sinks 

may die by unfavorable environmental conditions and are replaced by new immigrants 

(Pulliam, 2000). Here, the realised niche is larger than the fundamental niche when 

species occupies habitats that are inadequate and not contained in the fundamental 

niche (Pulliam, 2000).  On the other hand, a species may not occupy suitable habitats 

due to historical reason and dispersal limitations (Holt, 2003). 

The effect of climate change on species can be examined by modeling the 

ecological niche and then projecting the model into the future to determine any changes 

on the location of the niche. Mechanistic and correlative ENM have been used to model 

the ecological niche (Pearson and Dawson, 2003).  

Mechanistic ENM is based on mathematical description that relate the 

environmental tolerance of a species to its population dynamics. These models are 

calculated with physiological data, and are used to establish a causal relationship 

among the species distribution and the variables, independently of the species records 

(Kearney, 2006; Kearney and Porter, 2009, 2004). Hence, the fundamental niche can 

be derived from mechanistic models. Mechanistic models provide an explicit approach 

to predict geographic distribution of species with assumptions that can be modified to 
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integrate further biological detail, such as biotic interactions, dispersal limitations, and 

evolutionary adaptation. However, extensive knowledge of the biology of the species 

(e.g. the behavior, physiology, and life history) is required to implement these models 

(Angilletta, 2009). On the other hand, correlative ENM links present geographic 

distribution of a species to its local environmental conditions to determine its niche and 

can be used to predict a biogeographic shift during climate change (Elith et al., 2006; 

Hijmans and Graham, 2006).  

Correlative ENM provide convenient approach to predict global biogeography 

since these models only need environmental data that are related to the occurrence 

locations of species (Graham et al., 2004; Guisan and Thuiller, 2005), and to a certain 

extent, these models can also deal with geographic variation (Murphy and Lovett-Doust, 

2007) and species interactions such as competition and predation (Araújo and Luoto, 

2007; Sutherst et al., 2007) (Araujo and Luoto, 2007; Sutherst et al. 2007). However, 

dispersal and evolutionary responses are not accounted in the correlative models 

(Pearson and Dawson, 2003). Correlative ENM are calculated with species distribution 

records, and depending on the type of species’ records, each model is a different 

representation of the realised niche. Correlative models using pseudo-absences or 

absences and presence records forecast the probability of finding the species in a 

particular place, whereas correlative models using only presence records forecast the 

suitability of a particular habitat for the species . 

Ecological niche modeling has been used in recent phytoplankton studies. 

Thomas et al. (2012) used a mechanistic ENM to investigate how warming leads to 

poleward shifts in species’ thermal niches and cause the decline of phytoplankton 

diversity in the absence of an evolutionary response. Also, Irwin et al. (2012) compiled 

occurrence data for 119 phytoplankton species obtained from plankton recorder with 
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climatological environmental variables in the North Atlantic to obtain ecological 

response functions of each species using correlative ENM. Brun et al. (2015) 

characterised the realised niche of 133 open ocean phytoplankton taxa species using 

correlative ENM with observations from the MAREDAT initiative. Furthermore, Ajani et 

al. (2018) obtained long-term phytoplankton community composition and environmental 

data from a Pacific Ocean coastal station offshore from Sydney, Australia, and used 

correlative ENM to examine whether the realised niches of phytoplankton are fixed or 

shift in response to changing environmental conditions. More recently, Righetti et al. 

(2019) investigated the monthly phytoplankton species richness by using correlative 

ENM and global phytoplankton observations to predict global biogeographic patterns of 

536 species of phytoplankton. All these studies have demonstrated the usefulness of 

ecological niche modeling as valuable tool to improve our understanding on how 

phytoplankton will respond to the expected changes in the climate.  
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1.5 THESIS STRUCTURE 

Given the introductions above, the main aim of this thesis is to investigate how 

temperature limits biogeography, growth, toxin production, and competition in marine 

phytoplankton. To achieve this aim, the thesis presents a series of chapters with 

independent objectives, which is structured as follows: 

• Chapter 2 presents the analysis of species occurrence records to investigate the 

thermal limits to the current biogeographic distribution of marine phytoplankton. 

Here, I examined whether the patterns in the biogeography of marine phytoplankton 

follow classical macroecological theories (e.g. Janzen’s Rule, Rapoport’s rule, and 

niche breadth–range size hypothesis). Also, I tested if the observed patterns can be 

explained by environmental temperature, habitat availability, phytoplankton diversity, 

and the seasonal variability of these factors.  

• Chapter 3 presents the global pattern of thermal biology in marine phytoplankton 

using the thermal traits derived from the published laboratory results and from sea 

surface temperature of the species’ occurrence. In this chapter, I determined the 

congruence and inequality between physiology- and occurrence-based thermal 

traits. I also evaluated the variation in the inequality between physiology- and 

occurrence-based thermal traits, thermal sensitivity, exposure and vulnerability to 

warming across the gradient of latitude, thermal affinity, and thermal specialisation. 

Furthermore, I assessed the phylogenetic effect on these thermal attributes in 

marine phytoplankton.   

• Chapter 4 reports the findings of the laboratory experiments that test the 

temperature dependence of the growth in marine phytoplankton. Here, I determined 

whether non-toxic and potentially toxic marine phytoplankton exhibit variation in (i) 

temperature dependence of growth, (ii) maximum growth rates and thermal traits, 
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(iii) relationship between maximum growth rates and thermal traits, (iv) trait-

environment relationship, and (v) thermal safety and vulnerability.  

• Chapter 5 reports the results of the laboratory experiments that examine the 

temperature dependence of toxin production in marine phytoplankton. Here, I 

examined the temperature dependence of the concentration, cellular content, 

relative composition, and cellular production rate of toxins and their relationship with 

growth in a toxic model organism.  

• Chapter 6 reports the results of laboratory experiment that examine the effect of 

warming on growth and competition in phytoplankton using marine dinoflagellates as 

model organisms. In this chapter, I evaluated the growth responses of species to 

warming in the absence and presence of competitors. I also tested whether the 

growth and competitive responses to different temperature treatments are 

dependent or not on the taxonomic identity and toxicity of focal and competitor 

species. Moreover, I assessed the relationship between growth rates and 

competition coefficients across the different temperature treatments. 

• Chapter 7 provides a general discussion of this thesis. In this final chapter, I 

synthesised the key findings of the research and discussed their implications to the 

global change ecology of marine phytoplankton. I also discussed the future work that 

come to light from the thesis.  
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THERMAL LIMITS TO THE BIOGEOGRAPHY OF MARINE PHYTOPLANKTON IN 

THE CONTEMPORARY OCEAN 

 

ABSTRACT 

 

Temperature plays a critical role in shaping the geographic distribution of 

marine phytoplankton. Current theories suggest that species that experience greater 

climate variability will be adapted to a wider thermal range than those species thriving in 

a stable thermal condition. It remains unclear whether the biogeographical patterns of 

marine phytoplankton conform to these theories. Here, we  analysed the global dataset 

of species occurrence data to investigate the latitudinal patterns in the realised thermal 

niche and geographic range of marine phytoplankton. Our findings show complex 

patterns in the biogeography of marine phytoplankton that do not strictly conform to the 

classical macroecological theories. We found (1) non-monotonous latitudinal trend in 

niche breadth, (2) narrower niche in the tropics, (3) unclear latitudinal variation in 

geographic range, and (4) weak positive relationship between thermal niche and 

geographic range. These complex patterns are driven by temperature, climate 

variability, habitat availability, and diversity. Our findings support our current expectation 

that highly diverse phytoplankton communities in the tropics may be the most at threat 

from ocean warming. 
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2.1 INTRODUCTION 

 

The biogeographic distribution of organisms is regulated in part by climatic 

conditions. Among the climate variables, temperature plays one of the most 

fundamental roles in limiting the biogeography of organisms from polar to tropical 

oceans (Stuart-Smith et al., 2017, 2015; Tittensor et al., 2010). The range of 

temperatures at which organisms can survive defines the thermal ‘window’ or thermal 

niche (Boyd et al., 2013; Chen, 2015), the width of which reflects the physiological 

plasticity to temperature of a given organism (de Boer et al., 2004). Species that are 

temperature sensitive have narrow thermal tolerance ranges, whilst those that can 

survive through acclimation or adaptation have wider ranges (Chen, 2015). 

Understanding the mechanisms by which thermal niche influence the distribution of 

species will improve our ability to predict their ecological and evolutionary responses to 

changes in temperatures under ongoing global climate change. 

Theories linking niche breadth with latitude are well established. One 

remarkably prominent idea is that niches become narrower toward the tropics. Janzen’s 

Rule suggests that reduced seasonal thermal variation selects for narrower thermal 

tolerance (Janzen, 1967). It is expected that tropical species living in a stable thermal 

condition will be adapted to a narrower thermal range than the temperate species that 

experience greater seasonal temperature extremes (Sunday et al., 2011). This pattern 

has been demonstrated in several studies on terrestrial and marine species (Deutsch et 

al., 2008; Stuart-Smith et al., 2017; Sunday et al., 2011). Following the premise of lower 

variability in the tropics, the geographic extent of species ranges is expected to 

decrease at lower latitude as postulated in Rapoport’s rule (Stevens, 1989). 

Furthermore, species in the temperate regions are expected to become more 
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widespread as they can utilise resources (e.g. light and nutrients) within a wider thermal 

condition as posited in the niche breadth–range size hypothesis (Slatyer et al., 2013). 

The patterns predicted by the Rapoport’s rule and the niche breadth–range size 

hypothesis are confounded by the effect of latitudinal gradients in habitat (temperature) 

availability and the effect of seasonality (Tomašových et al., 2016). The concept that 

narrower niches in the tropics serve as a premise to several hypotheses that explain the 

latitudinal trends in species richness (Willig et al., 2003; Willig and Presley, 2018). 

Alternatively, species richness has been proposed to indirectly affect the latitudinal 

changes in niche breadth (Vázquez and Stevens, 2004).  

Here, we tested whether marine phytoplankton conforms with classical 

macroecological pattern and whether these patterns can be explained by temperature, 

habitat availability, diversity, and their seasonal variability. The effect of temperature on 

phytoplankton has been well studied (Barton et al., 2018; Boyd et al., 2013; Righetti et 

al., 2019; Thomas et al., 2012; Wang et al., 2018), however, the relationship of niche 

breadth and geographic range to latitude and temperature is still unclear in marine 

phytoplankton. Our current understanding of the global patterns in thermal tolerance of 

phytoplankton has been predominantly inferred from compiling the results of laboratory 

experiments that quantify the effect of temperature on growth (Chen, 2015; Thomas et 

al., 2012). In these studies, the relationship between the fitness of phytoplankton and 

temperature are expressed using thermal performance curves (TPC). However, 

inference from TPC is influenced by model choice and data quality (Low-Décarie et al., 

2017). Most phytoplankton studies have largely focused on thermal optima that have 

been shown to decrease with increasing latitude (Chen, 2015; Thomas et al., 2012). 

However, no clear latitudinal pattern has been observed for the thermal niche breadth in 

phytoplankton based on the experimental results (Chen, 2015; Thomas et al., 2012). It 
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remains unknown whether phytoplankton will have the same pattern using a global 

dataset of species occurrences as demonstrated in several studies on other ectotherms 

such as macro-invertebrates and fishes (Deutsch et al., 2008; Stuart-Smith et al., 2017).  

In this study, we analyse species occurrence records to investigate the thermal 

limits to biogeographic distribution of marine phytoplankton. We examine whether the 

patterns in the biogeography of marine phytoplankton would follow the classical 

macroecological theories. Also, we test if the observed patterns can be explained by 

temperature, habitat availability, diversity, and their seasonal variability. We hypothesise 

that species thriving in thermally stable and warmer oceans would have narrower 

thermal and geographical ranges than the temperate species that experience higher 

seasonal temperature extremes. We discuss our results in light of their congruency with 

the existing theories and highlight possible mechanisms that could explain the observed 

biogeographical patterns in marine phytoplankton. 

 

2.2 MATERIALS AND METHOD  

 

2.2.1 Occurrence data collection and processing 

Occurrence records of phytoplankton species from major taxonomic groups 

were downloaded from Ocean Biogeographic Information System (OBIS) (GBIF.org, 

2018) and Global Biodiversity Information Facility (GBIF) (OBIS, 2018). Additional 

occurrence records of coccolithophores (O’Brien et al., 2013), diatoms (Leblanc et al., 

2012), and Phaeocystis spp. (Vogt et al., 2012) were collected from the Marine 

Ecosystem Data (MAREDAT) initiative (Buitenhuis et al., 2013). Also, supplementary 

records of phytoplankton in the tropical and subtropical regions were obtained from 

Estrada et al. (Estrada et al., 2016). 
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The data were compiled and curated to only include records with complete 

spatial and temporal information (i.e. Global Positioning System (GPS) coordinates and 

year of the collection), records reported from 2000 to 2014, and records of 

phytoplankton identified at the species level. Species names in the original data were 

validated against the reference list in GBIF Backbone Taxonomy (GBIF Secretariat, 

2019). The species names were subsequently curated to merge spelling variants and 

synonymous names and to exclude records that could not be traced on the checklist 

dataset. This resulted in occurrence dataset with 771,286 observations representing 

1,681 species recorded from 89°N to 78°S between 2000 and 2014 (Figure 2.1; 

Supplementary Figure 2.1). These observations were spatially biased, with the majority 

of the observations originating from temperate coastal regions in the northern 

hemisphere (Supplementary Table 2.1).  

 

Figure 2.1. Geographic locations of the occurrence records of phytoplankton species retrieved from the 
four data sources used in this study. The curated dataset is comprised of 62,597 observations from 1,062 
geographic variants of phytoplankton representing 331 species from 13 taxonomic classes across 43 
regions recorded between 2000 and 2014, which were retrieved from OBIS, GBIF, MAREDAT, and 
Estrada et. al. (2016). The colour gradient indicates the long-term annual average SST data at 5 arcmin 
between 2000 and 2014 retrieved from BioORACLE.  
 

To minimise the effects of spatial bias, the occurrence dataset was further 

curated to exclude duplicates and records verified being on land. Furthermore, the data 
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were spatially filtered to ensure that no two records were within 10 km of one another. 

Spatial filtering can reduce the effect of sampling bias and commonly used to improve 

the performance of ecological niche model (Boria et al., 2014). Subsequently, the 

records were clustered into regions based on the Longhurst’s division of the world’s 

oceans (Flanders Marine Institute, 2009; Longhurst, 2007). The dataset was screened 

to exclude species that has less than 10 records in a region, and the total number of 

regional records for species ranged from 10 to 2,456. The final dataset contained 

62,597 observations from 1,062 geographic variants of phytoplankton representing 331 

species from 13 taxonomic classes across 43 regions (Supplementary Figure 2.2). 

 

2.2.2 Sea surface temperature data collection and processing 

Global sea surface temperature (SST, °C) data at 5 arcmin (c. 0.08° or 9.2 km 

at the equator) between 2000 and 2014 were downloaded from Bio-ORACLE (Ocean 

Rasters for Analysis of Climate and Environment) (Assis et al., 2018). Specifically,  

long-term average annual SST and seasonal SST extremes, i.e. the average 

temperature of the warmest and coolest months (Supplementary Figure 2.3) were 

downloaded to examine spatial variability of surface water temperature and to examine 

the contemporary thermal conditions experienced by marine phytoplankton. These data 

were matched with the georeferenced species occurrence data and were used in the 

subsequent thermal biogeographic analysis.   

 

2.2.3 Estimation of thermal niche and geographic range 

Thermal traits were calculated in two ways following by Stuart-Smith et al. 

(Stuart-Smith et al., 2017): (i) the 5th and 95th percentiles of long-term average annual 

SST (across all locations for which species occurrence was recorded) were determined 
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to represent the lower and upper thermal limits, respectively (LTL and UTL, 

respectively) and to provide a measure of realised thermal breadth (RTN; i.e. the 

average temperature range experienced by a species across its geographic range); (ii) 

the 5th percentile of the long-term minimum SST and the 95th percentile of the long-term 

maximum SST (across all locations for which species occurrence was recorded) were 

used to represent the extreme thermal limits (LTL* and UTL*, respectively) and to 

estimate realised extreme thermal breadth (RTN*; i.e. niche that covered the thermal 

extremes experienced by species throughout its geographic range). The thermal 

midpoints (TM and TM* ) between the 5th and 95th percentiles of the thermal distribution 

occupied by a species was used to estimate the central tendency of the realised thermal 

distribution of the species and was considered a proxy for optimal temperature for the 

ecological success of the species (Stuart-Smith et al., 2015). This approach has the 

advantage of avoiding the previously mentioned challenges of model choice and the 

influence of data quality arising from models of TPC (Low-Décarie et al., 2017). 

Geographic range size (GR, km2) was calculated as the area of a polygon in angular 

coordinates on an ellipsoid (Karney, 2013).  

To account for uncertainty arising from the error in the estimate of thermal traits, 

bootstrapping technique was used to determine the standard error of thermal limits, 

thermal midpoint, thermal niche breadth, geographic range size and the latitudinal 

midpoint of each geographic variants of phytoplankton species. In this, re-sampling with 

replacement was conducted on the sample for 10,000 times and the estimates were 

made from every bootstrap re-sample. The bootstrap estimate of bias (i.e. difference 

between the estimate calculated using the original sample and the mean of the 

bootstrap estimate), the standard error of estimate (i.e. standard deviation of the 

bootstrapped estimates), and the confidence interval (i.e. the lower and upper limits of 
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95% confidence interval) were determined (Supplementary Figure 2.4). The bias-

corrected estimates (i.e. the difference between the original sample estimate and the 

bootstrap estimate of bias) were used in the succeeding regression analysis, the 

estimates in geographic range size of which the bias correction was too strong 

producing estimates below zero (30% of the dataset).  

 

2.2.4 Analysis of trends in thermal limits, niche breadth, and range size 

Relationships between variables were initially examined using generalised 

linear mixed-effects model (GLMM) (Bolker et al., 2009). Latitude and temperature were 

used as fixed predictors for thermal limits, thermal niche breadth and geographic range 

size in marine phytoplankton. Thermal limits and niche breadth were also considered as 

a predictor for geographic range size to examine their postulated relationship in marine 

phytoplankton. The random effects of ocean regions and taxonomic class were included 

in the mixed models to account for the possible and biogeographic structure and 

phylogenetically-conserved effects. All models were conducted separately for the 

average annual and seasonal extreme SST to account for the effect of average and 

extreme thermal conditions experienced by species across their geographic range, 

weighted by the number of unique locations.  

To assess the non-linearity of the relationship between variables, both the linear 

and quadratic terms were included in the GLMM. Likelihood ratio (LR) test was used to 

determine the significance of a single factor by comparing the fit for models with and 

without the factor. Akaike information criterion (AIC) was used to determine whether a 

full model with linear and quadratic terms would describe the relationship better than a 

reduced model. Coefficient of determination for each model was estimated to describe 

the proportion of variance explained by the fixed factor alone (i.e. mariginal R2) and by 
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both the fixed and random factors (i.e. conditional R2) following Nakagawa and 

Schielzeth (Nakagawa and Schielzeth, 2013). In addition to GLMM, generalised additive 

mixed model (GAMM) (Pedersen et al., 2019) with cubic regression splines was used to 

gain more insight into any non-linear responses that may exist. In this function, the 

smooth is treated as a fixed effect, whilst the wiggly components of the smooth are 

treated as random effects. GAMM and GLMM were used to ensure higher confidence in 

the interpretation of the relationships. Regression diagnostics were used to evaluate the 

residuals of the models and to examine whether or not there are observations with a 

large, undue influence on the analysis (Supplementary Figure 2.5). Using this graphical 

method,  we found that the residuals of the models predicting geographic ranges 

deviated from normality, and hence we log10-transformed the estimates to improve the 

linearity of the residuals. 

In summary, 21 models were fitted in GLMM with the linear term only, in GLMM 

with linear and quadratic terms, and in GAMM. The model fits are visualised in 

Supplementary Figure 2.6 – 2.9 and are summarised in Supplementary Table 2.2 – 2.3 

(GLMM) and in Supplementary Table 2.4 – 2.5 (GAMM). Generally, the GAMM models 

had a better fit than GLMM models, and hence results of the GAMM were preferably 

reported in the text.   

 

2.2.5 Estimation of climate variability, habitat availability, and diversity 

Additionally, the three environmental factors were estimated to be used as 

explanatory variables in the subsequent analysis. Climate variability (CV) is defined 

here as the long-term mean environmental temperature range (2000-2014). This was 

estimated from the difference between the average SST of the warmest and coolest 

months (maximum and minimum SST, hereinafter). The SST data were obtained from 
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Bio-ORACLE as mentioned above and extracted from the raster at 1° resolution. For 

every 1° latitudinal band, the minimum SST was subtracted from the maximum value to 

estimate the temperature range and was summarised to obtain the mean range, which 

is referred hereinafter as climate variability (°C). Habitat availability (HA) is the total 

number of thermally suitable habitats (i.e. cells or pixels at 0.08° resolution) available for 

species to occupy. For every 1° latitudinal band,  all cells within the band that had SST 

values (based on long-term average annual SST) within the species’ extreme thermal 

range (i.e. RTN*) was counted, and the resulting habitat availability statistic is 

expressed in # cells per latitudinal degree. Diversity (D) is referred to here as the 

species richness. For every 1° latitudinal band, the total number of unique species 

within the latitudinal coverage of its thermal range was counted, and the resulting 

diversity statistic is expressed in # species per latitudinal degree. Estimates of the 

variability in habitat availability and diversity were computed as the square root of the 

squared difference between the values derived from the maximum and minimum SST. 

These variability estimates represent the seasonality of these variables.  

 

2.2.6 Analysis of latitudinal trends in environmental variables  

Sea surface temperature, habitat availability, diversity, and their seasonal 

variability were fitted against latitude using generalised additive models (GAM).  

Gaussian distribution was used for GAM fitting SST and climate variability with latitude. 

Whereas, a Poisson distribution was used for GAM fitting habitat availability, diversity, 

and their seasonal variability with latitude. The residuals of the GAM models were 

evaluated as described above, and all models passed the regression diagnostics. All 

GAM models are summarised in Supplementary Table 2.6.  
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2.2.7 Assessment of the effect of environmental variables on niche breadth and 

range size 

The effects of SST, habitat availability, diversity, and their seasonal variability 

on the thermal niche breadth and geographic range size were determined. Extreme 

thermal niche breadth (i.e. RTN*) and geographic range size were binned at 1° 

latitudinal resolution to obtain the mean estimates for every latitude, which were then 

merged with the environmental data. Before model fitting, collinearity and relative 

importance of the variables were assessed as the basis for variable selection. Pearson 

correlation was implemented to assess the collinearity between environmental 

variables. The result of this analysis is summarised in Supplementary Figure 2.10. To 

assess the relative importance of the environmental variables, niche breadth and range 

size were fitted against the environmental variables in random forest regression models 

with 500 number of tress and with two variables tried at each split. The variable 

importance measures produced by the random forest model were extracted. Partial 

response plots for each environmental variable are available in Supplementary Figure 

2.11 for niche breadth and in Supplementary Figure 2.12 for geographic range size.  

Generalised linear models (GLM) was used to fit niche breadth and range size 

against SST, habitat availability, diversity, and their seasonal variability. The variables 

were added sequentially in the nested models based on their relative importance as 

determined previously. Significance of a factor added in a nested model was assessed 

using likelihood ratio test (LRT) by comparing the fit for models with and without the 

factor. Interaction between significant terms was also tested for their significance in the 

model. AIC was used for model selection. Results of this analysis are accessible in 

Supplementary Table 2.7. Summary statistics of the GLM models are available in 

Supplementary Table 2.8.  
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2.2.8 Data processing and analysis software  

Data processing and analyses were implemented in R version 3.5.1 (R Core 

Team, 2019) using packages listed in the supplementary information 2.1.  

 

2.3 RESULTS  

 

2.3.1 Trends in thermal limits, niche breadth, and rang size  

Marine phytoplankton displayed a complex latitudinal patterns in thermal limits 

and niche breadth (Figure 2.2 A and B, respectively; Supplementary Figure 2.6; 

Supplementary Table 2.2 and 2.3 GLMM 01 – 06; Supplementary Table 2.4 and 2.5 

GAMM 01 – 06). Thermal limits decreased with latitude, and the relationship was 

nonlinear (Figure 2.2 A). Lower thermal limit (LTL; GAMM 01) gradually declined from 

the equator to ~40° and it decreased steeply towards the pole. Whilst the upper thermal 

limit (UTL; GAMM 02) remained constant from the equator to ~23°. UTL declined 

steeply to ~50°C and then slowed down towards the pole. This asymmetry between the 

latitudinal change of LTL and UTL was matched with non-monotonous relationship 

between the latitude and realised thermal niche (RTN; GAMM 03). This  asymmetry 

coincided to the narrowing of RTN in the tropics. RTN peaked at ~23° and declined 

towards the equator and towards ~40°. It remained constant between ~40° – 50° and 

begun to widen towards the pole. This asymmetry was more pronounced when 

seasonality in the LTL* (GAMM 04) and UTL* (GAMM 05) was taken into account, 

making RTN* (GAMM 06) higher than the average annual estimates in niche breadth. 

RTN* had declined from the pole to ~38°, and peaked at ~25°. Generally, RTN* in the 

tropics are narrower than the estimates in temperate regions. Latitude explained  ³ 60% 
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(adjusted R2 : 0.60 – 0.78) of the variation in the thermal limits but it insignificantly 

explained the variation in niche breadth.  

Our results showed opposite monotonous patterns of thermal limits across the 

temperature gradient, leading to non-monotonous behavior of niche breadth (Figure 2.2 

C and D, respectively; Supplementary Figure 2.7; Supplementary Table 2.2 and 2.3 

GLMM 07 – 12; Supplementary Table 2.4 and 2.5 GAMM 07 – 12). Temperature 

explained > 80% (adjusted R2 : 0.83 – 0.91) of the variation the thermal limits higher 

(>1.25 times) than the explained variance by latitude. On the other hand, temperature 

alone failed to explain the variation in niche breadth similar to the effect of latitude. 

There was no clear evidence that geographic range (GR) in marine 

phytoplankton changes with latitude nor with  temperature (Supplementary Figure 2.8; 

Supplementary Table 2.2 and 2.3 GLMM 13 – 15; Supplementary Table 2.4 and 2.5 

GAMM 13 – 15). Furthermore, GR had no clear relationship with thermal limits, but had 

a positive relationship with thermal niche breadth (Supplementary Figure 2.9; 

Supplementary Table 2.2 and 2.3 GAMM 16 – 21; Supplementary Table 2.4 and 2.5 

GAMM 16 – 21). However, the niche breadth–range size relationship was weak 

(adjusted R2 : 0.05 – 0.14). 
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Figure 2.2.  Trends in the realised thermal limits and niche breadth of marine phytoplankton across the 
gradient of latitude and temperature. The thermal limits decrease with increasing latitude (A) and increase 
with increasing temperature (C).  The monotonous asymmetrical behaviour of the lower and upper 
thermal limits (LTL and UTL, respectively) leads to the non-monotonous pattern in the niche breadth 
(RTN) across the latitudinal and temperature gradient (B and D, respectively). These findings reveal a 
narrower niche in tropics, consistent to Janzen’s rule. Thermal limits and niche breadths are derived from 
the average annual sea surface temperature (SST) and seasonal extremes SST (i.e. LTL*, UTL*, and 
RTN*). The asymmetry between the limits is more pronounced when seasonality in SST is taken into 
account, suggesting the influence of climate variability on the niche breadth in marine phytoplankton. The 
solid lines are fit from the generalised additive mixed model with cubic regression splines (GAMM) with 
95% confidence intervals as error of the regression. 
  
 

2.3.2 Trends in climate variability, habitat availability, and diversity   

Our results showed evident latitudinal trends in sea surface temperature (SST), 

habitat availability, diversity, and their seasonal variability (Figure 2.3; Supplementary 

Table 2.6). All variables, except for SST, showed a clear non monotonously behaviour 

along the latitudinal gradient.  
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SST reached its peak near the equator and gradually decreased poleward 

(Figure 2.3 A). However, climate variability (CV) dipped near the equator, peaked at mid 

latitudes, and then declined towards the pole (Figure 2.3 B). Clearly, SST was more 

variable in mid latitudes than in tropical and polar regions. Also, climate of the 

temperate regions in the northern hemisphere had more variability than in the southern 

hemisphere. Nearly all of the variation in the mean SST and CV was explained by 

latitude (Supplementary Table 2.6 GAM 1 – 2; adjusted R2 : 0.99 and 0.96, 

respectively).  

Furthermore, mean habitat availability (HA) was low near the equator and 

reached its peak at ~35° in southern hemisphere and at ~20° in northern hemisphere 

(Figure 2.3 C). There are more thermally suitable habitats available in the southern 

hemisphere than in the northern hemisphere. More than 75% of the variation in HA was 

explained by latitude (Supplementary Table 2.6 GAM 3; adjusted R2 : 0.76). On the 

other hand, seasonal change in habitat availability (HAV) showed a complex pattern 

(Figure 2.3 D), and only about a third of its variation was explained by latitude 

(Supplementary Table 2.6 GAM 4; adjusted R2 : 0.31). 

Bimodality with a dip in the diversity near the equator was observed (Figure 2.3 

E). Diversity reached its highest peak at ~23°, showing greater tropical diversity in 

northern hemisphere than in the southern hemisphere. Diversity eventually declined 

from the  peak towards the polar regions. Latitude explained 88% of the variation in the 

diversity (Supplementary Table 2.6 GAM 5; adjusted R2 : 0.88). Moreover, variability in 

the diversity (DV) was high across the tropics (Figure 2.3 E). It dipped in the mid 

latitudes and peaked at ~45°, higher than the observed peak in southern hemisphere. 

However, only 29% of the variation in DV was accounted by the latitude (Supplementary 

Table 2.6 GAM 6; adjusted R2 : 0.29). 
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Figure 2.3.  Latitudinal trend in mean, minimum, and maximum sea surface temperature (SST), habitat 
availability and diversity (left panel) and their seasonal variability (right panel). Except for SST, all 
variables have non-monotonous relationship with latitude. The solid lines are fit from the generalised 
additive model with cubic regression splines (GAM) with 95% confidence intervals as error of the 
regression. 
 

2.3.3 Correlation and relative importance of environmental variables  

Generally, results of the Pearson correlation indicated that there was a 

significant association between the environmental variables (Supplementary Figure 
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2.10). SST had a negative association with CV, whilst it had positive associations with 

HA and DV. On the other hand, CV was negatively associated with HA and HAV. 

Moreover, HA was positively associated with HAV and D, but negatively associated with 

DV.  

Random forest regression analyses revealed the relative importance of 

environmental variables as explanatory factors for thermal niche breadth (RTN*) and 

geographic range size (GR)  in marine phytoplankton (Supplementary Figure 2.13).  

Results showed that CV and SST are the most important explanatory variables for 

RTN*. Whereas, D and HA are relatively more important than CV and SST in predicting 

the GR.  

 

2.3.4 Significant effect of environmental variables on niche breadth and range 

size 

The generalised linear regression models revealed the degree of significance of 

the effect of environmental variables on thermal niche breadth (RTN*) and geographic 

range size (GR) in marine phytoplankton (Supplementary Table 2.7). The additive 

model with CV and SST as explanatory variables for RTN* (GLM 2) described the 

relationship better than the other models (GLM 1 and GLM 3 – 7). The main effects of 

CV and SST on the RTN* were significant (GLM 2), but the interaction between these 

terms was not significant (GLM 7). RTN* was observed to be directly proportional to CV 

and SST (Supplementary Table 2.8 GLM 2). On the other hand, GR was best explained 

by the additive model with D and HA as predictors (GLM 9) in comparison to other 

models (GLM 8 and GLM 10 – 14). There was significant effects of D and HA on GR 

(GLM 9) but their interaction was not significant (GLM 14). GR decreased with 

increasing D, and it increased with increasing HA (Supplementary Table 2.8 GLM 9). 
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2.4 DISCUSSION  
 

Our analysis of the species occurrence data provides new insights of the 

biogeographical patterns of marine phytoplankton in the contemporary ocean. We 

discuss our findings in light of the conformity or non-conformity with the existing 

hypotheses and deliberate the possible mechanisms that explain the observed trends.  

 

2.4.1 Narrower niches in the tropics  

Our results reveal non-linearity of the latitudinal trend in thermal niche breadth 

of marine phytoplankton. This trend can be attributed to the latitudinal variation in the 

difference between the minimum and maximum average annual SST or in the difference 

between the seasonal temperature extremes (i.e. average SST of the warmest and 

coolest months) experienced by phytoplankton in the contemporary ocean (Figure 2.2 A 

and C). Alternatively, this pattern in the thermal niche breadth reflects the asymmetrical 

variation in the thermal limits, in which the irregular monotonous behaviour of the lower 

and upper thermal limits leads to the non-monotonous latitudinal pattern in the niche 

breadth. The asymmetry is evident in the tropics where the latitudinal decrease in lower 

thermal limit is steeper than the upper thermal limit. This results in the narrowing of the 

thermal niche in the tropics that inevitably converges the limits in the warmest latitude 

(i.e. near the equator), which is evident when seasonality is taken into account (Figure 

2.2 B and D). Our results conform to the prediction of Janzen’s rule (Janzen, 1967) that 

expect niches to become narrower in the tropics. Furthermore, our results support 

previous works showing the relationship between latitude and thermal niche (Addo-

Bediako et al., 2000; Stuart-Smith et al., 2017; Sunday et al., 2011) as biogeographical 

pattern (Gaston et al., 2009). The validity of these relationships in marine phytoplankton 
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is unclear to date (Chen, 2015; Thomas et al., 2012) but has emerged in our analysis of 

the species occurrence data.  

 

2.4.2 Limits are sensitive to temperature  

The significant influence of latitude on the thermal limits is inevitable since there 

is a clear monotonous relationship between latitude and temperature (Figure 2.3 A). As 

expected, thermal limits increase with increasing temperature, opposite to their 

latitudinal trends (Figure 2.2 A and C). This demonstrates the sensitivity of the thermal 

limits to annual and seasonal temperatures, suggesting that the contemporary sea 

surface temperature influences the distribution limits of marine phytoplankton, a trend 

that was also observed in numerous marine organisms shifting poleward in response to 

ocean warming (Poloczanska et al., 2013). This temperature dependence can be 

explained by the metabolic scaling hypothesis (Padfield et al., 2018), which posits that 

the metabolic rate of organisms regulates the biological processes and patterns in 

ecology. It is well established that temperature is a key regulator for photosynthesis and 

respiration in phytoplankton (Barton et al., 2018). The relationship between temperature 

and physiological performance can are linked to evolutionary history traits of species. 

Cardinal temperatures are strongly linked to the environmental temperature as an 

indication of local adaptation and show clear latitudinal trends (Chen, 2015; Thomas et 

al., 2012) consistent with our results. 

 

2.4.3 Climate variability influences niche breadth 

Non-significance of the effect of latitude and temperature on the thermal niche 

breadth indicates that other factors other than the temperature influence its pattern. The 

distinctive asymmetry between thermal limits when seasonality is taken into account 
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(Figure 2.2 B and D) suggests that seasonality in temperature (i.e. climate variability) is 

a key determinant in linking environmental temperature to the niche in marine 

phytoplankton. This is further substantiated when climate variability has emerged as the 

most relatively important variable for niche breadth (Supplementary Figure 2.13). 

Climate variability is higher in mid-latitudes, whilst the tropics (and polar regions) have 

more stable water temperature (Figure 2.3 B). The significant effect of climate variability 

is directly proportional to niche, suggesting that the narrowing of the niche in the tropics 

is due to reduced climate variability, consistent to the premise of Janzen’s rule (Janzen, 

1967). Compared to trends observed in terrestrial plants and animals (Araújo et al., 

2013),  the patterns of the thermal niche in marine phytoplankton are less pronounced 

but are quite similar to that of marine invertebrates (Stuart-Smith et al., 2017). This 

could be attributed to the ‘buffering’ of temperature in water that results in the lesser 

variability in the annual temperature ranges in seawater as compared to land 

(Parmesan et al., 2005; Steele, 1985).  

Furthermore, the main effect of temperature is significant only when the 

seasonality in climate is considered. The additive effect of climate variability and 

temperature is directly positive to niche breadth, suggesting that niches are wider in 

thermally variable and warmer oceans. This explains why the niches in marine 

phytoplankton have peaked at ~23° (Figure 2.2 B). At mid-latitudes, it may be possible 

to deal with much lower and higher temperatures (i.e. generalism is possible but not 

necessary), whereas in the tropics or polar regions a more extreme temperature 

(whether colder or hotter) ecological specialisation may be needed. Our results suggest 

that, other than climate variability, temperature-dependent mechanisms acting at 

physiological, ecological, and evolutionary levels may also drive the latitudinal patterns 

of the niche in marine phytoplankton. In light with the metabolic scaling hypothesis  
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(Padfield et al., 2018), tropical species can perform over a narrower thermal range 

because of the scaling of physiological rates with the temperature that influences their 

ecological success in warmer conditions (Payne and Smith, 2017). Recent work on 

ectotherms have attributed the biogeographic patterns in niche breadth to (i) lower 

plasticity and evolutionary lability of the upper thermal limits relative to lower thermal 

limits (Gunderson and Stillman, 2015; Pörtner, 2002), (ii) lowering of the upper thermal 

limit due to intensification of predation and competition in warmer waters (Stuart-Smith 

et al., 2017), (iii) tenacity of species at the cool edge of their range by decreasing their 

metabolism (Masuda, 2008), and (iv) vagrancy of individuals at the cool range edge 

creating bias in the observation (Bates et al., 2014). Also, the pattern could also be 

attributed to the negative skewness of the thermal growth response curves in 

phytoplankton, a condition which makes these organisms more sensitive to warming 

than cooling (Thomas et al., 2012). Temperature response and biogeography in 

phytoplankton could also be driven in part by temperature and biogeography of 

competitors and predators (Wang et al., 2018). 

 

2.4.4 Diversity indirectly affects niche breadth  

The strong correlation between diversity and SST (r = 0.88, p < 0.05) suggests 

the important role of temperature in regulating the diversity of phytoplankton (Righetti et 

al., 2019; Thomas et al., 2012). It is inevitable that the diversity varies across latitude 

and is highest in the tropics. The latitudinal trend in the diversity of marine 

phytoplankton shows bimodality with a dip near the equator (Figure 2.3 E) similar to the 

observed pattern in several marine species (Chaudhary et al., 2016). However, this 

deviates from the unimodal pattern with a tropical peak that is inferred from the species 

distribution models in the recent phytoplankton study (Righetti et al., 2019). The 
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bimodality would suggest that the phytoplankton in the tropics are evolving to 

temperature variation and are moving away from the equator, and these are likely to 

happen due to ocean warming.  

The positive correlation between diversity and habitat availability (r  = 0.28, p < 

0.05) indicates that the high tropical diversity is associated to the high availability of 

habitats (i.e. suitable temperatures) in tropics since it is inevitable that larger area 

acccommodates more species (Rosenzweig, 1995). The larger habitat areas and little 

climate variability in tropics may produce high speciation and low extinction rates (Willig 

and Presley, 2018). It is therefore plausible that the more available habitats in the 

tropics may influence the latitudinal diversity gradient in marine phytoplankton. 

The variation in diversity across latitude may also be a consequence of the 

decline in geographic range sizes from high to low latitudes as postulated Rapoport’s 

rule (Stevens, 1989). Marine phytoplankton shows a complex relationship between 

latitude and geographic range size (Supplementary Figure 2.8 A) that does not follow 

Rapoport's rule despite the presence of clear latitudinal diversity gradient (Figure 2.3 E). 

In theory, tropical species are predicted to have a small range size due to their 

adaptation to little seasonal variation in climate. Whereas, temperate species are 

expected to have a large range size due to their tolerance to greater climate variability. 

This pattern has been documented for trees, fish, amphibians, reptiles, and mammals 

(Willig and Presley, 2018), but is not universal, e.g. marine invertebrates (Stuart-Smith 

et al., 2017), green turtles (Angielczyk et al., 2015),  bats and marsupials (Willig and 

Lyons, 1998), and molluscs (Roy et al., 1994). The inconsistency of the observed 

pattern to the theory would suggest that several factors other than climate variability 

may influence the geographic range size in marine phytoplankton. For instance, 

transport may contribute to the variability in range size of phytoplankton across latitudes 



Chapter 2 – Temperature limits current distribution 

 47 

(Gaylord and Gaines, 2000; Hernández-Carrasco et al., 2018), or the niche breadth 

may influence species range size.  

We found a weak trend of increasing geographical range size with increasing 

thermal niche breadth in marine phytoplankton (Supplementary Figure 2.9 C), 

suggesting that niche breadth to some extent limit the geographic distribution. This 

observation supports the validity of the niche breadth–range size hypothesis, which 

suggests that marine phytoplankton become more widespread when they can utilise 

resources (e.g. light and nutrients) within a wider thermal condition (Slatyer et al., 2013). 

Similar to Rapoport’s rule, this hypothesis also operates under the premise of climate 

variability and is also compounded with other factors.  

Our findings show that diversity and habitat availability are relatively more 

important as variables for range size than the seasonal changes in the climate. 

Geographic range size decreases with increasing diversity and increases with 

increasing habitat availability. Hence, species may have large range size without 

adapting to high climate variability if exposed to the environment with low diversity and 

more thermally suitable habitats. Climate variability may indirectly related to geographic 

range size via the climate effect on the niche breadth, and on the other hand, diversity 

may be indirectly linked to niche breadth via diversity effect on range size. Hence, the 

latitudinal trend of diversity may also explain the observed pattern in niche breadth. 

Vázquez and Stevens (Vázquez and Stevens, 2004) proposed a mechanism 

that relates species diversity with the latitudinal pattern in niche breadth. They 

suggested that the greater specialisation may be a by-product of the latitudinal gradient 

in species diversity. The increased nestedness and asymmetric specialisation would 

suggest that the number of specialists increases faster thus higher species which can 

result in high specialisation (Vázquez and Stevens, 2004). In this proposed mechanism, 
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there is an indirect effect of latitude on niche breadth via the effect of diversity which 

would occur only when species interactions are structured in an asymmetrically 

specialised and nested way. Hence, the pattern of niche breadth in marine 

phytoplankton, despite the clear latitudinal diversity trend, can only be explained by this 

mechanism if a clear nestedness and assymmetric specialisation exist in the structure 

of species interaction in the phytoplankton. A knowledge gap that limits our current 

understanding of the biogeography of marine phytoplankton.  

 

2.4.5 Caveats  

Our analysis should be interpreted with caution in consideration of the caveats 

with our approach. First, occurrence records remain geographically incomplete and 

biased (Isaac and Pocock, 2015). Occurrence data is likely to be driven by survey 

extent (Supplementary Figure 2.1). There are more and longer transects in the North 

Atlantic ocean, North Eastern Pacific ocean, American west coasts, and Australian 

coasts and adjacent waters, whereas such long survey routes are inadequate from the 

tropics. Second, all locations with recorded occurrences are treated equally 

independent of phytoplankton abundance, which produce a bias in the estimation of 

thermal and geographical range. Therefore, it is possible that the species included in 

the analysis may not have been observed across their full potential thermal and 

geographical range. Third, data processing, such as excluding data points based on 

criteria (i.e. dates) and clustering the points into groups (i.e. oceanic regions) may 

produce possible artefacts by underestimation of the ranges of species. Lastly, the 

relationship between thermal niches and geographic ranges among species is 

confounded by the interacting effects of drivers other than the temperature (Sexton et 

al., 2009; Wiens, 2011) such as light, nutrients, and predation.   
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2.5 CONCLUSION 

 

Based on our findings from the global analysis of species occurrence data, we 

conclude that marine phytoplankton exhibit complex biogeographical patterns that do 

not strictly conform to the classical macroecological rules, and this complexity is partly 

explained by climate variability, habitat availability, and/or diversity. In summary, the 

following patterns have emerged from our analysis: (i) the non-monotonous latitudinal 

pattern in the niche breadth is consequent of the asymmetry between the thermal limits, 

(ii) the narrowing niches in the tropics is due to reduced seasonal variation in the 

climate, consistent to Janzen’s rule , (iii) the latitudinal pattern in geographic range size 

of marine phytoplankton invalidates Rapoport’s rule but is explained by diversity and 

habitat availability, and (iv) the direct relationship between niche breadth and range size 

links diversity effect to the latitudinal trend in thermal niches. From these observed 

patterns, we conclude that species in tropical oceans have a narrower range making 

them more vulnerable to ocean warming than those in temperate oceans.  
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BIOGEOGRAPHIC AND PHYLOGENETIC PATTERNS OF TEMPERATURE 

RESPONSES IN MARINE PHYTOPLANKTON  

 

ABSTRACT 

 

Understanding the physiological and ecological adaptations of species to 

temperature is important in predicting their responses to climate change. This study 

aims to examine the biogeographic and phylogenetic patterns of physiology- and 

occurrence-based thermal traits (TTp and TTo), their inequalities, thermal sensitivity, 

exposure and vulnerability to warming in marine phytoplankton. Here, TTp  were 

obtained from the published laboratory results on growth rates across a temperature 

gradient, whereas TTo  were derived from the sea surface temperature of the species’ 

occurrence locations. The congruence and inequality between TTp and TTo were 

assessed. Also, the variations in the inequality, thermal sensitivity, exposure and 

vulnerability to warming across the gradient of latitude, thermal affinity, thermal 

specialisation were determined. Finally, the phylogenetic effect on the thermal attributes 

was assessed. The findings of this study reveal that  TTp and TTo are congruent but not 

equal. Results also show the inequality between TTp and TTo and the thermal sensitivity 

in marine phytoplankton vary across latitude, thermal affinity, thermal specialisation; 

whereas, the exposure and vulnerability to warming vary non-monotonously with 

latitude. Interspecific variation in thermal attributes is evident in marine phytoplankton, 

but no clear evidence of the presence of phylogenetic conservatism in the traits. This 

empirical investigation of the macroecological patterns of these thermal attributes will 

provide new insights into distribution of marine phytoplankton in the current and future 

climate scenarios. 
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3.1 INTRODUCTION 

 

The critical role played by temperature on phytoplankton physiology, growth, 

and  biogeographical distribution are well recognised (Brun et al., 2015; Coello-Camba 

et al., 2015; Grimaud et al., 2017; Raven and Geider, 1988). Contemporary rates of 

warming are shifting the global distributions of marine species (Poloczanska et al., 

2013). Recent studies have provided important information on the effect of changes in 

the temperature on the physiological processes and growth in phytoplankton, 

consequently altering marine ecosystem structure and function (Behrenfeld et al., 2015; 

Chust et al., 2014; Huertas et al., 2011; Regaudie-De-Gioux and Duarte, 2012; Thomas 

et al., 2012). Since the changing climate have serious consequences, it is imperative to 

have a robust framework to predict the responses of marine phytoplankton on changing 

climate.It is therefore crucial to understand the physiological and ecological adaptations 

of marine phytoplankton to temperature to improve our ability to predict their distribution 

in future climate scenarios.  

The direct effect of temperature on phytoplankton growth is typically 

represented by asymmetric curve,  with asymptotic increase in one side, and an abrupt 

decline in another side (Ras et al., 2013). Several thermal traits can be extracted from 

this curve including (1) the cardinal temperatures that corresponds to the boundaries of 

thermal tolerance (i.e. thermal optima, critical thermal minima, and critical thermal 

maximum), and (2) the thermal niche breadths that correspond to the thermal range on 

which the species can physiologically tolerate. These  physiology-based thermal traits 

are linked to the biogeographical distribution in ectotherms (Sunday et al., 2012, 2011). 

However, this physiology-based estimation present a major issue relating to the biases 

introduced from experimental design, model choice, and data quality (Boyd et al., 2013; 
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Low-Décarie et al., 2017; Salvador et al., 2019). These biases could be avoided by 

estimating thermal traits from distribution or species occurrence data (Chapter 2), 

however occurrence-based estimation is still challenged with spatial, temporal, and 

taxonomic biases (Isaac and Pocock, 2015). Physiology- and occurrence-based thermal 

traits may express different aspects of thermal niche of species. Physiology-based 

thermal traits may represent the fundamental niche, whereas the occurrence-based 

thermal traits represent the realised niche. Biotic interaction, species dispersal 

limitation, and limited climate availability reduce fundamental niche to realised niche 

(Jankowski et al., 2013; Sánchez-Fernández et al., 2016; Soberón and Nakamura, 

2009), and hence the realised niche is expected to be smaller than and within 

fundamental niche (Hutchinson, 1957).  Whilst there have been some investigations into 

the link between physiology- and occurrence-based estimates (Sánchez-Fernández et 

al., 2012), there are no detailed studies about this relationship in marine phytoplankton. 

Understanding this link will provide  ecophysiological and evolutionary insight on the 

vulnerability of marine phytoplankton to the warming climate.  

In recent years, there has been an increase in the utility of the concept of  

thermal safety margin (TSM) to understand the global patterns of the warming 

vulnerability in ectotherms (Bennett et al., 2019; Clusella-Trullas et al., 2011; Deutsch et 

al., 2008; Diamond et al., 2012; Huey et al., 2009; Sunday et al., 2014). TSM can be 

extrapolated from species’ thermal sensitivity wherein a physiological thermal safety is 

inferred if a species’ upper (lower) tolerance limit exceeds the warmest temperature 

(falls short the coldest temperature) it experiences, otherwise species is at risk of 

thermal danger (Sunday et al., 2014). Furthermore, vulnerability to warming can be 

explicitly estimated as a function of inherent thermal sensitivity to warmest temperature 

and the warming exposure (i.e. warming rate) of a species in a given location (Bennett 
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et al., 2019). The recent developments in the field (i.e. new information and tools) have 

heightened the need to reassess the vulnerability to warming in marine phytoplankton.  

Macroecological patterns of traits has long been a question of great interest. 

Latitudinal trends in the thermal traits have been demonstrated in previous studies 

using the physiology data (Chen, 2015; Thomas et al., 2016, 2012) and occurrence 

data (Chapter 2). Therefore, latitudinal variation in the inequality between physiology- 

and occurrence-based thermal traits in marine phytoplankton is expected. Also, 

previous studies have shown the increase of thermal safety margin with increasing 

latitude, suggesting that tropical species are more vulnerable to warming than 

temperature species (Clusella-Trullas et al., 2011; Diamond et al., 2012; Sunday et al., 

2014).  

Other than the latitude, the variation in physiology- and occurrence-based 

thermal traits, their inequalities, thermal sensitivity, exposure and vulnerability to 

warming (collectively referred hereinafter as thermal attributes) could also be related to 

species’ thermal affinity, thermal specialisation, and phylogenetic relationship, which 

previous phytoplankton studies have not dealt with (Chen, 2015; Thomas et al., 2016, 

2012). Thermal affinity (TA) can be expressed as an index of the degree of preference 

of species to warm or cold temperatures relative to the average preference in the 

species pool. Positive TA indicates affinity of species to warm temperatures, whilst a 

negative TA indicates affinity to cold temperatures. Thermal specialisation (TS) can be 

expressed as an index of the degree of species thermal tolerance relative to the 

average tolerance in the species pool. Positive TS suggests that a species is relatively 

more a thermal generalist, whilst a negative TS suggests that a species is relatively 

more a thermal specialist. 
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 Although the phylogenetic effects on thermal traits have been previously 

demonstrated in phytoplankton (Chen, 2015; Thomas et al., 2016, 2012), there is still 

very little scientific understanding of whether the thermal attributes are shared with 

closely related species (i.e. phylogenetic signal) and whether these thermal attributes 

are evolutionary labile or conserved (i.e. phylogenetic conservatism). Historically, the 

terms “phylogenetic signal” and “phylogenetic conservatism” has been used 

synonymously, but in this present study these terms are differentiated. Here, 

phylogenetic signal is defined as the tendency of closely related species to be similar to 

each other more than expected from a null model from the same phylogeny (Blomberg 

et al., 2003). On the other hand, phylogenetic conservatism is the tendency of species 

to retain their ancestral traits more than expected from a Brownian null model of 

evolution (Felsenstein, 1985), which can be considered as an extreme case of 

phylogenetic signal (Loza et al., 2017).  

To advance our current knowledge on the microalgal thermal biology, this study 

sets out to investigate global patterns of physiology- and occurrence-based thermal 

traits, their inequalities, thermal sensitivity, exposure and vulnerability to warming in 

marine phytoplankton. Specifically, this study aims to determine the: (1) congruence 

and inequality between physiology- and occurrence-based thermal traits, (2) variation in 

the inequality between physiology- and occurrence-based thermal traits, thermal 

sensitivity, exposure and vulnerability to warming across the gradient of latitude, 

thermal affinity, and thermal specialisation, and (3) phylogenetic effect on these thermal 

attributes in marine phytoplankton.   
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3.2 MATERIALS AND METHOD 

 

3.2.1 Data collection and processing of thermal traits    

Physiology-based thermal traits (TTp; Supplementary Information 3.1) such as 

the cardinal temperatures (i.e. thermal optimum (Topt), critical thermal minimum (CTmin), 

and critical thermal maximum (CTmax)), the fundamental thermal niche breadth (FTN) 

and the maximum growth rate (rmax) in marine phytoplankton were compiled from 

previous studies. Data were obtained from Chen (2015) that compiled  275 records of 

Topt and rmax, 125 records of CTmin and 158 records of CTmax, and 93 records of FTN in 

243 marine phytoplankton strains from 141 unique isolation locations in tropical and 

temperature regions. Additional data from recently published literature (Coello-Camba 

and Agustí, 2017) were collected to include 43 records of Topt and rmax in 31 marine 

phytoplankton strains from 21 unique locations in the polar regions. The data were 

merged into one dataset (referred hereinafter as published dataset) with 318 records of 

rmax and Topt, 125 records of CTmin, 158 records of CTmax and 93 records of FTN, ranging 

in latitude from ~75°S to ~81°N (Figure 3.1). The studies included in this published 

dataset employ different approaches in estimating the cardinal temperature and niche 

(e.g. different models used for curve fitting), which may introduce some bias. To 

minimise the effect of this bias, a second dataset of all thermal physiology traits in 

marine phytoplankton was assembled by fitting growth rates against temperature using 

the same model. Here, the database of laboratory results on growth rates across a 

temperature gradient (Litchman and Klausmeier, 2014; Thomas et al., 2016, 2012) was 

used. The datasets with positive rates for at least four different temperatures were 

selected. Growth rates were fitted against temperature in a unimodal response curve 

using the different non-linear functions (i.e. equ04 – equ15 in the temperatureresponse 
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R package (Low-Décarie et al. 2017)). Also, the data were fitted using Cardinal 

Temperature Model with Inflexion (CTMI; equ16, hereinafter) (Rosso et al., 1993) (see 

Supplementary Information 3.2 for the model formulas). The data were fitted to 

equations using a modified Levenberg-Marquardt algorithm. The fitted equations were 

compared in terms of Akaike Information Criteria (AIC), Bayesian Information Criterion 

(BIC), coefficient of determination (pseudo R2), and the number of successful fits 

(Supplementary Figure 3.1). Both equ10 and equ16 were initially selected as the best 

models since they had relatively lower AIC and BIC values and had relatively higher 

pseudo R2. CTMI model (i.e. equ16) had yielded more realistic estimates of CTmin and 

CTmax (Supplementary Figure 3.2) and hence was preferably used in the succeeding 

analysis. CTMI allows identifying the cardinal temperatures from experimental data 

(Grimaud, 2016), which proves useful for the objective of this study. The CTMI model 

successfully fits growth rates with temperature (Supplementary Figure 3.3), generating 

197 curve fits. These curves were used to extract the thermal physiological traits in 85 

marine phytoplankton strains from 60 unique isolation locations from ~65°S to ~75°N 

(Figure 3.1) (referred hereinafter as CTMI-derived dataset). The CTMI-derived dataset 

was screened with the following inclusion criteria: (1) CTmin > –7 °C, and (2) CTmax < 40 

°C and CTmax ³ Topt + 1°C. The resulting dataset comprised of 168 records of rmax and 

Topt, 165 records of CTmin, and 120 records of CTmax and FTN. Published and CTMI-

derived TTp are summarised in Supplementary Figure 3.4.  
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Figure 3.1. Isolation locations of marine phytoplankton listed in the physiology datasets (i.e. published 
and CTMI-derived datasets) and occurrence locations of species listed in occurrence dataset. 

 

Thermal traits derived from species occurrence data (TTo) was also assembled 

following Edullantes et al. (unpublished) with modifications. Briefly, occurrence data for 

each species were downloaded from the databases and recent literature (GBIF.org, 

2018; OBIS, 2018; Buitenhuis et al., 2013; Estrada et al., 2016). The collected datasets 

were curated to only include unique occurrences recorded in marine waters from 2000 

to 2014 with complete spatial, temporal, and taxonomic information (i.e. GPS 

coordinates, year of collection, and identified at species level). To reduce the effect of 

sampling bias, the species-specific occurrences were spatially filtered to ensure that no 

two records were within 10 km of one another, which generated a dataset with 98,286 

observations representing 1,419 species recorded between 2000 and 2014 (Figure 3.1). 

The occurrence records were matched with the Sea Surface Temperature (SST) values 

(annual mean SST, long-term minimum and maximum SST) from 2000 to 2014 that 

were downloaded from Bio-ORACLE (Assis et al., 2018). Lower thermal limit (LTL), 

upper thermal limit (UTL), thermal midpoint (TM), and realised thermal niche breadth 

(RTN) (Supplementary Information 3.1 for description) were estimated in every species 
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with ³ 10 unique occurrence records. These traits were derived from both the annual 

average SST and seasonal extreme SST, i.e. average temperature of the warmest and 

coldest months. A bootstrapping technique was implemented to account for uncertainty 

arising from the error in the estimate of thermal traits. The resulting dataset contains the 

annual average (AA) and seasonal extreme (SE) SST-derived TTo in 562 marine 

phytoplankton species, which are summarised in Supplementary Figure 3.4.  

TTp  (obtained from published literature and CTMI-derived*) and TTo (derived 

from annual average and seasonal extreme* SST) were merged and matched up by 

taxonomic identity at least at species level. This resulted to four combined datasets: (1) 

TTp *  and TTo, (2) TTp *  and TTo*, (3) TTp   and TTo, and (4)  TTp  and TTo * . These 

datasets were used in the subsequent analyses and were compared. For simplicity 

purposes, results of the analyses using the second dataset (i.e.  TTp *  and TTo*) were 

preferably highlighted in the main text. TTp *  avoids the curve fitting bias introduced in 

the published dataset as described above, whilst TTo* is previously shown to account 

better for biogeographical pattern of niche in phytoplankton than the parameters derived 

from the annual mean SST (Edullantes et al., n.d.). 

 

3.2.2 Comparing physiology and occurrence-based thermal traits  

The congruence in the thermal traits derived from physiological and species 

occurrence data (TTp and TTo, respectively) was assessed following Sánchez-

Fernández et al. (2012).  TTp were fitted against TTo via generalised linear models 

(GLM) using a Gaussian distribution with link identity (see Supplementary Table 3.1 for 

the summary statistics). A statistically significant relationship suggests that two 

approaches of thermal trait estimation are congruent. The slopes of the relationships 

were tested of their difference from 1 using Chi-squared tests. Deviation of the slope 
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from 1 suggests that the thermal trait derived from two methods are different. The 

regression slopes between TTp and TTo were also compared across four different 

datasets using Student t-tests (Andrade and Estévez-Pérez 2014).  

Furthermore, the differences between TTp and TTo (i.e. difference in optimal 

temperature (DOT), cold tolerance limit (DCL), heat tolerance limit (DHL), and thermal 

range (DTR); Supplementary Information 3.1 for description; Supplementary Figure 3.5 

for summary) were calculated as an additional measure of congruence in the thermal 

traits estimations. Deviation from 0 was tested using one-sample t-test to indicate 

mismatch between the two approaches. Positive (or negative) values indicate that the 

physiology-based estimates are higher (or lower) than the occurrence-based estimates.  

 

3.2.3 Estimation of thermal sensitivity, exposure and vulnerability to warming 

Thermal sensitivity, exposure and vulnerability to warming were calculated as 

described in Supplementary Information 3.1.  Sensitivity to cold and warm temperature 

(Smin and Smax, respectively) were estimated by obtaining the difference between the 

species’ critical thermal limits (CTmin  and CTmax, respectively) and the ambient sea 

surface temperature extremes (Hmin and Hmax, respectively) it experiences in its local 

habitat (Bennett et al., 2019). Warming vulnerability (V) is a function of inherent thermal 

sensitivity (Smax) and warming exposure (WR) of a species in a given location. V 

describes the number of years prior the local temperatures are expected to exceed 

CTmax in a given location (Bennett et al., 2019). SST of the warmest month predicted in 

the year 2050 and 2010 based on the climate scenarios (i.e. RCP 2.6, RCP 4.5, RCP 

6.0, and RCP 8.5) were downloaded from Bio-ORACLE (Assis et al., 2018) and were 

used to compute for the warming rate. The estimates of thermal sensitivity, warming 

rate, and vulnerability to warming are summarised in Supplementary Figure 3.6.  
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3.2.4 Analysis of latitudinal trends  

The differences between physiology- and occurrence-based thermal traits, 

thermal sensitivity, exposure, and vulnerability to warming were fitted against the 

absolute latitude of the isolation location using generalised additive models (GAM). 

Gaussian distribution with link identity was used for the GAM fitting.  Latitudinal trends 

in the differences between physiology- and occurrence-based thermal traits are 

summarised in Supplementary Table 3.2. Latitudinal trends in thermal sensitivity, 

exposure, and vulnerability to warming are summarised in Supplementary Table 3.3.  

 

3.2.5 Analysis of the effect of thermal affinity and specialisation  

Thermal affinity (TA) and thermal specialisation (TS) were computed as 

described in Supplementary Information 3.1. The main and interactive effects of thermal 

affinity and thermal specialisation on the differences between thermal traits, thermal 

sensitivity, exposure and vulnerability to warming were determined by GLM models 

using a Gaussian distribution with link identity. GLM models for these relationships of 

differences between physiology- and occurrence-based thermal traits with thermal 

affinity and specialisation are summarised in Supplementary Table 3.4. GLM models for 

the relationship of thermal sensitivity, exposure, and vulnerability with thermal affinity 

and specialisation are summarised in Supplementary Table 3.5. 

 

3.2.6 Analysis of the phylogenetic effect  

All species were pooled to construct a backbone phylogeny based on the NCBI 

taxonomy database (Benson et al., 2009; Sayers et al., 2009), which resulted to a 

topology with all species in the pool. A phylogenetic tree for each of the dataset was 

constructed using the software program Phylomatic (Webb and Donoghue, 2005), that 
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matches a pool of species against the backbone phylogeny and returns a trimmed tree. 

Unresolved relationships between genera and all species within genera were treated as 

polytomies. Estimated divergence time on the several nodes in the backbone phylogeny 

(Supplementary Information 3.3) were obtained from TimeTree (www.timetree.org), a 

public knowledge-base for information of on the evolutionary timescale of life derived 

using molecular sequence data (Kumar et al., 2017).  This information was used to 

adjust the evolutionary branch lengths in the phylogeny using the BLADJ algorithm in 

the program Phylocom (Webb et al., 2008). The reconstruction of phylogeny was 

implemented in R using the phylocomr package (Ooms and Chamberlain, 2019). These 

reconstructed phylogenies were used to determine the phylogenetic effect.  

The presence and strength of phylogenetic signal and phylogenetic 

conservatism for each trait were quantified. Three approaches were employed to 

examine the phylogenetic effect on the traits: (1) variance partitioning analysis, (2) 

autocorrelation using Moran’s I and Abouheif’s Cmean indices, and (3) Brownian motion 

model of evolution using Blomberg’s K and K* and Pagel’s l indices. The first two 

approaches tested only for phylogenetic signal, whereas the third approach tested for 

both phylogenetic signal and phylogenetic conservatism. In the first approach, the 

phylogenetic signal was tested by comparing the observed variation within hierarchical 

taxonomic levels with expected values according to a tip randomisation null model 

following Loza et al. (2017) (citing (Prinzing et al., 2001)). The observed values were 

examined whether these values were found within the 95% confidence intervals for 

expected variation within the hierarchical taxonomic level. The confidence intervals 

were calculated as the interval between the 2.5 and 97.5 percentiles of 10,000 iterations 

of the null model. Indices in the second and third approaches were calculated using the 

phylosignal package in R (Keck et al., 2016).  Local Moran’s I index (Ii), a Local 
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Indicator of Phylogenetic Association (LIPA; synonymous to Local Indicator of Spatial 

Association (LISA) (Anselin, 2010)) was also computed to detect hotspots of positive 

and negative autocorrelation and a phylogenetic correlogram was constructed to 

visualise the phylogenetic signal in the taxonomy using the phylosignal package in R 

(Keck et al., 2016).   

 

3.2.7 Data processing and analysis software  

Data processing and analyses were implemented in R version 3.5.1 (R Core 

Team, 2019) using packages listed in the Supplementary Information 3.4.  

 

3.3 RESULTS  

 

3.3.1 Relationship between physiology- and occurrence based thermal traits  

Generalised linear models (GLM) were used to assess the relationships 

between physiology- and occurrence-based thermal traits (TTp and TTo, respectively) in 

marine phytoplankton. Supplementary Table 3.1 provides summary statistics of the 

linear relationships. Figure 3.2 presents the direct linear relationship of the TTp* and 

TTo* (see Supplementary Figure 3.7 for the linear relationship in all four datasets). Chi-

squared tests were used to determine whether the regression slopes are different from 

the slope = 1. 

The direct relationship of optimal temperature estimated from physiological 

experiments (Topt*) and occurrence data (TM*) were significant (GLM 05: F(1,122) =  

94.25, p < 0.05; Figure 3.2 A). The slope of the relationship was 1.29 ± 0.13, which was 

significantly higher than the slope = 1  (𝜒2(1,123) = 4.71, p < 0.05). Approximately 44% of 

the variance in physiology-based optimal temperature was explained by the variance in 
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occurrence-based estimates. The regression slopes between physiology- and 

occurrence-based optimal temperature were the same across the four datasets 

(Supplementary Figure 3.7 A; Supplementary Table 3.1 GLM 01, 05, 09, and 13).   

There was also a significant positive relationship between the physiology- and 

occurrence-based cold tolerance limits (CTmin* and LTL*, respectively) (GLM 06: F(1,121) 

=  99.42, p < 0.05; Figure 3.2 B). The slope of the relationship between the cold 

tolerance limits was 0.67 ± 0.07, which was significantly lower to slope= 1 (𝜒2(1,122) = 

24.86, p < 0.05). Occurrence-based cold tolerance limits did account for 45% variance 

in the physiology-based estimates. Similar to the slopes in temperature optimum, the 

regression slopes between the physiology- and occurrence-based cold tolerance limits 

were the same across the four datasets (Supplementary Figure 3.7 B; Supplementary 

Table 3.1 GLM 02, 06, 10, and 14).  

Furthermore, the heat tolerance limits estimated from physiology and 

occurrence data (CTmax* and UTL*, respectively) had a significant positive relationship 

(GLM 07: F(1,89) =  46.81, p < 0.05; Figure 3.2 C). The regression slope was 1.00 ± 0.15, 

and was not significantly different to the slope = 1. About 34% of the variation in the 

physiology-based estimates was accounted for the occurrence-based upper thermal 

limits. The slopes of the relationship between physiology- and occurrence-based heat 

tolerance limits did not vary across the four datasets (Supplementary Figure 3.7 C; 

Supplementary Table 3.1 GLM 03, 07, 11, and 15).   
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Figure 3.2. Relationship between physiology- and occurrence-based estimates of thermal traits (TTp and 
TTo, respectively) in marine phytoplankton. TTp* (CTMI-derived) were fitted against TTo* (derived from a 
seasonal extreme (SE) sea surface temperature (SST)) using generalised linear models (GLM; see 
Supplementary Table 3.1 GLM 05 – 08 for the summary statistics). The regression lines are indicated in 
blue solid lines with 95% confidence interval in grey shading. The black solid lines represent equality 
between TTp* and TTo*. Generally, there was significant positive relationship between TTp* and TTo*, 
suggesting congruence in estimation approaches. Except for the slope between heat tolerance limits, the 
slopes of the relationship between TTp* and TTo* were different to the slope = 1, indicating thermal traits 
derived from physiology and occurrence data are not the same. Also, the regression slopes were the 
same across the datasets, except for the regression slope between the thermal ranges (see 
Supplementary Figure 3.7).   

 

The positive relationship between the physiology- and occurrence-based 

thermal ranges (FTN* and RTN*, respectively) was also significant (GLM 07: F(1,89) =  

10.39, p < 0.05; Figure 3.2 D). The slope of the relationship between FTN* and RTN* 

(0.46 ± 0.14) was different to the slope = 1 (𝜒2(1,90) = 14.76, p < 0.05). Occurrence-

based thermal range only accounted 10% of the variation in the physiology-based 
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thermal range. The slopes of the relationship between physiology- and occurrence-

based thermal range did vary across datasets (Supplementary Figure 3.7 D; 

Supplementary Table 3.1 GLM 04, 08, 12, and 16), e.g. GLM 12 slope was different 

from the slope in GLM 4 (t(135) = -2.19; p < 0.05) and GLM 8 (t(135) = -2.68; p  < 0.05).  

 

3.3.2 Inequality across latitude, thermal affinity and specialisation 

Except for the difference in cold and heat tolerance limits (i.e. DCL2  and DHL2, 

respectively), the mean estimated differences between TTp* and TTo* were significantly 

different from zero, i.e. the difference in optimal temperature (DOT2 = Topt*  – TM*) was 

4.56 ± 0.49 °C (t(123) = 9.25, p < 0.05), and the difference in thermal range (DTR2 = 

FTN* – RTN*) was –1.56 ± 0.64 °C (t(90) = -2.42, p < 0.05). Similar patterns was 

generally observed in all the datasets. Except for DOT, DCL (F(3,382) =  45.01, p < 0.05), 

DHL (F(3,348) =  7.61, p < 0.05), and DTR (F(3,274) =  35.00, p < 0.05) varied across the 

four datasets.  

Latitudinal trends in the difference between TTp and TTo  were examined using 

generalised additive models (GAM; Supplementary Table 3.2 for the summary 

statistics). The difference TTp* and TTo* did vary non-monotonously with latitude (Figure 

3 A – D). These non-monotonous relationships were generally observed in other 

datasets (Supplementary Figure 3.8), where latitude accounted for <50% of the 

variation in the difference between TTp and TTo .  

Latitude accounted for 29% of the variation in DOT2 (Supplementary Table 3.2 

GAM 05). Generally, the DOT2 was higher than zero across all latitude except for 

several species close to ~40° and beyond ~60° latitude (Figure 3.3 A). This latitudinal 

pattern was generally consistent across all datasets (Supplementary Figure 3.8 A).  
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Figure 3.3. Difference between physiology- and occurrence-based thermal traits (TTp and TTo, 
respectively) in marine phytoplankton across latitude (A – D) and across thermal affinity and thermal 
specialisation (E – H). The estimates of the difference between TTp* (CTMI-derived) and TTo* (derived 
from a seasonal extreme (SE) sea surface temperature (SST)) (TTp* –  TTo*) were fitted against latitude 
using generalised additive models (GAM; see Supplementary Table 3.2 GAM 05 – 08 for the summary 
statistics). The regression lines are indicated in blue solid lines with 95% confidence interval in grey 
shading. The horizontal broken line indicates the difference is zero. As presented, TTp – TTo did vary non-
monotonously with latitude (A – D). Moreover, TTp* –  TTo* were fitted against thermal affinity and thermal 
specialisation using generalised linear models (GLM; see Supplementary Table 3.4 GLM 05 – 08 for the 
summary statistics). The GLMs were used to construct the contour plots (E – H). The colour bars indicate 
the estimates of TTp* –  TTo*.  
 
 

On the other hand, latitude only explained 6% of the variance in DCL2 

(Supplementary Table 3.2 GAM 06).  DCL2 did not deviate from zero across all latitude 

(Figure 3.3 B). However, this pattern was different in DCL1 and DCL3 that were 

generally below zero across latitude (Supplementary Figure 3.8 B). Also, DCL1 had no 

clear latitudinal pattern.  

About 34% of variance in DHL2 was explained by latitude (Supplementary Table 

3.2 GAM 07), which generally did not differ from zero across latitude, except for the 

estimates near ~40° latitude and beyond ~60° (Figure 3.3 C). This trends varied from 

DHL1 and DHL3 that were generally higher than zero at lower latitude (< 40° latitude) 

(Supplementary Figure 3.8 C).  
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Approximately 31% of the variance in DTR2 was explained by latitude 

(Supplementary Table 3.2 GAM 08). DTR2 did not vary from zero at lower latitude, but it 

was lower than zero at higher latitude (Figure 3.3 D). Different pattern was observed in 

DTR1 and DTR3, where estimates were generally higher than zero across the latitude 

(Supplementary Figure 3.8 D). 

The effects of thermal affinity (TA) and thermal specialisation (TS) on the 

difference between TTp and TTo  were tested using the generalised linear model (GLM; 

Supplementary Table 3.4 for the summary statistics). Generally, the difference TTp* and 

TTo* did vary with thermal affinity and thermal specialisation (Figure 3 E – H). These 

patterns were also observed in other datasets (Supplementary Figure 3.9).   

The main effect of TA on DOT2 was significant (GLM 21). Neither TS nor its 

interaction with TA had an effect on DOT2. DOT2 had decreased with increasing TA 

(Figure 3 E). Similar pattern was observed in all datasets, but both DOT3 and DOT4 

were influenced by the main and interaction of the effects of TA and TS (Supplementary 

Figure 3.9).  

The main effects of TA and TS on DCL2 were significant (GLM 22). DCL2 had 

decreased with increasing TA and had increased with increasing TS (Figure 3 F), and 

these were consistent in all datasets (Supplementary Figure 3.9).  

The main and interactive effects of TA and TS on DHL2 were significant (GLM 

23). DHL2 had decreased with increasing TA and TS (Figure 3 G). Similar patterns were 

observed in all datasets, except for DHL3 that was not affected by the interaction 

between TA and TS (Supplementary Figure 3.9). 

The main effects of TA and TS on DTR2 were significant (GLM 24). DTR2 had 

decreased with increasing TA and TS (Figure 3 H). This pattern were the same across 

datasets, except for DTR4 that did not vary across TA (Supplementary Figure 3.9). 
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3.3.3 Thermal sensitivity, warming exposure and vulnerability across latitude, 

thermal affinity and specialisation 

Latitudinal trends in sensitivity to cold and warm temperature (Smin and Smax, 

respectively), warming exposure (WR), and vulnerability to warming (V) in marine 

phytoplankton were determined using generalised additive model (GAM; 

Supplementary Table 3.3 for the summary statistics).  Smin *, Smax*, WR*, and V* 

(estimated from the CTMI-derived dataset) were found to vary non-linearly across 

latitude (Figure 3.3), which generally similar to the patterns observed from the data in 

the published dataset (Supplementary Figure 3.10).  

Exactly half of the variation in Smin * was explained by latitude. As observed, 

Smin * rose evidently to high point and peaked at ~50° (Figure 3.4 A). Estimates of Smin * 

were generally lower than zero, except for the observations beyond the peak that were 

not different from zero. This patterns in Smin * had a notable difference from the trends in 

Smin  estimated from the published dataset that had dipped at ~50°  (Supplementary 

Figure 3.10 A), 

About 31% of the variance in Smax* was explained by latitude. Smax* had no 

clear latitudinal variation in lower latitude but the estimates were generally above zero. 

Smax* had dropped at ~40°, then increased to a peak (15°C) at ~55°, and declined to 

~65° (Figure 3.4 B). These patterns were generally retained in the latitudinal trends in 

Smax estimated from the published dataset, but had remarkable differences: (1) the 

decline of Smax  from 0° to ~23°, (2) the peak at ~35°,  and the increasing pattern of Smax  

beyond ~65° (Supplementary Figure 3.10 B).  

On the other hand, latitude accounted for the 43% of the variance in warming 

exposure based on RCP 8.5 climate scenario (WR8.5*). WR8.5* evidently increased with 

latitude until it reached a peak at ~45, and declined at ~65° (Figure 3.4 C). 
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Successively, WR8.5* rose to high point and peaked in the highest latitude. Warming 

exposure did vary significantly across climate scenarios (F(3,612) = 925.36, p < 0.05). As 

expected, WR8.5* were higher than the WR projected in RCP 2.6, RCP 4.5, and RCP 

6.0 climate scenarios. These trends did not differ from the trends in WR estimated from 

the published dataset (Supplementary Figure 3.10 C – F).  

 

Figure 3.4. Sensitivity to cold and warm temperature (Smin and Smax, respectively), warming exposure 
(WR), and vulnerability to warming (V) in marine phytoplankton across latitude (A – D) and across thermal 
affinity (TA) and thermal specialisation (TS) (E – H). All estimates were obtained from CTMI-derived 
datasets (indicated by an asterisk), and the warming rate and vulnerability were computed based on RCP 
8.5 climate scenario (WR8.5* and V8.5*, respectively). Smin *, Smax*, WR8.5*, and V8.5* were fitted against 
latitude using generalised additive models (GAM; see Supplementary Table 3.3 GAM 17, 18, 22, and 26, 
respectively, for the summary statistics). The regression lines are indicated in blue solid lines with 95% 
confidence interval in grey shading. Except for V8.5*, estimates for Smin*, Smax*, WR8.5* did vary non-
monotonously with latitude (A – D). Furthermore, Smin*, Smax*, WR8.5*, and V8.5* were fitted against TA and 
TS using generalised linear models (GLM; see Supplementary Table 3.5 GLM 33, 34, 38, and 42, 
respectively, for the summary statistics). The GLMs were used to construct the contour plots (E – H). The 
colour bars indicate the estimates of Smin *, Smax*, WR8.5*, and V8.5*.  

 

Warming vulnerability based on RCP 8.5 climate scenario (V8.5*) appeared to 

behave monotonously (Figure 3.4 D). About 14% of the variance in V8.5* was explained 

by latitude. V8.5* remained constant in lower latitude and gradually increased in higher 

latitude. There was a significant difference in V8.5* across the climate scenarios  (F(3,361) 

= 35.27, p < 0.05). V8.5* were lower than the warming vulnerability projected in other 
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climate scenarios. Contrastingly, trends in warming vulnerability estimated from 

published dataset were non-monotonous (Supplementary Figure 3.10 G – J).  

Furthermore, significant effects of thermal affinity (TA) and thermal 

specialisation (TS) on sensitivity to cold and warm temperature (Smin and Smax, 

respectively), warming exposure (WR), and vulnerability to warming (V) in marine 

phytoplankton were tested using generalised linear model (GLM; Supplementary Table 

3.5 for the summary statistics).  

Only the main effect of TS on Smin* was significant (GLM 33), increasing Smin* 

with increasing TS (Figure 3.4 E). On the other hand, only the main effect of TA on 

Smax*  was significant (GLM 34), decreasing Smax* with increasing TA (Figure 3.4 F).  

These trends were similar to the patterns observed in Smin and Smax estimated from the 

published dataset (Supplementary Figure 3.11 C and D, respectively).   

There was no significant effect of TA and TS on warming exposure and on 

warming vulnerability based on RCP 8.5 climate scenario (WR8.5* and V8.5*, GLM 38 

and 42, Figure 3.4 G and H, respectively). However, the significance of these effects 

were dependent on climate scenarios and on the composition of the datasets. 

Supplementary Figure 3.11 presents contour plots showing the variation of warming 

exposure (Supplementary Figure 3.11 F – L) and warming vulnerability (Supplementary 

Figure 3.11 M – T) across thermal affinity and thermal specialisation.  

 

3.3.4 Phylogenetic effect on the thermal traits, thermal sensitivity, exposure and 

vulnerability to warming  

The phylogenetic distribution of the physiology- and occurrence-based thermal 

traits (TTp and TTo, respectively), their difference (TTp – TTo), thermal sensitivity (Smin 

and Smax), warming exposure (WR), and warming vulnerability (V) in marine 
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phytoplankton (Figure 3.5; Supplementary Figure 3.12 – 3.14) were examined to 

determine the phylogenetic effect. Three approaches were employed: (1) 

variance partitioning (VP) (Figure 3.6; Supplementary Figure 3.15 – 3.17), (2) 

autocorrelation (AC) using Moran’s I (Figure 3.7; Supplementary Figure 3.18 – 3.20) 

and Abouheif’s Cmean indices, and (3) Brownian motion model of evolution (BM) using 

Blomberg’s K and K* and Pagel’s l indices.  Supplementary Table 3.6 presents the 

summary statistics for these three approaches.  

Variation in TTp across taxonomic groups was evident (Figure 3.5 A – D; 

Supplementary Figure 3.12 A – H). For instance, cyanobacteria had higher Topt(*), 

CTmin(*), and CTmax(*), and lower FTN(*) compared to other taxonomic groups. Based on 

VP, about 24 – 63% of the variation in TTp was explained by species, and a significant 

smaller proportions of the variance was explained by supra-specific taxonomic levels 

(Figure 3.6 A – D; Supplementary Figure 3.15 A – H).  AC-based phylogenetic signal 

was present in Topt(*) (I and Cmean > 0, p < 0.05; Figure 3.7 A and Supplementary Figure 

3.18 A and E), but BM-based signal was absent. Both AC and BM-based phylogenetic 

signals were detected in CTmin(*) (I, Cmean, K, K*, and l  > 0, p < 0.05; Figure 3.7 B and 

Supplementary Figure 3.18 B and F), but the BM-based signal was weak to detect 

phylogenetic conservatism in CTmin(*) (K, K*, and l < 1). However, no AC-based 

phylogenetic signal was detected in CTmax* (Figure 3.7 C), but CTmax estimated from the 

published dataset had produced a significant AC-based phylogenetic signal (I and Cmean 

> 0, p < 0.05; Supplementary Figure 3.18 G). Furthermore,  phylogenetic signal was 

absent in FTN* (Figure 3.7 D), but, both AC and BM-based signals were detected in 

FTN estimated from the published dataset (I, Cmean, K, K*, and l  > 0, p < 0.05; 

Supplementary Figure 3.18 H). The BM-based signal was weak to infer presence of 

phylogenetic conservatism in FTN (K, K*, and l < 1). 
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Figure 3.5.  Phylogenetic distribution of the thermal traits estimated from physiology data (TTp) and 
occurrence data (TTo), their difference (TTp – TTo), thermal sensitivity (Smin and Smax), warming exposure 
(WR), and warming vulnerability (V) in marine phytoplankton. CTMI-derived TTp* (A – D) and seasonal 
extreme SST-derived TTo* (E – H) were used to compute for the difference between physiology- and 
occurrence-based thermal traits (I – L). Smin*, Smax*, WR8.5* and V8.5* were obtained from CTMI-derived 
datasets (M – P) and the warming rate and vulnerability were computed based on RCP 8.5 climate 
scenario. Colours indicate trait value, as shown by the colour bar below each tree. 
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Figure 3.6. Percentage of variation in thermal traits estimated from physiology data (TTp) and occurrence 
data (TTo), their difference (TTp – TTo), thermal sensitivity (Smin and Smax), warming exposure (WR), and 
warming vulnerability (V) in marine phytoplankton explained by different taxonomic levels according to a 
variance partitioning analysis. CTMI-derived TTp* (A – D) and seasonal extreme SST-derived TTo* (E – 
H) were used to compute for the difference between physiology- and occurrence-based thermal traits (I – 
L). Smin*, Smax*, WR8.5* and V8.5* were obtained from CTMI-derived datasets (M – P) and the warming rate 
and vulnerability were computed based on RCP 8.5 climate scenario. Solid points represent the observed 
values, whilst the boxplots represent the distribution of values generated by the tip randomisation null 
model. All observed values are significant different from the null model at 95% confidence interval. The 
red and blue points indicate that observed values are lower and higher than the null model, respectively.   
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Figure 3.7. Phylogenetic correlograms for the thermal traits estimated from physiology data (TTp) and 
occurrence data (TTo), their difference (TTp – TTo), thermal sensitivity (Smin and Smax), warming exposure 
(WR), and warming vulnerability (V) in marine phytoplankton. CTMI-derived TTp* (A – D) and seasonal 
extreme SST-derived TTo* (E – H) were used to compute for the difference between physiology- and 
occurrence-based thermal traits (I – L). Smin*, Smax*, WR8.5* and V8.5* were obtained from CTMI-derived 
datasets (M – P) and the warming rate and vulnerability were computed based on RCP 8.5 climate 
scenario. The solid black lines indicate the Moran’s I index autocorrelation, and the dashed black lines 
indicate the 95% confidence interval. The horizontal black lines represent the estimated value of Moran’s 
I under the null hypothesis of no phylogenetic autocorrelation. The red and blue colored bars indicate 
significant positive and negative autocorrelation, respectively; whilst, the black colored bars indicate a 
non-significant autocorrelation.   
 

TTo also appeared to vary across taxonomic groups (Figure 3.5 E – H; 

Supplementary Figure 3.12 I – P). Approximately, 68 – 88% of the variation in TTo  was 

largely explained by species (Figure 3.6 E – H; Supplementary Figure 3.15 I – P). AC-
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based phylogenetic signal was present in TM (*) (I and Cmean > 0, p < 0.05; Figure 3.7 E 

and Supplementary Figure 3.18 I and M). Also,  BM-based signal was detected in TM* 

(based only on l  > 0, p < 0.05) and in TM (based on K and l  > 0; p < 0.05), however 

this signal was weak to detect phylogenetic conservatism in TM (*) (K and l < 1). LTL(*) 

had produced significant AC- and BM-based phylogenetic signals (I, Cmean, K, K*, and l  

> 0, p < 0.05; Figure 3.7 F and Supplementary Figure 3.18 J and N). However, 

phylogenetic conservatism was absent in LTL(*) (K, K*, and l < 1). Also, AC- and BM-

based phylogenetic signals were also detected in UTL(*) (I, Cmean, and l  > 0, p < 0.05; 

Figure 3.7 G; Supplementary Figure 3.18 K and O) but failed to detect phylogenetic 

conservatism in UTL(*) (l < 1). AC-based phylogenetic signal was present in RTN * 

(based only on Cmean > 0, p < 0.05) and in RTN (I and Cmean > 0, p < 0.05; Figure 3.7 H 

and Supplementary Figure 3.18 L and P). Neither the phylogenetic signal nor the 

phylogenetic conservatism based on BM analysis were detected in RTN (*).  

The difference between TTp(*) and TTo(*) was also found to vary across 

taxonomic groups (Figure 3.5 I – L; Supplementary Figure 3.13), and significant 

proportion of the variation in TTp(*) – TTo(*) was explained by the species (25 – 70%) 

and supra-specific taxonomic levels (Figure 3.6 I – L; Supplementary Figure 3.16). 

However, both AC- and BM-based analyses did not reveal statistically significant 

phylogenetic signal and conservatism in TTp* – TTo* (Figure 3.7 I –L and 

Supplementary Figure 3.19). In contrast, TTp – TTo estimated from published dataset 

produced a significant AC-based phylogenetic signal (I and/or Cmean > 0, p < 0.05), 

except for the difference in heat tolerance limits (DHL(*)) . 

Thermal sensitivity (Smin and Smax), warming exposure (WR), and warming 

vulnerability (V) in marine phytoplankton also seemed to vary across taxonomic groups 

(Figure 3.5 M – P; Supplementary Figure 3.14), and significant percentage of the 
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variation was explained by species and supra-specific taxonomic levels (Figure 3.6 M – 

P; Supplementary Figure 3.17). However, phylogenetic signal and conservatism were 

absent in Smin* (Figure 3.7 M and Supplementary Figure 3.20 A). In contrast, Smin 

estimated from published dataset had detected a statistically significant  phylogenetic 

signal based on AC (I and Cmean > 0, p < 0.05; Supplementary Figure 3.20 C) and BM 

(K* and l  > 0, p < 0.05). However, BM-based signal was too weak to detect 

phylogenetic conservatism in Smin. Also, There was no significant phylogenetic signal in 

Smax(*)  (Figure 3.7 N and Supplementary Figure 3.20 B and D), with the exception of 

the analysis based on Cmean that had detected a statistically significant phylogenetic 

signal in Smax estimated from published dataset (Cmean > 0, p < 0.05). Generally, 

phylogenetic signal was absent in WR(*) across all climate scenarios (Figure 3.7 O and 

Supplementary Figure 3.20 E and L), except for the analysis based on K and K* that 

had detected significant phylogenetic signal in WR2.6* but was weak to detect 

phylogenetic conservatism in the trait (K and K*  < 1). Furthermore, significance of the 

phylogenetic signal in V(*) across all climate scenarios was not detected (Figure 3.7 P 

and Supplementary Figure 3.20 M and T), except for the l that had detected statistically 

significant signal in V2.6, V6.0, and V8.5 (l > 0, p < 0.05). The l-based signals were close 

to 1 (i.e. 0.96 – 1.00), which may indicate the presence of phylogenetic conservatism in 

warming vulnerability in marine phytoplankton. 
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3.4 DISCUSSION  

 

3.4.1 Congruence and inequality between physiology- and occurrence-based 

thermal  

The significance of the direct relationship between the thermal traits derived 

from physiology and occurrence data (TTp and TTo, respectively) in marine 

phytoplankton (Figure 3.2) suggests congruence between the estimation approaches. 

However, the degree of congruence is not high as inferred from the lower proportion of 

the variance in TTp explained by TTo (< 50 %). Furthermore, the TTp and TTo are not 

equal as indicated by the non-conformity of the slopes to 1 (Figure 3.2) and the non-

equality of TTp – TTo to zero (Figure 3 A – D), with the exception of the heat tolerance 

limits. Taken together, these results support the hypothesis of the link between TTp and 

TTo that may express different aspects of the thermal niche of species. TTp is expected 

to estimate the fundamental niche of a species, which is defined by species’ 

physiological tolerance range to environmental factors such as temperature in the 

absence of biotic interactions (Hutchinson, 1957).  However, the presence of biotic 

interaction such as predation, competition, mutualisms, parasites and pathogens 

(Jankowski et al., 2013), species dispersal limitation (Sánchez-Fernández et al., 2016), 

and limited climate availability (Soberón and Nakamura, 2009) reduce the fundamental 

niche to realised niche that may be estimated by the TTo. Hence, it is expected that the 

TTp  is higher than TTo.  

Contrary to expectations, the extreme cold and heat tolerance limits as 

estimated from occurrence data in several species are close, or even exceed their 

physiological thermal limits (Figure 3 B and C), resulting to the extreme realised range 

equal to or wider than the fundamental range (Figure 3 D). However, this is not case for 
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the thermal ranges estimated from the annual average SST that are generally smaller 

than the physiological thermal range (Supplementary Figure 3.7 D). Therefore, the 

thermal range derived from annual average- and seasonal extreme-SST may estimate 

a different aspect species niche, the former being limited by thermal availability and is 

generally smaller than and is within the  fundamental niche (Supplementary Figure 3.21 

A and C), conforming to the prediction by Hutchinson (1957).  

The biases associated with physiology data (Boyd et al., 2013; Low-Décarie et 

al., 2017; Salvador et al., 2019) and occurrence data (Isaac and Pocock, 2015); cannot 

be ignored that may introduce uncertainties in the estimation of the thermal traits, and 

thus possibly violate the prediction by Hutchinson (1957). For instance, strains/isolates 

of species may possess different thermal niche and species may not be represented 

across their geographic range, which may underestimate the fundamental thermal 

niche. Also, the spatial, temporal, and taxonomic bias in the occurrence dataset may 

underestimate or overestimate the species’ realised niche. 

Setting these biases aside, the predictions by Hutchinson (1957) can be 

violated in several ways: (1) niche evolution can change the physiological limits in a 

population relative to their baseline; (2) natural or anthropogenic mechanisms can 

facilitate the occurrence of species outside their physiological limits; and (3) failure to 

account for the variation in physiological requirements across species life history may 

introduce inaccuracies of the estimation of fundamental thermal niche (Soberon and 

Arroyo-Peña 2017).  
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3.4.2 Variation of the inequality between physiology- and occurrence-based 

thermal traits 

Generally, thermal traits in marine phytoplankton vary across latitude as 

demonstrated in previous studies using the physiology data (Chen, 2015; Thomas et al., 

2016, 2012) and occurrence data (Edullantes et al., n.d.). Hence, the difference 

between physiology- and occurrence-based thermal traits (TTp – TTo) is also likely to 

vary across latitude. As observed, TTp – TTo  generally vary non-monotonously with 

latitude (Figure 3 A – D), suggesting that TTp – TTo may increase or decrease 

depending on the geographic locations where the species are collected/isolated. 

Moreover, the significance of the main effects of thermal affinity (TA) and thermal 

specialisation (TS) on TTp – TTo  reveals remarkable contrasts between the cooler- and 

warmer-affinity species, and between the specialists and generalists (Figure 3 E – H; 

Supplementary Figure 3.9).  

The estimates of the difference in optimal temperature (DOT) across latitude 

are mostly above the equality line (Figure 3 A; Supplementary Figure 3.8 A), indicating 

that the optimal temperature for growth of a species is higher than that the optimal 

temperature for their ecological success. Hence, it is possible to hypothesise that 

presence of the biotic interactions is likely to reduce the optimal thermal preference of 

species. Also, the results also show the decline of DOT near the equality line at ~40° 

where variability in DOT is high. These findings may be explained by the fact that 

climate variability is highest at mid latitude (Chapter 2). A high climate variability 

inevitably widens the realised niche breadth to an extent where the midpoint will be 

closer or exceed the physiological thermal optimum. Furthermore, DOT decreases with 

TA (Figure 3 E; Supplementary Figure 3.9), suggesting that the greater the affinity of 
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species to warm temperature, the closer their thermal optimum for growth to their 

optimal temperature for ecological success.  

On the other hand, the latitudinal trend in DCL (i.e. difference in cold tolerance 

limit) is generally close to or below the equality line (Figure 3 B; Supplementary Figure 

3.8 B), entailing that the species’ lower thermal limits in the presence of biotic 

interaction are equal or greater than their physiological thermal minima. Contrastingly, 

the latitudinal trend in DHL (i.e. difference in heat tolerance limit) is commonly near or 

above the equality line (Figure 3 C; Supplementary Figure 3.8 C), suggesting that the 

realised upper thermal limits of species are equal or lower than their critical thermal 

maxima. These findings support the hypothesis that the species’ realised thermal limits 

are within their fundamental thermal niche. However, there are several notable 

observations that contradict this hypothesis. For instance, estimates of  DCL and DHL  

are highly variable at ~40°, where some estimates are above and below the equality 

line, respectively. Therefore, in this case, the realised thermal limits are not contained 

by the fundamental thermal range, and the realised thermal niche may be wider than 

the fundamental niche (Figure 3 D), which is inconsistent to the prediction by 

Hutchinson (1957). As described earlier, these discrepancies are obvious with 

occurrence-based thermal traits derived from seasonal extreme SST.  In addition, both 

DCL and DHL also decline with increasing TA (Figure 3 F and G, respectively; 

Supplementary Figure 3.9), indicating that warmer-affinity species have lesser 

inequality between physiological and realised thermal limits as compared to the cooler 

water species. The direct relationship between DCL and TS suggests that the more 

specialist a species, the lesser is the difference in cold tolerance limits. On the other 

hand, the inverse relationship between DHL and TS implies that the difference in heat 

tolerance limits is greater in the thermal specialist than in the thermal generalist.  
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The latitudinal trends in DTR (difference in thermal range) with realised thermal 

limits derived from annual average SST are generally above the equality line 

(Supplementary Figure 3.8 D), conforming to the hypothesis. As observed, DTR in 

lower latitude are greater than the estimates in higher latitude, suggesting that the 

realised thermal niche in temperate species are much closer to the their fundamental 

thermal niche as compared to the niches in tropical and sub-tropical species. 

Furthermore, DTR declines with increasing TA and TS (Figure 3 H; Supplementary 

Figure 3.9), implying that the difference between fundamental and realised thermal 

range is greatest among species with greater affinity to cold temperature and with 

higher degree of thermal specialisation. This trend could be explained by the reduced 

climate variability in lower latitude, constraining the species’ realised thermal niche 

(Stuart-Smith et al., 2017) and physiological thermal niche (Addo-Bediako et al., 2000; 

Janzen, 1967; Sunday et al., 2011) in the tropics. In addition, the high biodiversity of 

marine phytoplankton in the tropics (Righetti et al., 2019) entails intensification of the 

biotic interaction in the tropical phytoplankton community, and hence may narrow the 

realised thermal niche in the tropics. Accordingly, the rates of biotic interactions and 

processes, or the rate of evolutionary diversification are higher in a warmer climate than 

the rates in a colder climate (Allen et al., 2002; Mittelbach et al., 2007).  Several 

literature provide persuasive empirical evidence to support that thermal niche breadth 

increases with increasing latitude (Addo-Bediako et al., 2000; Stuart-Smith et al., 2017; 

Sunday et al., 2011). In spite of this, the generalisation of the relationship is still unclear 

mainly due to several analytical issues associated with macroecological studies 

(Blackburn and Gaston, 1998; Gaston et al., 2009).   
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3.4.3 Variation of thermal sensitivity, exposure and vulnerability to warming 

Thermal sensitivity (Smin and Smax) is the proximity between species’ 

physiological thermal limits (CTmin and CTmax, respectively) and the ambient 

temperature extremes it experiences in its local habitat (Hmin and Hmax). This can be 

used to infer species’ thermal safety margin (TSM), a useful concept to understand 

global patterns of the vulnerability of ectotherms to warming (Bennett et al., 2019; 

Clusella-Trullas et al., 2011; Deutsch et al., 2008; Diamond et al., 2012; Huey et al., 

2009; Sunday et al., 2014). A positive TSM (CTmin < Hmin,  hence Smin < 0; CTmax > Hmax,  

hence Smax > 0) suggests that a species has a physiological thermal safety since the 

lower and upper tolerance limits are below the coldest temperature and above the 

warmest temperature it experiences, respectively. In contrast, a negative TSM (CTmin > 

Hmin,  hence Smin > 0; CTmax < Hmax,  hence Smax < 0) indicates that a species has to 

avoid the extreme temperatures or else it is at risk of thermal danger (Sunday et al., 

2014). The results of the study show that Smin and Smax are generally below and above 

zero, respectively (Figure 3.4 A and B; Supplementary Figure 3.10 A and B), indicating 

positive TSM. Hence, the marine phytoplankton are generally living in the present 

climate scenario within the thermal safety zone.   

Thermal sensitivity in marine phytoplankton varies across latitude (Figure 3.4 A 

and B; Supplementary Figure 3.10 A and B), which can be explained by the fact that 

species in the tropics are more exposed to warmer temperature as compared to 

temperate species that are more exposed to cold temperature. This suggests that 

temperate species have low cold safety margins and therefore they are at risk to live 

beyond the limit of their cold tolerance as compared to species in the tropics. On the 

other hand, the tropical species have low heat safety margins and hence they are more 

vulnerable to warming than the species thriving at higher latitudes (Clusella-Trullas et 
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al., 2011; Deutsch et al., 2008; Diamond et al., 2012; Huey et al., 2009). This is further 

supported by the latitudinal trend in warming vulnerability (Figure 3.4 D; Supplementary 

Figure 3.10 G – J), indicating that the local temperatures will surpass the  physiological 

upper thermal limits in tropical species faster than the temperate species despite the 

warming rate is slower in the lower latitudes (Figure 3.4 C; Supplementary Figure 3.10 

C – F).  

Moreover, Smin is independent on species’ thermal affinity (TA) but depends on 

the degree of their thermal specialisation (TS) (Figure 3.4 E). This suggests that the 

more specialist the species, the lower their physiological lower thermal limits relative to 

the coldest temperature they experience, regardless of their degree of affinity to warm 

and cold temperature. It can therefore be inferred that the specialists have higher cold 

safety margin than the generalist.  

On the other hand, Smax is dependent on TA but not on TS (Figure 3.4 F), 

suggesting that the sensitivity to warm temperature is different between the cooler- and 

warmer-affinity  species regardless of their degree of specialisation. This further implies 

that cooler-affinity species tend to have high physiological upper thermal limits relative 

to the highest temperature they experience in their local habitat as compared to that of 

the warmer-affinity species. Hence, species that have higher affinity to warm 

temperature have low heat safety margin, which makes them more vulnerable to 

warming. Contrary to expectations, this study is unable to find a clear effect of TA and 

TS on exposure and vulnerability to warming (Figure 3.4 G – H; Supplementary Figure 

3.11 M – T). This result however is contingent on the climate scenarios and the 

composition of datasets.  
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3.4.4 Presence of phylogenetic signal in thermal attributes 

This study also set out to assess the phylogenetic effect on the thermal 

attributes in marine phytoplankton such as the physiology- and occurrence-based 

thermal traits, their inequalities, thermal sensitivity, warming exposure, and warming 

vulnerability. This aim is attained by assessing the presence and strength of 

phylogenetic signal and/or phylogenetic conservatism using three approaches: (1) 

variance partitioning, (2) autocorrelation, and (3) Brownian motion model of evolution. 

Generally, the results provide support for the hypothesis that thermal attributes are 

more similar among closely related species than expected from a null model from the 

same phylogeny. However, the findings provide no clear evidence of the presence of 

phylogenetic conservatism in the thermal attributes. The implications of these findings 

and a number of caveats with respect to our analyses are discussed below.  

The first approach is based on variance partitioning (VP) in which the 

phylogenetic pattern of thermal attributes is inferred from the significant difference 

between the observed variation within hierarchical taxonomic levels and the variation 

expected by the tip randomisation null models. There are several null models used to 

deduce phylogenetic patterns of traits (Krasnov et al., 2011; Machac et al., 2011; 

Silvertown et al., 2006; Waldron, 2007), however the explicit null models used for this 

hypothesis testing (i.e. tip randomization) remove any attribution to shared ancestry by 

randomly assigning species traits values across a given phylogeny (Loza et al., 2017). 

The findings reveal that the significant proportion of the variation in all thermal attributes 

is mainly explained by species, which generally exceeds the proportion of variance 

explained by supra-specific taxonomic levels. This suggests that the thermal attributes 

are most variable among species within genera with few notable exceptions (Figure 3.6; 

Supplementary Figure 3.15 – 3.17). Although the variation is largely explained by 
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species, the supra-specific taxonomic levels frequently explained more variation than 

expected by the tip randomisation null models. This indicates presence of phylogenetic 

signal in the physiology- and occurrence-based thermal traits, their inequalities, thermal 

sensitivity in marine phytoplankton. This study demonstrates the utility of variance 

partitioning across taxonomic levels in assessing the phylogenetic patterns of thermal 

attributes. However, this approach does not require a dated phylogeny nor assume any 

evolutionary model premises, hence this can only be used to test the phylogenetic 

signal and not phylogenetic conservatism.  

The second approach is based on autocorrelation (AC) using Moran’s I and 

Abouheif’s Cmean indices. Moran’s I index measures spatial autocorrelation (Moran, 

1950, 1948), which later used to tests phylogenetic autocorrelation that relates cross-

taxonomic trait variation to phylogeny (Gittleman and Kot, 1990). Whereas, Abouheif’s 

Cmean index measures for serial independence (Abouheif, 1999), which is the mean 

value of a random subset of possible ways to represent the order of branches in a 

phylogenetic tree. Both indices are not under an assumption of evolutionary model and 

are not suited as an effect size measure. Since both are restricted to comparisons 

among different traits in the same phylogeny, the resulting values do not offer 

interpretation when comparing values between phylogenetic trees. However, the 

deviation from zero (i.e. null model) indicates the relationship between trait values in the 

same phylogeny (Münkemüller et al., 2012). The results of this study generally show the 

significant difference in the AC-based indices for physiology- and occurrence-based 

thermal traits from the null model, suggesting the presence of phylogenetic signal in the 

thermal traits. On the other hand, the findings generally suggest absence of 

phylogenetic signal in the inequality between physiology- and occurrence-based 

thermal traits, thermal sensitivity, and exposure and vulnerability to warming.  
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The third approach is based on the Brownian motion model of evolution (BM) 

using Blomberg’s K and K* and Pagel’s l indices. Blomberg’s K and K* expresses the 

strength of phylogenetic signal as a scaled ratio of observed distribution of tip data to 

expectations derived from a Brownian motion model of evolution (Blomberg et al., 

2003). K uses the phylogenetically correct mean, whereas K* uses the observed data 

on a star phylogeny with contemporaneous tips, but both indices are highly correlated 

(Blomberg et al., 2003). A K or K* value close to 1 implies that relatives resemble each 

other more than expected under a Brownian motion model of evolution, whereas a 

value close to 0 indicates absence of phylogenetic conservatism (Blomberg et al., 

2003). Similar to Blomberg’s indices, Pagel’s λ index operates under the assumption of 

Brownian evolution model in which it measures a scaling parameter for the correlations 

between species relative to the expected correlation (Pagel, 1999).  A λ value close to 1 

indicates that traits evolve under a Brownian model of evolution, whereas a value of 0 

indicates no phylogenetic signal in the trait. Depending on the shape of phylogeny, λ 

value may exceed to 1 (Freckleton et al., 2002). Generally, the results of this study 

reveal no significant difference in the BM-based indices for the thermal attributes from 

the null model, suggesting the absence of phylogenetic signal in the thermal attributes. 

A notable exception is the patterns in physiology- and occurrence-based estimate of the 

lower thermal limits, which appear to have significant phylogenetic signal based on the 

BM-based indices. However, the detected phylogenetic signals are weak, suggesting 

the absence of phylogenetic conservatism in both the physiology- and occurrence-

based estimate of the lower thermal limits.  

These results however must be interpreted with caution because of the possible 

biases from the composition of the datasets. For instance, several AC-based indices 

show significant difference from the null model for traits in CTMI-derived dataset but not 
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in the published dataset. Another source of uncertainty is the estimate of the trait values 

due to potential biases associated with physiology and occurrence data (Boyd et al., 

2013; Isaac and Pocock, 2015; Low-Décarie et al., 2017; Salvador et al., 2019) as 

described earlier. Furthermore, there is also a potential bias form the estimates of the 

phylogeny since indices and tests for phylogenetic signals are dependent on tree 

topologies (Blomberg et al., 2003; Freckleton et al., 2002, 2011; Ives et al., 2007; Rohlf, 

2001). The findings may be somewhat limited by the genetic information used to 

reconstruct phylogeny and to estimate the divergence time of major taxon in 

phytoplankton.  

 

3.5 CONCLUSIONS  

 

The present study examines the global pattern of the congruence between 

physiology- and occurrence-based thermal traits, thermal sensitivity, and exposure and 

vulnerability to warming in marine phytoplankton. To our knowledge, this has been one 

of the first attempts to thoroughly investigate the biogeographic and phylogenetic 

patterns of these thermal attributes in marine phytoplankton. Key findings in this study 

are summarised as follows: (1) physiology- and occurrence-based thermal traits are 

congruent but not equal, (2) the inequality between these traits and thermal sensitivity 

vary across latitude, thermal affinity, thermal specialisation, (3) exposure and 

vulnerability to warming vary non-monotonously with latitude, (4) interspecific variation 

in thermal attributes is evident, and (5) phylogenetic signals are present, but no clear 

evidence of the presence of phylogenetic conservatism in the thermal attributes. The 

study has identified emerging patterns of thermal attributes in marine phytoplankton, 

contributing to our understanding of how these species respond to climate change.  
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TEMPERATURE DEPENDENCE OF GROWTH IN NON-TOXIC AND TOXIC  MARINE 

PHYTOPLANKTON 

 

ABSTRACT 

 

Toxic algal blooms appear to expand globally and their duration, frequency, and 

intensity may increase in response to climate change. Hence, it is important to assess 

the effect of temperature on growth in marine phytoplankton. This present study 

examined the temperature dependence of the growth in non-toxic and toxic marine 

phytoplankton. Using strains of dinoflagellates, growth rates were measured along a 

wide temperature gradient to estimate the maximum growth rates and thermal traits. 

The data obtained from this study were supplemented with datasets compiled from 

published laboratory culture experiments to allow comparison with an adequate number 

of observations. The results revealed no difference in the (i) temperature dependence of 

growth, (ii) thermal traits, (iii) relationship between maximum growth rates and thermal 

traits, (iv) trait-environment relationship, and (v) thermal safety and vulnerability 

between non-toxic and potentially toxic phytoplankton. These findings improve our 

current knowledge on the growth in marine phytoplankton in response to temperature, 

advancing our ability to predict toxic blooms in response to ongoing climate change.  
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4.1 INTRODUCTION  

 

Phytoplankton are ecologically important as primary producers and biological 

carbon pump regulators (e.g. Behrenfeld et al., 2006; Falkowski, 2012; Falkowski and 

Oliver, 2007). However, some phytoplankton species may form harmful algal blooms 

(HAB) that are a global problem due to the production of toxins that pose a risk to public 

health, the environment, and our economy (Berdalet et al., 2015). Toxic blooms are 

already a global problem and their current distribution is alarming. Climate change may 

provide favourable conditions for toxic algae to occur  (Hallegraeff, 2010). It is likely that 

toxic blooms and their impacts may be exacerbated in the future where their duration, 

intensity, and frequency may increase in response to changes in the climate (Moore et 

al., 2008; Tatters et al., 2013). The well-documented effects of toxins to humans and to 

other organisms (Berdalet et al., 2016) and the potential effect of climate change on 

toxic blooms in the future (Fu et al., 2012) have stimulated studies on the ecophysiology 

of toxic phytoplankton (e.g. Kellmann et al., 2010a; Perini et al., 2014; Ramsey et al., 

1998; Stüken et al., 2011). Hence, it is crucial to be able to assess the sensitivity of 

HAB species to changes in the temperature, which is projected to increase under 

climate change (IPCC, 2013). 

Temperature is one of the most fundamental abiotic factors that influence the 

niche of phytoplankton (Boyd et al., 2013; de Boer et al., 2004). Increasing temperature 

enhances growth until it reaches the optimal temperature, whilst elevated temperature 

beyond the optimal decreases growth and can be lethal.  These thermal responses 

characterise the typical asymmetry of the growth-temperature curve, with an asymptotic 

increase on the colder side, and an abrupt decline on the warmer side (Ras et al., 

2013). The influence of temperature on physiological processes in phytoplankton is 
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mainly driven by the kinetics of enzymes.  One important temperature-sensitive enzyme 

is ribulose-1,5-bisphosphate (Rubisco) with carboxylase and oxygenase activity that 

catalyzes two competing biochemical reactions  - photosynthesis and photorespiration, 

respectively  (Hikosaka et al., 2005). Modification of Rubisco activity is one of the 

acclimation strategies of phytoplankton in response to changes in temperature. Some 

phytoplankton species that are acclimated to low temperature reduce Rubisco 

carboxylase activity to decrease the energy transfer efficiency between the antennae 

and photosystem II (PS II) reaction centers and consequently prevent photoinhibition 

(Krol et al., 1997; Levasseur et al., 1990; Maxwell et al., 1994), whilst others enhance 

this enzymatic activity to ensure the utilization of excess energy and increase 

photosynthetic rates (Mortain-Bertrand et al., 1988). Phytoplankton that grow beyond 

the optimal growth temperature inactivates or denatures their photosynthetic enzymes 

that unbalances ATP consumption and production, and eventually affects 

photosynthesis, respiration and growth (Raven and Geider, 1988). Furthermore, 

adaptation to varying temperature for growth in phytoplankton involves changes in the 

quantity of enzymes, light-harvesting pigments and thylakoid membrane integrity 

(Raven and Geider, 1988).  

Several non-linear models have been used to describe the growth response to 

temperature (Low-Décarie et al., 2017; Rosso et al., 1993). These models are also used 

to predict the maximum growth rate (rmax) and the thermal traits such as the  (i) the 

cardinal temperatures that corresponds to the boundaries of thermal tolerance (i.e. 

thermal optima (Topt), critical thermal minima (CTmin), and critical thermal maximum 

(CTmax), and (ii) the fundamental thermal niche breadth (FTN) that correspond to the 

thermal range on which a species can physiologically tolerate. This temperature range 

is species-specific that reflects the physiological plasticity of species in response to 
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changes in temperature (de Boer et al., 2004). The relationship between the maximum 

growth rate of phytoplankton and temperature is initially described by an exponential 

envelope function (Eppley, 1972), which the “hotter is better” hypothesis is based on. 

Under this hypothesis, the maximum growth rate is expected to be greater at higher 

optimal temperature. However, several works have challenged the validity of this 

hypothesis (Bissinger et al., 2008; Brush et al., 2002). Several studies have examined 

the effect of temperature on phytoplankton growth rate (Thomas et al., 2012), but the 

differences in the temperature-growth relationship between non-toxic and toxic 

phytoplankton species is understudied. Understanding the effect of temperature on 

growth in non-toxic and toxic marine phytoplankton is crucial in predicting the 

biogeography of harmful blooms in future climate scenarios.  

To improve our understanding on the  effect of temperature on the growth of the 

phytoplankton, this chapter sets out to determine whether non-toxic and potentially toxic 

marine phytoplankton exhibit variation in (i) temperature dependence of growth, (ii) 

maximum growth rates and thermal traits, (iii) relationship between maximum growth 

rates and thermal traits, (iv) trait-environment relationship, and (v) thermal safety and 

vulnerability.  It is hypothesized that there will be no significant variation in these 

responses between the toxicity of marine phytoplankton. To test this hypothesis, plate-

based and tube-based growth experiments were conducted to determine the growth 

response of non-toxic and potentially toxic strains of phytoplankton. The data obtained 

from these experiments were supplemented with the datasets compiled from laboratory 

culture experiments to allow comparison with an adequate number of observations. The 

variation in these responses were then examined across strain identity, toxicity, and 

experiments.  

 



Chapter 4 – Temperature influences growth 
 

 97  

 

4.2 MATERIALS AND METHOD 

 

4.2.1 Test organisms 

Six cultures of dinoflagellate strains were obtained from different culture 

collections (Table 4.1). They are ecologically relevant organisms belonging to the 

phytoplankton genera that make up the majority of the toxic bloom-forming species, i.e. 

Prorocentrum and Alexandrium (Abdenadher et al., 2012; Ben-Gharbia et al., 2016; 

Grzebyk et al., 1997; Quilliam et al., 1996; Vlamis et al., 2015). Three of the strains are 

listed as “toxic” from their respective culture collections but only one strain was detected 

for the presence of toxins (e.g. okadaic acid (OA) and dinophysistoxins (DTX1 and 

DTX2)), henceforth all of these strains were referred as potentially toxic. Another three 

strains congeneric to the potentially toxic strains were non-toxic. To minimise the effect 

of the differences in source’s culture conditions, all strains were maintained in 35 mL 

batch cultures in artificial seawater (ASW) (Berges et al., 2001) enriched with K 

minimum nutrients (Keller et al., 1987).  Cultures were regularly transferred to a fresh K 

medium to maintain the exponential growth. The cultures were not axenic. To minimize 

contamination, all ASW and K media were autoclaved, and all transfers were performed 

in a class II biosafety cabinet. The batch cultures were maintained at a constant 

temperature of 15°C and under a 12:12 hour light-dark cycle at a mean light intensity (± 

standard error) of 221 ± 12, measured using a light meter (Li-Cor Li-250A). They were 

allowed to grow at this condition for at least four transfers prior to experimental 

procedures.  
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Table 4.1. Information on the identity, origin, culture condition, and toxicity of experimental organisms 
obtained from different culture collections.  
Experimental 
Organism 

Origin Source’s culture condition  Toxicity  

Prorocentrum sp.  
 (NRR 188) * 
 

Maintained at University 
of Essex culture 
collection; Information on 
isolate’s origin is not 
available. 
 

Medium: f/2 in natural sea water 
(NSW) 
Temperature: 15 °C 
Light intensity: 100 µmol m-2 s-1 

 
 

non-toxic 

Prorocentrum micans 
(CCAP 1136/15) 

Isolated at Lynn of Lorne, 
Argyll, Scotland, UK; 
maintained at Culture 
Collection of Algae and 
Protozoa (CCAP) at the 
Scottish Association for 
Marine Science (SAMS)  
 

Medium: L1 in NSW 
Temperature: 15 – 20 °C 
Light intensity: 30 –  40 µmol m-2 
s-1 

 

non-toxic 

Alexandrium tamutum  
(PARALEX 242) 
 

Isolated at Kerloc'h, 
Dinan, English Channel, 
France; maintained at 
Roscoff Culture 
Collection (ID: RCC 
3034) 
 

Temperature: 19 °C 
Light intensity: 100 µmol m-2 s-1 

non-toxic 

Prorocentrum minimum  
(Poulet) 

Maintained at RCC (ID: 
RCC 291); Information on 
isolate’s origin is not 
available. 
 

Medium: K in NSW 
Temperature: 20 °C 
Light intensity: 100 µmol m-2 s-1 

potentially 
toxic 

Prorocentrum lima  
(CCAP 1136/11) 

Isolated from Vigo, Spain; 
maintained at CCAP at 
SAMS 
 

Medium: L1 in NSW 
Temperature: 15 – 20 °C 
Light intensity: 30-40 µmol m-2 s-1 

potentially 
toxic* 

Alexandrium minutum  
(PARALEX 246) 
 

Isolated from Britanny 
coast, English Channel, 
France; maintained at 
RCC (ID: RCC 2649) 

Medium: f/2 in NSW 
Temperature: 18 °C 
Light intensity: 100 µmol m-2 s-1 

potentially 
toxic 

* The he species name needed to be confirmed.   
** Lipophilic toxins (e.g. okadaic acid (OA) and dinophysistoxins (DTX1 and DTX2)) were detected in the 
samples.  
 
 
 
4.2.2 Growth experiments 

Plate- and tube-based experiments (Figure 4.1; Table 4.2) were designed to 

examine the growth of non-toxic and toxic marine phytoplankton across a wide range of 

temperature.  
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Table 4.2. Description of the experimental design in plate- and tube-based experiments.  
Experimental design  Plate-based experiments  Tube-based experiments 
Growth conditions  Chamber 1 Chamber 2   
Air temperature   10°C 20°C  20°C 
Relative humidity  80% 80%  80% 
Light:dark cycle 
(hours) 

 12:12  12:12  12:12 

Light intensity  
(μmol m-2 s-1) 

 268 ± 11  257 ± 13   251 ± 10  

       
Thermal gradient       
Temperature range  7.1– 18.6 °C 16.8 – 35.1°C   5 – 30 °C  
Stepwise variation  0.7 °C 1.0 °C  5.0 °C 
       
Samples  3 replicates of 2 mL  

per culture per well 
 3 replicates of 40 mL  
per culture per tube  

 
Incubation    1st tube-based 

experiment 
2nd tube-based 

experiment 
Stepwise 
acclimatisation 

 No  No Yes 

Incubation period  9 days  16 days 28 days  
       
Growth measurement   Optical density at 660 nm  Fluorescence 

 

4.2.2.1 Plate-based experiments 

In the plate-based experiments, temperature gradient was maintained using 

thermoblocks that were housed in separate growth chambers (Conviron Adaptis 

CMP6010) with similar growth conditions, except for the air temperature which needed 

to be different in order to achieve the desired thermal gradient. Each of the 

thermoblocks were custom-made metal blocks that were temperature-regulated wih 

flow-through fluid. The temperature gradient of the thermoblock was regulated by the 

flow of fluid to an external cooling or heating device connected via insulated flexible 

PVC hoses. At one end of the block, a water bath chiller was used as a cooling device 

to circulate antifreeze fluid. Whereas, a water bath was used as a heating device to 

circulate distilled water at the other end of the block. Temperature set points for external 

cooling and heating devices are adjusted to attain the desired temperature gradient and 

stepwise variation in each thermoblock (Table 4.2).  
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To determine the thermal growth response in each experimental organism, 

three replicates of 0.2 mL of each of the culture were inoculated into 1.8 mL K medium 

in each well of the first three rows of the 24-well microplates. Wells in the last row were 

inoculated with K medium to serve as blank. Algal cells in the microplates were 

incubated in the above mentioned plate-based thermoblocks for nine days. The 

microplates were covered with lids with pores that sheathed with polyvinylidene chloride 

gas-permeable membranes to ensure gas exchange during the incubation period and 

were removed aseptically every growth measurement. 

Growth rates were quantified from the changes in cell density that were 

estimated from the optical density (OD) measured daily (between 14:00 to 16:00) for 

nine days using a FLUOstar Omega spectrophotometer (BMG Labtech, Germany) with 

the following endpoint protocol settings: excitation of 660 nm that corresponds to the 

long wavelength absorption peak of chlorophyll a,  horizontal bidirectional reading (start 

top left), and a shaking with frequency of 400 rpm for 60 seconds before plate reading 

to homogenize the sample.  

OD values were blank corrected and were pre-processed to detect outliers prior 

to regression analyses. A total of 324 triplicated observations (36 assay temperatures x 

9 days) for every experimental organism were obtained and were quality controlled. The 

data were trimmed to capture growth within the exponential phase. These pre-

processed data were used subsequently in the regression analyses to estimate the 

growth rates.  

 

4.2.2.2 Tube-based experiments 

Tube-based experiments were performed inside a growth chamber with 

conditions described in Table 4.2. The thermal gradient in these experiments ranged 



Chapter 4 – Temperature influences growth 
 

 101  

from 5°C to 30°C at 5°C stepwise variation. Each assay temperature was maintained 

inside a glass water-jacketed bath using circulating distilled water. The temperature of 

the circulated distilled water was regulated by external recirculating water baths 

connected via flexible PVC hoses.  

Triplicates of 4 mL of each of the culture were inoculated into 36 mL K medium 

contained in 50 mL glass test tubes. The tubes were capped with autoclaved foam 

stoppers to allow gas exchange during the incubation period. Algal cells in the test 

tubes were incubated in the above-mentioned temperature regulated water-jacketed 

bath. Two tube-based experiments were performed. In the first experiment, the cells 

were incubated for 16 days without a stepwise acclimatisation. Whilst in the second 

experiment, the strains were allowed to acclimatise to a new thermal condition for 14 

days prior the incubations to another 14 days of incubation.  

Growth of the cultures were determined using in in vivo fluorescence as a proxy 

for phytoplankton biomass, which was measured daily (between 14:00 to 16:00) using a 

Turner Designs Trilogy Fluorometer. Prior to the fluorescence measurement, each 

culture in a test tube was homogenised using a vortex mixer. The test tube was 

subsequently placed in the fluorometer and a fluorescence reading was obtained. The 

estimated fluorescence in all samples was corrected with the fluorescence in a blank 

sample (i.e. 0.04). The corrected estimates of fluorescence were used to compute for 

the growth rates as described in the section below.  
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Figure 4.1. Schematic representation of the plate- and tube-based experimental designs to examine 
effect of temperature on growth and toxin production in marine phytoplankton. 
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4.2.3 Determination of growth rates and thermal attributes 

 

Natural log of OD or the fluorescence estimates were fitted against time in a 

linear model to estimate the growth rate (Supplementary Figure 4.1 – 4.4). Only the 

positive growth rates were included in the subsequent analysis. The growth rates were 

fitted against temperature in a unimodal response curve using the different non-linear 

functions (i.e. equ04 – equ15 in the R package temperatureresponse (Low-Décarie et 

al. 2017) and Cardinal Temperature Model with Inflexion (CTMI; equ16) (Rosso et al., 

1993)) presented in Table 4.3. The fitting of all equations was implemented in R version 

3.6.1 (R Core Team, 2019).  

A modified Levenberg–Marquardt algorithm was used for robust fitting of non-

linear equations to data (Low-Décarie et al. 2017). The starting values were estimated 

from the dataset when the equation parameter values represent features of the dataset, 

otherwise the starting values for the parameters were derived the fitted parameters from 

the source publication of equation or were set to ensure a downward parabola-like 

shape. Equations were ranked on each dataset using Bayesian information criterion 

(BIC). Similar results of the ranking of equations was observed when other measures of 

model quality were used such as Akaike information criterion (AIC) and the AIC 

corrected for finite sample sizes (AICc).  
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Table 4.3. List of equations used to fit growth rates (r) against temperature (T) (adapted from Low-
Décarie et al. 2017 and Rosso et al., 1993).  

ID Formula 

equ04 
𝑟 = 𝑎 ∙ 𝑒𝑥𝑝 (

−𝑏
𝑅 ∙ 𝑇- − 𝑐 ∙ 𝑒𝑥𝑝 (

−𝑑
𝑅 ∙ 𝑇- 

 

equ05 
𝑟 =

𝑎 ∙ 𝑇 ∙ 𝑒𝑥𝑝 0 −𝑏𝑅 ∙ 𝑇1

1 + 𝑒𝑥𝑝 0−𝑐𝑅 1 ∙ 𝑒𝑥𝑝 0
−𝑑
𝑅 ∙ 𝑇1

 

 

equ06 𝑟 = 	
𝑎 ∙ 0 𝑇

298.151 ∙ 𝑒𝑥𝑝 :
𝑏
𝑅 ∙ 0

1
298.15 −

1
𝑇1;

1 + 𝑒𝑥𝑝 <𝑐𝑅 ∙ 0
1
𝑑 −

1
𝑇1= + 𝑒𝑥𝑝 >

𝑒
𝑅 (

1
𝑓 −

1
𝑇-@

 

 

equ07 𝑟 = 	
𝑎 ∙ 0 𝑇

293.151 ∙ 𝑒𝑥𝑝 :
𝑏
𝑅 ∙ 0

1
293.15 −

1
𝑇1;

1 + 𝑒𝑥𝑝 <𝑐𝑅 ∙ 0
1
𝑑 −

1
𝑇1=

 

 

equ08 𝑟 = 𝑎 ∙ 𝑒𝑥𝑝 B−0.5 ∙ :
D𝑇 − 𝑇!"#E

𝑏 ;
$

F 

equ09 
𝑟 = 	𝑎 ∙ 𝑒𝑥𝑝 B−0.5 ∙ :

𝑎𝑏𝑠H𝑇 − 𝑇!"#I
𝑏 ;

%

F 

 

equ10 
𝑟 = 	𝑎 ∙ exp	(𝑐 ∙ 𝑇) O1 − (

𝑇 − 𝑇!"#
𝑏 -

$

P 

 

equ11 
𝑟 = 𝑎 + 𝑏 ∙ 𝑇 + 𝑐 ∙ 𝑇$ 

 

equ12 
𝑟 = 	

1
1 + (𝑎 + 𝑏 ∙ 𝑇 + 𝑐 ∙ 𝑇$) 

 

equ13 
𝑟 = [𝑎 ∙ (𝑇 − 𝐶𝑇&'()]$ ∙ D1 − 𝑒𝑥𝑝T𝑏 ∙ (𝑇 − 𝐶𝑇&)*)UE

$ 

 

equ14 
𝑟 = 	𝑎 ∙ {1 − 𝑒𝑥𝑝[−𝑏 ∙ (𝑇 − 𝐶𝑇&'()]} ∙ {1 − 𝑒𝑥𝑝[−𝑐 ∙ (𝐶𝑇&)* − 𝑇)]} 

 

equ15 
𝑟 = 	 𝑟&)* ∙ X𝑠𝑖𝑛 O𝜋 ∙ (

𝑇 − 𝐶𝑇&'(
𝐶𝑇&)* − 𝐶𝑇&'(

-
)

P\
+

 

 

equ16 
]

𝑟 = 0		, 𝑖𝑓	𝑇 < 𝐶𝑇&'(
𝑟 = 	 𝑟&)* ∙ 𝜃, 𝑖𝑓	𝐶𝑇&)* 	≤ 	𝑇 ≤ 𝐶𝑇&)*

𝑟 = 0		, 𝑖𝑓	𝑇 > 𝐶𝑇&)*
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with: 

 

𝜃 = 		
(𝑇 − 𝐶𝑇&)*) ∙ 	 (𝑇 − 𝐶𝑇&'()	$	

T𝑇,-. − 𝐶𝑇&'(U ∙ 	 DT𝑇,-. − 𝐶𝑇&'(U ∙ T𝑇 − 𝑇,-.U −	T𝑇,-. − 𝐶𝑇&)*U ∙ T𝑇,-. + 𝐶𝑇&'( − 2𝑇UE
 

 

under the condition: 

 

𝑇,-. > 	
𝐶𝑇&'( + 𝐶𝑇&)*	

2  

 

Abbreviations:  a – f are the model coefficients; R is the universal gas (Boltzmann) constant; Tref is reference temperature; CTmin is 
the critical thermal minimum; CTmax is the critical thermal maximum; Topt is the thermal optimum; rmax is the maximum growth rate. 
 

 

These non-linear models were used to estimate the following thermal traits: (1) 

the maximum growth rate (rmax, d-1; the highest growth rate within the temperature 

range), (2) the cardinal temperatures such as the thermal optimum (Topt,°C) ; 

temperature that corresponds to rmax), critical thermal minimum (CTmin,°C; the lowest 

temperature at which no positive growth), and critical thermal maximum (CTmax,°C; the 

highest temperature at which no positive growth), and (3) the fundamental thermal 

niche breadth (FTN,°C; the width of the temperature range). The skewness of the curve 

was also calculated as the difference between activation and deactivation rates, which 

were derived from the mean of value of the derivative across sub- (CTmin to Topt) and 

supra- (Topt to CTmax) optimal temperatures, respectively. The skewness was used as a 

measure of asymmetry of the thermal growth curve. A positive skew indicates activation 

is steeper than deactivation, whereas a negative skew indicates that deactivation is 

steeper than activation. 

 

Thermal sensitivity, exposure and vulnerability to warming were also calculated 

as described in Chapter 3. Longitude and latitude coordinates were approximated 

based on the isolation location of the strains. These coordinates were used to 
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determine the sea surface temperature (SST) of the coldest and warmest months from 

2000 to 2014, which were downloaded from Bio-ORACLE (Assis et al., 2018).  

The SST were used to represent the ambient temperature extremes that the 

strains experience in their local habitats (Hmin and Hmax in °C, respectively). The 

difference between a strain’s critical thermal limits (CTmin  and CTmax) and the 

temperature extremes it experiences represent its sensitivity to cold and warm 

temperature (Smin and Smax in °C, respectively)  (Bennett et al., 2019). The thermal 

sensitivity was used to infer species’ thermal safety margin (TSM). A positive TSM 

(CTmin < Hmin,  hence Smin < 0; CTmax > Hmax,  hence Smax > 0) suggests that a species 

has a physiological thermal safety, whereas a negative TSM (CTmin > Hmin,  hence Smin > 

0; CTmax < Hmax,  hence Smax < 0) indicates that a species has to avoid the extreme 

temperatures or else it is at risk of thermal danger (Sunday et al., 2014). Warming 

vulnerability (V, year) describes the number of years prior the local temperatures are 

expected to exceed CTmax in a given location (Bennett et al., 2019). This was calculated 

by dividing the species’ sensitivity to warm temperature (Smax) by the warming rate (WR, 

°C per year) it experiences in a given location. WR was derived from the slope of SST 

of the warmest month between the contemporary and future climate scenarios (i.e. SST 

predicted in  2050 and 2010 based on RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5, which 

were also downloaded from Bio-ORACLE (Assis et al., 2018)). Thermal sensitivity, 

exposure and vulnerability to warming in Prorocentrum minimum strains were not 

determined because their isolation locations were unknown.  

To obtain an adequate number of observations, this study was supplemented 

with the dataset from the published experimental results on marine phytoplankton 

growth rates across temperature (Litchman and Klausmeier, 2014; Thomas et al., 2016, 

2012). The species in the dataset that were listed in the IOC-UNESCO Taxonomic 
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Reference List of Harmful Micro Algae (Moestrup et al., 2009) were categorised as 

potentially toxic, otherwise they are categorised as non-toxic. Out of 545 phytoplankton 

strains/isolates in the dataset, 74 of which represent 25 potentially toxic species and 

about 20% belong to the same taxonomic class as the experimental organisms in this 

study.  

However, only few of the  temperature-growth relationships in these potentially 

toxic strains (not more than 14) were successfully fitted by the non-linear models. In 

Chapter 3, CTMI was preferably used in the analysis since this model yielded more 

realistic estimates of the cardinal temperatures from the published experimental data. 

Out of the 18 temperature-growth relationships expected in each of the experiments in 

this study, 80 to 90% of these relationships in the tube-based experiments were 

successfully fitted by CTMI, whilst only 40% in the plate-based experiments.  

In this study, the variations in traits across different models were observed   

(Supplementary Figure 4.5). To simplify the results, model averaging was used to 

estimate the mean trait values were across models weighted by BIC median rank.   

In this study, all temperature growth models were used, and the variation by 

these models was explored as described in the next section. All estimates derived from 

this study and published experimental data were pooled into one dataset. This dataset 

was curated to exclude unrealistic estimates of thermal traits with the following inclusion 

criteria (1) rmax within 0.01 to 3.00 d-1range, and (2) cardinal temperatures within the -7 

to 40 °C range.  
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4.2.4 Data processing and analyses  

Generalised linear mixed models (GLMM) were used to analyse the variation 

using the glmer function in lme4 package implemented in R version 3.6.1 (R Core 

Team, 2019). All the GLMM were compared to a null model using likelihood ratio (LR) 

test to determine the significance of a single factor by comparing the fit for models with 

and without the factor. Coefficient of determination for each model was estimated to 

describe the proportion of variance explained by the fixed factor alone (i.e. mariginal R2) 

and by both the fixed and random factors (i.e. conditional R2) (Nakagawa and 

Schielzeth, 2013). These statistics were implemented as described below.  

To analyse the variation in the maximum growth rates, thermal traits, thermal 

sensitivity, and warming vulnerability (collectively known as response variables), the 

fixed and random effects of strain identity, toxicity, and source of experimental data 

were determined. Specifically, (1) variation in a response variable across phytoplankton 

strains was analysed whilst taking into account the random effects of toxicity and 

experiments, i.e. glmer(response ~ strain identity + (1|toxicity) + (1|experiments),data); 

(2)  variation in a response variable between non-toxic and potentially toxic species was 

analysed whilst taking into account the random effects of strain identity and 

experiments, i.e. glmer(response ~ toxicity + (1|strain identity) + (1|experiments),data); 

and (3) variation in a response variable across the experiments (fixed effect) was 

analysed whilst taking into account the random effects of strain identity and toxicity, i.e. 

glmer(response ~ experiments + (1|strain identity) + (1| toxicity),data).    

To examine the relationships between the maximum growth rates (rmax) and 

thermal traits (i.e. Topt, CTmin, CTmax, and FTN), the fixed effect of a thermal trait on rmax 

was examined whilst taking into account the random effects of strain identity, toxicity 
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and experiments with following structure:  glmer(rmax ~ thermal trait + (1|strain identity) + 

(1|toxicity) + (1|experiments),data). 

To examine the trait-environment relationships, the fixed effect of the 

environmental temperature (e.g. mean, minimum, maximum, and range of SST) on the 

thermal trait (e.g. Topt, CTmin, CTmax, and FTN, respectively) was examined whilst taking 

into account the random effects of strain identity, toxicity and experiments with following 

structure:  glmer(thermal trait ~ environmental temperature + (1|strain identity) + 

(1|toxicity) + (1|experiments),data). 

 

4.3 RESULTS 

 

4.3.1 Growth across temperature 

Growth rates of non-toxic and potentially toxic marine phytoplankton exhibited 

sensitivity to temperature as observed in plate- and tube-based experiments (Figure 

4.2). Generally, the growth rate had increased gradually with temperature until it 

reached its peak at the optimal temperature, and it decreased substantially with further 

increase in temperature. The shapes of the thermal performance curves varied 

considerably from a more asymmetric for potentially toxic P. minimum and A. minutum 

to a nearly symmetric response for P. lima. In tube-based experiments, the growth 

response across temperatures below the optimal temperature was found to vary among 

species from a more linear trend in potentially toxic P. minimum to a more non-linear 

pattern in non-toxic Prorocentrum spp. Also, the asymmetric shape was more evident 

from the thermal performance curves obtained from the tube-based experiments.  
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Figure 4.2. Growth rates in non-toxic and potentially toxic strains of marine phytoplankton across 
temperature obtained from plate-based experiments (PB) and tube-based experiments without and with 
stepwise acclimatisation (TB1 and TB2, respectively).  Each data point shows the mean growth rate with 
standard error as  error bars. The grey solid lines denote all the non-linear models fitting growth rate 
against temperature.  
 

4.3.2 Variation in maximum growth and thermal traits 

 

4.3.2.1 Maximum growth rate  

Dinoflagellate strains exhibit significant variation in maximum growth rates (rmax) 

(χ2(1, N = 54) = 74.39, p < 0.05) (Figure 4.3).  P. lima had the lowest rmax (0.11 ± 0.03 d-1), 

whilst potentially toxic P. minimum had the highest rmax (0.28 ± 0.03 d-1). Variation in rmax 

between non-toxic (0.18 ± 0.04 d-1) and potentially toxic (0.21 ± 0.09 d-1) dinoflagellate 

strains was not significant  (χ2(1, N = 54) = 0.46, p > 0.05). The mean rmax in plate-based 

experiment was 0.19 ± 0.02 d-1, whereas the mean rmax in tube-based experiments 
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without and with stepwise acclimatisation were both 0.20 ± 0.04 d-1. No significant 

variation in rmax was observed across experiments (χ2(1, N = 54) = 1.22, p > 0.05). 

Figure 4.3. Variations in the mean growth rates  (rmax, d-1) across non-toxic and potentially toxic 
dinoflagellates strains estimated across different experiments (PB, TB1, and TB2 refers to plate-based 
experiments and tube-based experiments without and with stepwise acclimatisation, respectively). Each 
point indicates a mean estimate with error bar showing the standard error of the mean. 
 

4.3.2.2 Thermal optimum  

There was a significant variation in the mean thermal optimum (Topt) across 

dinoflagellates strains (X2(1, N=54) = 37.86, p < 0.05) (Figure 4.4).  On average, Topt  in P. 

micans was lowest (16.45 ± 3.10 °C) among the strains. On the other hand, mean Topt  

in potentially toxic P. minimum was highest among strains (23.16 ± 2.13 °C). Mean Topt 

in potentially toxic strains was 21.60 ± 2.57 °C, which  3.06 ± 1.46 °C higher than the 

mean Topt in non-toxic strains (18.54 ± 1.11 °C ) (X2(1, N=54) = 4.3, p < 0.05).  There was a 

significant variation in mean Topt across experiments (X2(1, N=54) = 7.81, p < 0.05). Mean 

Topt  obtained in plate-based experiment was 19.14 ± 1.57 °C, which was 1.28 and 1.51 

°C higher than estimates from tube-based experiments. Mean Topt  obtained in tube-

based experiment without acclimatisation (20.42 ± 2.14 °C ) was lower compared to the 
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average estimate obtained in tube-based experiment with acclimatisation (20.65  ± 2.14 

°C). 

 
Figure 4.4. Variations in the mean thermal optimum  (Topt, °C) across non-toxic and potentially toxic 
dinoflagellates strains estimated across different experiments (PB, TB1, and TB2 refers to plate-based 
experiments and tube-based experiments without and with stepwise acclimatisation, respectively). Each 
point indicates a mean estimate with error bar showing the standard error of the mean. 
 

4.3.2.3 Critical thermal minimum  

The mean critical thermal minimum (CTmin) did not vary across strains (X2(1, N=54) 

= 1.25, p > 0.05) (Figure 4.5). Average CTmin  in dinoflagellate strains ranged from 4.27 

°C to 5.1 °C.  Also, the mean CTmin did not differ significantly between non-toxic (4.59  ± 

0.60 °C) and potentially toxic dinoflagellates (4.56  ±  1.08 °C) (X2(1, N=54) = 0.0033, p > 

0.05). However, the variation in mean CTmin across the experiments was significant 

(X2(1, N=54) = 8.78, p < 0.05). Average CTmin  estimated from plate-based experiments 

was 5.61 ± 0.43 °C, which was  1.70 °C and 1.40 °C higher than the mean estimates 

from the tube-based experiments. Mean Topt  obtained in tube-based experiment without 

acclimatisation (3.91 ± 1.03 °C ) was lower than the average estimate obtained in tube-

based experiment with acclimatisation (4.21  ±  1.03 °C). 
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Figure 4.5. Variations in the critical thermal minimum (CTmin, °C) across non-toxic and potentially toxic 
dinoflagellates strains estimated across different experiments (PB, TB1, and TB2 refers to plate-based 
experiments and tube-based experiments without and with stepwise acclimatisation, respectively). Each 
point indicates a mean estimate with error bar showing the standard error of the mean. 
 

4.3.2.4 Critical thermal maximum  

Significant variation in the mean critical thermal maximum (CTmax) across 

dinoflagellate strains was found (X2(1, N=54) = 11.19, p < 0.05) (Figure 4.6).   On average, 

A. minutum had higher CTmax  (30.80 ± 0.50 °C) than the estimates in other strains, with 

difference ranging between 0.06 °C and 1.17 °C. There was also a significant variation 

in the mean CTmax between non-toxic and potentially toxic dinoflagellates (X2(1, N=54) = 

4.02, p < 0.05).  Potentially toxic strains had higher CTmax (30.66 ± 0.63 °C) than the 

average estimate in non-toxic strains (29.95 ± 0.26 °C), with a difference of 0.72 °C. 

However, no significant variation in CTmax was observed across experiments (χ2(1, N = 54) 

= 1.06, p > 0.05). The mean CTmax in plate-based experiment was 30.32 ± 0.41 °C, 

whereas the mean CTmax in tube-based experiments without and with stepwise 

acclimatisation were 30.48 ± 0.77 °C and 30.12 ± 0.77 °C.  
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Figure 4.6. Variations in the critical thermal maximum (CTmax, °C) across non-toxic and potentially toxic 
dinoflagellates strains estimated across different experiments (PB, TB1, and TB2 refers to plate-based 
experiments and tube-based experiments without and with stepwise acclimatisation, respectively). Each 
point indicates a mean estimate with error bar showing the standard error of the mean.  
 

4.3.2.5 Fundamental thermal niche 

The mean fundamental thermal niche breadth (FTN) did not differ significantly 

across dinoflagellate strains (X2(1, N=54) = 2.56, p > 0.05) (Figure 4.7). Average FTN in 

dinoflagellate strains ranged from 25.23 °C to 26.36 °C. There was no significant 

difference in mean FTN between non-toxic (25.36 ± 0.61 °C) and potentially toxic 

dinoflagellates (26.10 ± 1.14 °C) (X2(1, N=54) = 1.95, p > 0.05). Significant variation in 

mean FTN was found across experiments (X2(1, N=54) = 8.03, p < 0.05). Plate-based 

experiments yielded a lower mean FTN (24.71 ± 0.53 °C) as compared to the mean 

estimates from tube-based experiments without and with stepwise acclimatisation with 

difference of 1.86 °C and 1.20 °C, respectively. 
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Figure 4.7. Variations in the fundamental thermal niche breadth (FTN, °C) across non-toxic and 
potentially toxic dinoflagellates strains estimated across different experiments (PB, TB1, and TB2 refers 
to plate-based experiments and tube-based experiments without and with stepwise acclimatisation, 
respectively). Each point indicates a mean estimate with error bar showing the standard error of the 
mean. 
 

4.3.2.6 Skewness 

Dinoflagellate strains exhibit significant variation in mean skewness (χ2(1, N = 54) = 

30.58, p < 0.05) (Figure 4.8). Potentially toxic P. minimum had the lowest skewness (-

1.03 ± 0.46), whilst P. micans had the highest skewness (0.0016 ± 0.58). The mean 

skewness did not differ significantly between non-toxic (-0.18  ± 0.28) and potentially 

toxic dinoflagellates (-0.57  ±  0.58 °C) (X2(1, N=54) = 1.92, p > 0.05). The variation in 

mean skewness across the experiments was significant (X2(1, N=54) = 20.86, p < 0.05). 

Average skewness  estimated from plate-based experiments was -0.05 ± 0.21, which 

was  0.65 and 0.32 higher than the mean estimates from the tube-based experiments. 

Mean skewness  obtained in tube-based experiment without acclimatisation (-0.71 ± 

0.34) was lower than the mean skewness obtained in tube-based experiment with 

acclimatisation (-0.37  ±  0.34). Most if not all of the thermal performance curves were 

asymmetric based on skewness. About 78% of the curves were left skewed, and the 

remaining 12% were right skewed.  
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Figure 4.8. Variations in the skewness across non-toxic and potentially toxic dinoflagellates strains 

estimated across different experiments (PB, TB1, and TB2 refers to plate-based experiments and tube-

based experiments without and with stepwise acclimatisation, respectively). Each point indicates a mean 

estimate with error bar showing the standard error of the mean. 

 

4.3.2.7 Variation in growth rates and thermal traits in combined studies 

Analysis of the pooled experimental results from the present and published 

studies revealed no significant differences in maximum growth rates and thermal traits 

between non-toxic and potentially toxic phytoplankton (Figure 4.9).  

Most potentially toxic strains observed in the present study had rmax close to the  

median, except for P. lima of which the estimate was within the first quartile of the 

distribution (Figure 4.9 A). Estimates of rmax in all non-toxic strains in the present study 

were near the lower limit of the distribution. About 3% of the variation in rmax was 

explained by the fixed effect of toxicity, and 82% of the variation was explained by both 

the fixed effect and random effects of strain identity and study design. 
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Figure 4.9. Variation in maximum growth rates and thermal traits  between toxicity in marine 
phytoplankton. Box plots show the distribution of maximum growth rates (rmax), thermal optimum (Topt), 
critical thermal minimum (CTmin), critical thermal maximum (CTmax), fundamental thermal niche (FTN), and 
skewness in non-toxic (blue) and potentially toxic (red) strains from the combined present and published 
experimental data. Outliers are indicated as grey crosses. Traits in strains (S1 – S3 refers to non-toxic 
strains of Prorocentrum sp., P. micans, and A. tamutum, respectively; whilst S4 – S6 refers to potentially 
toxic strains of P. minimum, P. lima, and A. minutum, respectively) used in this present study are labelled 
and indicated as black circles.  
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Thermal traits of the strains used in this present study were generally within the 

interquartile range of the distribution of the traits (Figure 4.9 B – F). The range of 

thermal traits in non-toxic and potentially toxic strains were overlapping. Analysis of 

variance in these traits revealed no significant difference.  The proportion of the 

variance in these traits explained by toxicity was less than 2%. The fixed effect of 

toxicity and the random effects of strain identity and study design explained about 40% 

– 92% of the variance in these traits. Majority of the variation in these traits was 

explained largely by taxonomic affinity.  

 

4.3.3 Trade-offs between maximum growth rate and thermal traits 

There was no clear linear relationship between rmax and thermal traits in marine 

phytoplankton (Figure 4.10). Less than 15% of the variation in rmax was explained by the 

fixed effects of thermal traits. About 83 – 86% of the variation in rmax was explained by 

both the fixed and random effects.  

 

4.3.4 Trait-environment relationship 

There was a clear evidence of the direct relationship between the cardinal 

temperatures and the ambient temperature experienced by marine phytoplankton at 

their local habitat (Figure 4.11).  

Thermal optimum (Topt) had increased at 0.61 ± 0.06 °C per degree increase of 

mean SST (Figure 4.11 A). The fixed effect of mean SST on Topt explained 40% of the 

variance, whilst 91% of the variance was explained by both the fixed effect and random 

effects of toxicity, strain identity, and source of experimental data. Among these random 

effects, strain identity explained the most variation in Topt. About 85% of the 

phytoplankton strains (83% of non-toxic and 100% of potentially toxic) had higher 
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average Topt than the local mean SST, with the difference varying between 0.17 and 

19.00 °C and the mean difference of 6.25 ± 0.24 °C. Topt in the remaining 15% of the 

phytoplankton strain was 3.64 ± 0.35°C lower than the local mean SST.  

 

 

Figure 4.10. Trade-offs between maximum growth rate (rmax) and thermal traits in non-toxic and 
potentially toxic marine phytoplankton. The scatter plots show the relationship between rmax and thermal 
optimum (Topt), critical thermal minimum (CTmin), critical thermal maximum (CTmax), and fundamental 
thermal niche (FTN) (A – D, respectively). Circles indicate the mean estimates of the traits in non-toxic 
(blue) and potentially toxic (red) strains with error bars representing the standard error of the mean. rmax 

was fitted against Topt, CTmin, CTmax, and FTN using generalised linear mixed models (GLMM) with 
toxicity, strain identity, and source of experimental data as random factors. The solid lines represent the 
linear fit with 95% confidence interval in grey shading.  
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Figure 4.11. Relationship between thermal traits in marine phytoplankton and environment. The scatter 
plots present the relationship between the thermal traits, i.e. thermal optimum (Topt), critical thermal 
minimum (CTmin), critical thermal maximum (CTmax), and fundamental thermal niche (FTN) (A – D, 
respectively) in marine phytoplankton and the ambient temperatures (mean, minimum, maximum, and 
range of sea surface temperature (SST), respectively) they experienced in their local habitat. Circles 
indicate the mean estimates of the traits in non-toxic (blue) and potentially toxic (red) strains with error 
bars representing the standard error of the mean.  Generalised linear mixed models (GLMM) were used 
to model the trait-environment relationships with toxicity, strain identity, and source of experimental data 
as random factors. The solid lines represent the linear fit with 95% confidence interval in grey shading. 
The broken lines represent the equality between the thermal traits and the environment.  

 

Also, critical thermal minimum (CTmin) had increased with increasing minimum 

SST at rate of 0.43 ± 0.05 °C per degree increase in local temperature (Figure 4.11 B). 
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About 33% of the variance in CTmin was explained by the fixed effect of minimum SST 

and 73% of variance was explained by both the fixed effect and random effects of 

toxicity, strain identity, and source of experimental data. Strain identity also explained 

the highest proportion of the variation in CTmin among the random effects. Approximately 

34% of the strains (35% of non-toxic and 26% of potentially toxic strains) had higher 

average CTmin than the minimum SST they experienced at their local habitat with the 

difference of 2.59 ± 0.28  °C, ranging from -0.24  to 0.93 °C. The majority of the strains 

(66%) had CTmin lower than the local minimum SST with the mean difference of 6.66 ± 

0.34 °C. 

There was an increasing trend in critical thermal maximum (CTmax) with the 

local maximum SST experienced by marine phytoplankton (Figure 4.11  C). CTmax had 

increased at 0.43 ± 0.07 °C per degree increased local maximum SST. The fixed effect 

of maximum SST explained 13% of the variance in CTmax, and both the fixed and 

random effects explained 75% of the variation. Among the random effects, the source of 

experimental data explained the highest proportion of the variation in CTmax, whilst strain 

identity explained the variation the least. Majority (85%) of the phytoplankton (83% non-

toxic and 100% potentially toxic strains) had CTmax higher than the local maximum SST 

with the difference ranging from 0.07 °C to 20.83 °C and the average difference of 8.70 

± 0.31 °C. CTmax of the 15% of the phytoplankton strains was 8.10 ± 0.99 °C lower than 

the maximum SST they experienced at their local habitat.  

On the other hand, fundamental thermal niche (FTN) did not change with 

increasing SST range (Figure 4.11  D).  The fixed effect of SST range explained a 

negligible proportion (less than 1%) of the variation in FTN. Whereas, both the fixed and 

the random effects explained 62% of the variation. Most of the variation in FTN was 

also explained by the source of experimental data.  
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4.3.5 Thermal safety and vulnerability  

Majority of the phytoplankton had higher critical thermal maxima (CTmax) than 

the maximum sea surface temperature (SST) projected in 2050 and 2010 at different 

climate scenarios (RCP 2.6 and RCP 2.8) (Figure 4.12 ). About 82% of the marine 

phytoplankton (79% of the non-toxic strains and 100% of the potentially toxic strains) 

had CTmax  higher than the environmental temperature projected in 2050 at RCP 2.6, 

with the mean difference of 7.86 ± 0.30 °C (Figure 4.12  A). The remaining 18% of the 

marine phytoplankton (all were non-toxic; 21% of the non-toxic strains) had mean CTmax 

that was 8.56 ± 0.98 °C lower than the projected local environmental temperature. 

Similar observations were found in the projections in 2050 at RCP 8.5 (Figure 4.12  B) 

and in 2100 at  RCP 2.6 (Figure 4.12  C). However, a noticeable difference in the 

statistics was observed for the projections in 2100 at  RCP 8.5 (Figure 4.12  D). 

Approximately, 73% of the marine phytoplankton (70% of the non-toxic strains and 94% 

of the potentially toxic strains) had CTmax  higher than the environmental temperature 

projected in 2100 at RCP 8.5, with the mean difference of 6.26 ± 0.30 °C. The 

remaining 27% of the marine phytoplankton (30% of the non-toxic strains and 6% of the 

potentially toxic strains) had mean CTmax that was 7.99 ± 0.87 °C lower than the 

projected local environmental temperature in 2100 at RCP 8.5. 
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Figure 4.12. Scatter plots showing the critical thermal maximum (CTmax) of non-toxic (blue) and 
potentially toxic (red) marine phytoplankton strains in relation to their habitat”s maximum sea surface 
temperate (SST) projected in 2050 and 2100 at different climate scenarios (RCP 2.6 and RCP 2.8). The 
points above the threshold (broken line) indicates that the projected SST exceeds the CTmax.  

 

Majority of the phytoplankton strains had lower CTmin and higher CTmax than the 

local minimum and maximum SST, respectively. As a result, they had sensitivity to cold 

(Smin) and sensitivity to warm (Smax) temperatures below and above zero, respectively, 

occupying the thermal safety zone (Figure 4.13). About 62% of the strains had thermal 

safety, whereas the remaining 38% were at risk of cooling (21.38%), warming (13.77%), 

or both (2.29%).  
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Figure 4.13. Scatter plot of the sensitivity to cold (Smin) and sensitivity to warm (Smax) temperatures in 
non-toxic (blue) and potentially toxic (red) marine phytoplankton strains. This plot is divided into four 
quadrants, categorising the strains that are safe and vulnerable to warming and/or cooling in the present 
climate scenario. 

 

Average Smin in non-toxic strains was -5.06 ± 0.77 °C, which was not statistically 

different from the average Smin in potentially toxic strains (-4.73 ± 2.61 °C) (X2(1, N=276) = 

0.04, p > 0.05) (Figure 4.14  A). Furthermore, non-toxic had a mean Smax of 5.75  ± 1.00 

°C, which was similar to the mean Smax of potentially toxic strain (6.61 ± 2.93 °C) (X2(1, 

N=276) = 0.14, p > 0.05) (Figure 4.14  B). Toxicity explained a negligible proportion of 
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variation in Smin and Smax. Both the fixed effect of toxicity and random effects of 

taxonomic affinity and study design explained more than 75% of the variation in Smin 

and Smax . The source of experimental data explained more proportion of the variance in 

Smin and Smax than the strain identity.   

No significant difference in the vulnerability to warming between toxicity in 

marine phytoplankton at all climate scenarios (Figure 4.14  C – F). The local maximum 

temperature was projected to exceed the CTmax of non-toxic phytoplankton after 859.86 

± 71.46 years, 541.38 ± 52.96 years, 529.85 ± 114.20 years, and 251.02 ± 26.57 years 

at  RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 climate scenarios, respectively, which 

were similar to projections in potentially toxic phytoplankton, i.e. 944.83 ± 241.78 years, 

512.11 ± 171.08 years, 367.21 ± 253.43 years, and 218.01 ± 81.76 years, respectively. 

Toxicity alone had negligible effect on warming vulnerability.  However, taking into 

account the taxonomic affinity and study design, both the fixed and random effects 

explained more than 78% of the variation. Between the random effects, majority of the 

variation was also explained by strain identity.  
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Figure 4.14. Variation in thermal sensitivity and vulnerability between toxicity in marine phytoplankton. 
Box plots show the distribution of thermal sensitivity to cold and warm temperature (Smin and Smax, 
respectively; A and B, respectively) and vulnerability to warming at RCP 2.6, RCP 2.6, RCP 2.6, and RCP 
2.6 climate scenarios (V2.6, V4.5, V6.0, and V8.5, respectively; C – F, respectively) in non-toxic (blue) and 
potentially toxic (red) strains from the combined present and published experimental data. Outliers are 
indicated as grey crosses. Traits in strains (S2 – S3 refers to non-toxic strains of P. micans, and A. 
tamutum, respectively; whilst S5 – S6 refers to potentially toxic strains of P. lima, and A. minutum, 
respectively) used in this present study are labelled and indicated as black circles. Data for Prorocentrum 
sp. (S1) and P. minimum (S4) were not available.  
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4.4 DISCUSSION 

 

4.4.1 Thermal dependence of growth in test organisms 

The results of this study indicate the dependence of growth in non-toxic and 

potentially toxic dinoflagellates on temperature as evidently depicted by the thermal 

growth curves. These curves, also known as the thermal performance curves or the 

thermal reaction norms, are often unimodal and negatively skewed in ectotherms 

(Eppley, 1972; Kingsolver, 2009; Knies and Kingsolver, 2010). The shape of the curves 

reflects the effect of temperature on enzymatic rate process and on enzyme activation 

and stability at high temperatures (Knies and Kingsolver, 2010). Growth rates increase 

gradually with increasing temperature below the thermal optimum (Topt), which is 

attributed to the exponential increase of the reaction rates with increasing temperature 

following the Arrhenius kinetics (Arrhenius, 1915). On the other hand, growth rate 

decreases with further increase in temperature above Topt, which is attributed to the 

denaturation of essential proteins (Hochachka and Somero, 2002). The variability in the 

trends in growth below or above Topt can be explained by the probability of the activation 

of rate-limiting enzymes that declines at high and low temperature (Knies and 

Kingsolver, 2010; Ratkowsky et al., 2005).  

The asymmetrical pattern of the thermal growth curve is observed in the 

majority of strains based on the estimates of the skewness of the curves which were 

generally below zero. This suggests that their growth is more sensitive to warming than 

cooling, which is an important trait given the projected change in temperature in the 

next decades. On the contrary, few species exhibit a less skewed curve (i.e. nearly 

symmetrical), a trait characterised by a constant growth over an optimal temperature 

range that deceases at extreme temperatures at similar rates. The symmetrical thermal 
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growth curve suggests that the growth of the species is equally sensitive to decreasing 

and increasing temperature from the Topt.  

The findings reveal differences in the growth rates across strains. Generally, 

thermal traits were found to be vary across strains, toxicity, and experimental design. 

Interspecific and intraspecific variations in growth rates and thermal traits of marine 

phytoplankton have been demonstrated in several studies (Boyd et al., 2013; Chen and 

Laws, 2016; Kremp et al., 2012; Thomas et al., 2016). These differences in the traits 

among species and strains implies that the phytoplankton community composition may 

be altered as a results of climate change.  Species that are heat stress sensitive have 

narrow thermal tolerance limit, whilst those that can survive through acclimation or 

adaptation have a wider range (Chen, 2015). Thermal acclimation is part of the 

phenotypic plasticity in phytoplankton to increase growth or survival under sub- and 

supra-optimal conditions over short term periods (Raven and Geider, 1988; Staehr and 

Birkeland, 2006), and is believed to be linked to the adaptive changes in their genes. 

Thermal adaptation of phytoplankton has been developed as a result of the evolutionary 

process (Hanelt et al., 2003), and has been demonstrated in several studies (Huertas et 

al., 2011; Iglesias-Prieto et al., 1992). The difference in temperature dependence of 

growth between the non-toxic and potentially toxic phytoplankton has an ecological 

implication. Toxic species may dominate over the non-toxic species (or vice versa) in 

the changing climate. Toxic species could employ thermal acclimation and adaptive 

strategies to expand their thermal tolerance, and toxin production may provide toxic 

species a selective advantage under future climate scenario.  

However, the outcome of the experiments should be interpreted with caution as 

there are several caveats as described subsequently. First, the rates derived from the 

log increase of optical density and fluorescence over time may present two different 
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measures of growth. Optical density-based growth may be governed by a set of 

enzymes that are different from the enzymes acting on the fluorescence-based growth. 

Hence, It is possible for different approaches to the measurement of  growth rates to 

yield different results. Second, one challenge of modeling the thermal growth response 

is that there is no single equation that fits all data (Low-Décarie et al., 2017). This 

suggests that different equations may describe different processes that are still 

unresolved. Finally, extrapolation of the thermal response of dinoflagellates as model 

organisms to the whole phytoplankton is inherently problematic. Although the majority of 

toxic species belong to dinoflagellates, characterisation of the thermal response curves 

in representatives from the other taxa, i.e. diatoms, haptophytes and cyanobacteria, is 

crucial to advance our knowledge on the taxon-specific differences in the growth 

thermotolerance between non-toxic and toxic phytoplankton. Pooling the experimental 

data obtained from this study with the datasets compiled from other laboratory culture 

experiments allows the comparison of thermal growth response between phytoplankton 

groups with an adequate number of observations.  

 

4.4.2 Differences in growth and thermal traits 

Results of the analysis of the pooled datasets suggest the maximum growth 

rates and thermal traits between non-toxic and potentially toxic phytoplankton are 

comparable. However, toxicity explained only a small part of the variation in the all of 

the traits. Generally, the majority of the variation in the traits is explained by strain 

identity and source of experimental data. These results from the thermal growth curves 

describe the growth constraint experienced by species at their maximum and minimum 

temperature limits, and the range between these limits define their niche, which can 

vary among strains and experiments, suggesting that growth and thermal traits are 
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dependent to physiological plasticity and evolutionary history (Kremer et al., 2017; 

Thomas et al., 2016, 2012). Overall, the results suggest that non-toxic and toxic 

phytoplankton may co-exist in the same thermal condition, but in terms of growth rates, 

toxic species are weak competitors against non-toxic species.  

These findings may be somewhat biased in several ways. One of the limitations 

includes the statistical uncertainty of the estimation of the thermal physiological limits 

and thermal niche breadth, as these parameters are frequently extrapolated beyond the 

data. This constrain our understanding of the responses of non-toxic and toxic 

phytoplankton to climate extremes. There are also limitations linked with low 

temperature resolution, incomplete observation of full thermal range, over 

representation of non-toxic phytoplankton, and few observations on toxic species that 

are mostly dinoflagellates. Furthermore, the multifaceted interference from different 

protocols implemented across individual studies may also limit the usefulness of the 

compiled datasets. However, the experimental results generated in this present study 

provide the groundwork to evaluate of the value of the published datasets in comparing 

traits between toxicity in marine phytoplankton. As observed, there is a discrepancy in 

the findings between the analyses using the present and published experimental 

results, which may be related to the data quality used in thermal trait analysis. For 

instance, the present experiments reveal that that the maximum growth rates in toxic 

strains are higher than the rates in non-toxic strains of dinoflagellates, which are found 

to be comparable in the analyses of the pooled datasets. This suggests that the 

maximum growth rates between non-toxic and toxic phytoplankton are not robust 

across a range of the experimental protocols, which may be attributed to the sensitivity 

of the trait to light or nutrient conditions (Boyd et al., 2013).  
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4.4.3 Uncoupling of growth rates and thermal traits  

The results demonstrate that maximum growth rates have no clear linear 

relationship with thermal traits. The variation of the growth rates explained a negligible 

variation in the thermal traits. This suggests that there is no clear trade-off between 

maximum growth rate and thermal traits. The latest work reveals that there is a thermal 

limit for thermal optimum and the maximum growth rate is highly constrained by this 

limit, which is highly variable among functional groups in phytoplankton (Grimaud, 

2016). The difference in maximum growth rate among the taxonomic groups was 

attributed to the various physiological limits, photosynthesis yields, and biovolume 

(Grimaud, 2016; Marãnón et al., 2014; Raven and Geider, 1988). However, our current 

understanding of the link between maximum growth rates and the thermal limits and 

niche breadth is still limited.  

 

4.4.4 Linking thermal traits with environment 

The findings reveal a clear linear relationship between thermal traits and the 

temperature experienced by marine phytoplankton at their local environment, except for 

the temperature range. The ambient temperature explained significantly the variation in 

cardinal temperatures. Results suggest that there is a strong link between the cardinal 

temperatures and the ambient temperature experienced by marine phytoplankton at 

their local habitat, indicative of local adaptation (Thomas et al., 2012). Recent work by 

Chen (2015) found similar results and demonstrated the importance of the temperature 

in shaping the physiology of phytoplankton. Chen (2015) emphasized that the these 

thermal traits can be inherited for a long period of time even if the phytoplankton have 

been cultured over multiple generations. Thermal traits obtained from physiology 
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experiments are different from the traits derived from the temperature experienced by 

organism in its local environment. As observed, all physiology-based thermal traits are 

generally higher than the environmental temperatures, except for the lower temperature 

limit.  As examined in Chapter 2, this difference can be explained by the reduction of the 

fundamental thermal niche in nature due to biotic interaction, species dispersal 

limitation, and limited climate availability (Jankowski et al., 2013; Sánchez-Fernández et 

al., 2016; Soberón and Nakamura, 2009). Furthermore, the results suggest that this link 

is highly variable among taxonomic groups in marine phytoplankton, but is less variable 

between non-toxic and potentially toxic phytoplankton.  

 

4.4.5 Vulnerability to climate change  

Findings of this current study show that nearly all the non-toxic and potentially 

toxic phytoplankton were thriving within the thermal safety zone in the present climate 

scenario. Also, results show comparable estimates of thermal sensitivity and warming 

vulnerability between non-toxic and potentially toxic phytoplankton. However, toxicity 

explained insignificant variation in these estimates. Overall, the results indicates that the 

vulnerability to climate change is highly variable among the strains, and less variable 

between toxicity in marine phytoplankton.  

Vulnerability of phytoplankton to climate change is attributed to the influence of 

temperature change on the physiological processes and growth, which consequently 

alter marine ecosystem structure and function (Regaudie-De-Gioux and Duarte, 2012; 

Thomas et al., 2012; Toseland et al., 2013). Recent studies have demonstrated the 

effect of elevated temperature on metabolic and growth rates in phytoplankton (de Boer 

et al., 2004; Regaudie-De-Gioux & Duarte, 2012; Boyd et al., 2013; Toseland et al., 

2013). Typically, photosynthesis rises with elevated temperature until it reaches its 
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optimum, and decreases with further warming; whilst respiration, on the other hand, 

increases with increasing temperature. This elevation in metabolic rates is likely to 

expand the growth rate of photoautotrophs in warming conditions (Hochachka and 

Somero, 2002).  Several species exposed to high temperature display higher 

photosynthesis and lower respiration rates, but exhibit reduction in their cell size (Staehr 

and Birkeland, 2006). Shrinking their size can neutralize the imbalance between these 

metabolic processes (Peter and Sommer, 2013). Also, nutrient uptake by phytoplankton 

becomes strongly limiting at elevated temperatures (Sterner and Grover, 1998). Cell 

size reduction can improve nutrient uptake rates and lessen metabolic costs, which is a 

good strategy in response to increasing resources demand due to warming (Atkinson et 

al., 2006). Furthermore, cyst germination in dinoflagellate is controlled by temperature 

(Anderson et al., 2005), which may be altered in changing climate. It can be increased 

under warmed condition, and can be inhibited at extreme temperature (Anderson et al., 

2005).  

 

4.4.6 Implication to future algal blooms 

The effect of temperature change on their physiological processes and growth 

may alter marine ecosystem structure and function. As observed, majority of the marine 

phytoplankton are generally living in the present climate scenario within the thermal 

safety zone. However, the warming temperature may likely exceed the physiological 

limits of marine phytoplankton species. They must avoid the extreme temperatures or 

else they are at risk of the thermal danger. They may either adapt or migrate to new 

favourable habitats to survive, otherwise, their extinction is inevitable.  

In the context of harmful algal blooms, warming may provide favourable 

conditions for toxic algae to occur.  It is likely that toxic blooms and their impacts may 



Chapter 4 – Temperature influences growth 
 

 134  

be exacerbated in the future where their duration, intensity, and frequency may increase 

in response to changes in the climate. The possible impacts of climate change on toxic 

blooms have important implications on how to manage and control harmful algal blooms 

(HAB) in the future.  

The findings of this study improve our predictive understanding on the 

ecological responses of non-toxic and toxic marine phytoplankton to future climate 

scenarios. The thermal performance curves (TPC) obtained in this study can be used to 

develop a mechanistic ecological niche model to establish a causal relationship 

between species distribution and temperature. This mechanistic model is useful in 

predicting the climate-induced ecological trends such as changes in range, habitat 

suitability, diversity, and community composition. 

 

4.5 CONCLUSIONS 

 

This chapter investigates  the effect of temperature on growth and toxin 

production in marine phytoplankton. Here, six strains of dinoflagellates were used as 

model organisms to examine the temperature dependence of growth in non-toxic and 

potentially toxic phytoplankton. Generally, the results of this study reveal a 

asymmetrical pattern of the thermal growth curve in these model organisms, suggesting 

that their growth is more sensitive to warming than cooling. The data obtained from this 

present study was supplemented with the datasets compiled from laboratory culture 

experiments to allow comparison with an adequate number of observations. The results 

of the analysis of the pooled datasets show that the maximum growth rates and the 

thermal traits are comparable. Furthermore, the findings reveal unclear trade-off 

between the maximum growth rates and thermal traits in marine phytoplankton but 
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show evident trait-environment relationships. The results also demonstrate that  nearly 

all the non-toxic and potentially toxic phytoplankton were thriving within the thermal 

safety zone in the present climate scenario. However, the trait tradeoff, trait-

environment relationships, thermal sensitivity, and warming vulnerability are 

comparable between non-toxic and potentially toxic phytoplankton.  
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TEMPERATURE DEPENDENCE OF TOXIN PRODUCTION IN MARINE 

DINOFLAGELLATES 

 

ABSTRACT 

 

Assessing the effect of temperature on toxin production in marine phytoplankton 

is important to improve our predictive understanding of toxic blooms in the future ocean. 

This present study examined the temperature dependence of toxin production in a 

marine phytoplankton. Here, a tube-based growth experiment was conducted using 

dinoflagellate strains as the test organism under different thermal conditions. Paralytic 

shellfish poisoning (PSP) toxins such as saxitoxin (STX) and its derivatives and 

lipophilic toxins such as okadaic acid (OA) and dinophysistoxins (e.g. DTX1 and DTX2) 

were extracted from the algal samples collected at the end of the incubation period. 

Standardised protocols using ultrahigh-performance liquid chromatography (UHPLC) 

coupled to the mass spectrometer (MS/MS) were implemented to detect and quantify 

toxins in the extracted algal samples. Among the test organisms, only the Prorocentrum 

lima strain was detected for the presence of OA, DTX1, and DTX2. Results showed (1) 

cell density dependence of toxin concentration, (2) inter-strain variability in cellular toxin 

content, (3) temperature dependence of the concentration, cellular content, relative 

composition, and cellular production rate of toxins, and (4) inverse linear relationship 

between toxin production rates and growth rates. These findings improve our current 

knowledge on the toxin production in marine phytoplankton in response to temperature, 

advancing our understanding of toxic blooms in response to ongoing climate change.  
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5.1 INTRODUCTION  

 

Toxic blooms are already a global problem and their current distribution is 

alarming. Climate change may provide favourable conditions for toxic algae to occur  

(Hallegraeff, 2010). It is likely that toxic blooms and their impacts may be exacerbated 

in the future where their duration, intensity, and frequency may increase in response to 

changes in the climate (Moore et al., 2008; Tatters et al., 2013). The well-documented 

effects of toxins to humans and to other organisms (Berdalet et al., 2015) and the 

potential effect of climate change on toxic blooms in the future (Fu et al., 2012) have 

stimulated studies on the ecophysiology of toxic phytoplankton (e.g. Kellmann et al., 

2010a; Perini et al., 2014; Ramsey et al., 1998; Stüken et al., 2011). 

The advantages of toxin production would lead to the expectation of the ubiquity 

of toxicity in phytoplankton. Surprisingly toxin production is only known for few 

phytoplankton species (150 species in 50 genera listed in Moestrup et al. (2009)). 

Despite the rarity of toxicity in phytoplankton lineage, the toxins are diverse with distinct 

chemical structure, biosynthetic pathways and mode of actions (Rossini and Hess, 

2010). The toxin diversity may be attributed to its widespread distribution in 

phytoplankton lineage and may reveal putative physiological and ecological roles 

beyond their assumed primary role as a defense mechanism. Physiological roles of 

toxins may have evolved in response to stressful abiotic conditions to improve efficiency 

in nutrient acquisition and storage, excretion, osmoregulation, scavenging mechanisms, 

biosynthesis, structural organisation, and cell signalling (Alexova et al., 2011; Bar-Yosef 

et al., 2010; Bates, 1998; Cembella, 1998).  Ecological roles of toxins may have evolved 

from the need for infochemicals for biotic interaction to improve efficiency in mating, 
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alarm signals, defense/offense mechanism, and symbiosis (Bates, 1998; Cembella, 

1998; Pohnert et al., 2007).  

Toxin production is influenced by a number of abiotic factors such as 

temperature, pH, light, nutrients and biotic factors such as competition and grazing. 

Temperature is one of the most fundamental abiotic factors that may have a direct 

effect, or an indirect effect if growth and toxin production is uncoupled (Cembella, 

1998). Temperature dependence of toxin production is associated with species-specific 

growth rate, and hence production of toxins is dependent on the thermal tolerance of 

the species. Hence, the effect of temperature on toxin production has implication on 

how toxic species may influence the structure and function of marine ecosystems in the 

future climate scenarios. However, our current knowledge on how toxin production is 

influenced by temperature is still lacking. 

To improve our understanding on the microalgal toxin production, this study  

was set out to examine (1) the temperature dependence of the concentration, cellular 

content, relative composition, and cellular production rate of toxins, and (2) the 

relationship between toxin production and growth. This study hypothesized that 

concentration, cellular content, relative composition, and cellular production rate of 

toxins are dependent on temperature. This study also hypothesized that there is an 

inverse relationship between production of toxin and growth. To test these hypotheses, 

a tube-based experiment using Prorocentrum and Alexandrium strains (see description 

in Chapter 4)  as the test organisms under different thermal conditions. Dinoflagellates 

of genus Prorocentrum and Alexandrium are among the best-studied toxic 

phytoplankton because of their production of toxins  (Abdenadher et al., 2012; Ben-

Gharbia et al., 2016; Grzebyk et al., 1997; Quilliam et al., 1996; Vlamis et al., 2015). 

Toxic Prorocentrum species are known producers of lipoliphic toxins such as  okadaic 
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acid (OA) and dinophysistoxins (e.g. DTX1 and DTX2), which are responsible for 

diarrhetic shellfish poisoning (DSP. On the other hand, toxic Alexandrium species are 

known producers of saxitoxins (STX) and its derivate, which are responsible for 

paralytic shellfish poisoning (PSP). The findings of this study will improve our current 

knowledge of how production of toxins will be affected by temperature that is expected 

to change with climate.  

 

5.2 MATERIALS AND METHOD 

 

5.2.1 Test organisms 

Cultures of Prorocentrum and Alexandrium strains were obtained from different 

culture collections (see Chapter 4 for description). They are ecologically relevant 

organisms belonging to the phytoplankton genera that make up the majority of the toxic 

bloom-forming species (Abdenadher et al., 2012; Ben-Gharbia et al., 2016; Grzebyk et 

al., 1997; Quilliam et al., 1996; Vlamis et al., 2015). To optimize growth for the conduct 

of the experiment, the culture was maintained in 35 mL batch culture in artificial 

seawater (ASW) (Berges et al., 2001) enriched with K minimum nutrients (Keller et al., 

1987).  The culture was regularly transferred to a fresh K medium to maintain the 

exponential growth. The culture was not axenic. To minimize contamination, all ASW 

and K media were autoclaved, and all transfers were performed in a class II biosafety 

cabinet. The batch culture was maintained at a constant temperature of 15°C and under 

a 12:12 hour light-dark cycle at a mean light intensity (± standard error) of 221 ± 12, 

measured using a light meter (Li-Cor Li-250A). The culture was allowed to grow at this 

condition for at least four transfers prior to experimental procedures. 
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5.2.2 Growth experiments 

Tube-based experiments were performed inside a growth chamber (Conviron 

Adaptis CMP6010) with the following conditions: 20°C air temperature, 80% relative 

humidity, 12:12 light to dark cycle in hours, and 251 ± 10 light intensity.  The thermal 

gradient in these experiments ranged from 5°C to 30°C at 5°C stepwise variation. Each 

assay temperature was maintained inside a glass water-jacketed bath using circulating 

distilled water. The temperature of the circulated distilled water was regulated by 

external recirculating water baths connected via flexible PVC hoses. 

Triplicates of 4 mL of each of the culture were inoculated into 36 mL K medium 

contained in 50 mL glass test tubes. The tubes were capped with autoclaved foam 

stoppers to allow gas exchange during the incubation period. Algal cells in the test 

tubes were incubated in the above-mentioned temperature regulated water-jacketed 

bath.  

Two tube-based experiments were performed. In the first experiment, the cells 

were incubated for 16 days without a stepwise acclimatisation. Whilst in the second 

experiment, the strains were allowed to acclimatise to a new thermal condition for 14 

days prior the incubations to another 14 days of incubation.  

Growth of the cultures were determined using in in vivo fluorescence as a proxy 

for phytoplankton biomass, which was measured daily (between 14:00 to 16:00) using a 

Turner Designs Trilogy Fluorometer. Prior to the fluorescence measurement, each 

culture in a test tube was homogenised using a vortex mixer. The test tube was 

subsequently placed in the fluorometer and a fluorescence reading was obtained. The 

estimated fluorescence in all samples was corrected with the fluorescence in a blank 

sample (i.e. 0.04).  



Chapter 5 – Temperature affects toxin production 
 

 144  

The corrected estimates of fluorescence were used to compute for the growth 

rates. Natural log of the fluorescence estimates were fitted against time in a linear 

model to estimate the growth rate.  

 

5.2.3 Toxin production experiments 

 

5.2.3.1 Collection of toxin samples  

Algal toxin samples were collected at the last day of the incubation period. 

Here, 1 mL samples were collected for cell counting to determine the algal cell density 

(cells mL-1), and 30 mL samples were collected into 50 mL centrifuge tubes for toxin 

measurement. The algal toxin samples were centrifuged at 5000 rpm for 10 min. The 

cell pellets were stored at -20 °C until the sonication extraction method described in the 

subsequent section.  

 

5.2.3.2 Extraction of toxins from algal samples  

The samples were thawed for toxin extraction. Toxins in Alexandrium spp. (i.e. 

Paralytic Shellfish Poisoning (PSP) toxins) were extracted in 1.5 mL 0.05 M acetic acid, 

whilst toxins in Prorocentrum spp. (i.e. lipoliphic toxins (LT) such as okadaic acid (OA) 

and its derivatives) were extracted in 1.5 mL methanol:water (90:10 v:v). The resulting 

solutions were transferred into 15 mL centrifuge tubes and were sonicated for 30 

seconds using a sonicator. The supernatants were collected and filtered through 0.2 µm 

pore size filters into 2 mL autosampler vials. The vials were covered with screw cap with 

hole and septum. The samples were kept frozen at -20 °C prior to toxin analyses.  
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5.2.3.3 Toxin analyses 

The toxin analyses were conducted at the Centre for Environment, Fisheries 

and Aquaculture Science (CEFAS) using their in house protocols for the detection and 

quantification of PSP toxins (Turner et al., 2019) and lipophilic toxins (Dhanji-Rapkova 

et al., 2019, 2018) using the Waters Corp. (Manchester, UK) Acquity ultrahigh-

performance liquid chromatography (UHPLC) coupled to the Xevo TQ-S tandem 

quadrupole mass spectrometer (MS/MS). The UHPLC-MS/MS system was equipped 

with (i) a binary solvent system capable of delivering up to four mobile phases with 

uniform flow of up to 0.8 mL min-1; (ii) an autosampler capable of 2 µL injections; (iii) a 

temperature-regulated liquid chromatography (LC) column compartment, capable of 

holding the column at 60°C; (iv) a tandem mass spectrometer for operation in MS/MS 

mode, capable of positive/negative mode switching; and (v) a software system for 

instrument control and capable of processing quantitative data. 

 

5.2.3.4 Analysis of PSP toxins in Alexandrium spp.  

Samples of Alexandrium strains extracted in acetic acid were cleaned up 

through amorphous polymer graphitized-carbon solid-phase extraction (SPE) cartridges 

(i.e. Supelclean ENVI-Carb 250 mg/3 mL SPE cartridges; Sigma-Aldrich, St. Louis, MO) 

following the method of Turner et al. (2019). The cartridges were conditioned with 3 mL 

20% acetonitrile + 1% acetic acid at 6 mL min-1 and followed by 3 mL 0.025% ammonia. 

These were eluted to the top of the frit and the eluents were discarded to waste. The 

cartridges were loaded with 400 µL acetic acid extract and eluted to the top of the frit at 

a flow rate of 3 mL min-1 and the eluents were also discarded to waste. The cartridges 

were washed with 700 µL deionized water and eluted to dryness, discarding the eluent 

to waste, with a flow rate of 3 mL min-1. The sample extracts were eluted and collected 
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by adding 2 mL 20% acetonitrile and 1% acetic acid in a clean polypropylene tube at a 

flow rate of 3 mL min-1. The eluents were vortex-mixed, and 100 µL aliquots were 

diluted with 300 µL acetonitrile in autosampler vials. The diluted extracts were then 

analysed by UHPLC-MS/MS utilizing hydrophilic interaction LC (HILIC) following Turner 

et al. (2019). This UHPLC-MS/MS system used a HILIC analytical column (i.e. 1.7 µm, 

2.1 × 150 mm  Waters Corp. (Manchester, UK) Acquity BEH Amide UPLC column 

together with a Waters Corp. (Manchester, UK) VanGuardTM BEH Amide guard 

cartridge) held at 60°C with all the mobile phases connected and reagent lines 

assembled to eliminate air bubbles.  

The instrument conditions for the use of the HILIC analytical column were as 

follows: (i) mobile phases were A1 (i.e. water with 0.015% formic acid and 0.015% 

ammonia), B1 (i.e. 70% acetonitrile + 0.01% formic acid), A2 (i.e. water with 0.5% 

formic acid), and B2 (i.e. methanol); (ii) seal and needle washes were 10% and 70% 

acetonitrile, respectively; (iii) injection volume was 2 µL; (iv) run time for conditioning, 

start-up, shutdown, and analysis were 30, 17.5, 15, and 11 min, respectively; and, (v) 

temperature for column and autosampler held at 60°C and 4°C, respectively. Mobile 

phases were delivered at the gradient throughout the conditioning, start-up, shutdown, 

and analysis runs as described in Turner et al. (2019). In conditioning run, new columns 

were conditioned before use for the first time with 100% of mobile phase A1 (0% B1) at 

a flow rate of 0.10, 0.20, 0.30, 0.35, and 0.35 mL min-1 at time 0.0,1.5, 3.0, 4.0, and 

30.0 min, respectively. If columns were already conditioned and used, the flow rate was 

set to 0.35 ml min-1 throughout the conditioning run. The column conditioning was 

performed using a blank injection, followed by the shutdown gradient and then the start-

up gradient prior to the analysis of standards and samples. The gradient during the 

start-up run was initially 50% A1 (50% B1) at 0.3 mL min-1 for the first 4.0 min, and this 
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rate flow rate was increased to 0.50 mL min-1 starting at time 6.0 min for the next 9.0 

min. Then, the gradient was decreased from 50% to 2.0% A1 (i.e. increased from 50% 

to 98% B1) with a flow rate of 0.50 mL min-1 for next 1.0 min until 16.0 min, and this rate 

was slowed down to 0.40 mL min-1 for the remaining 1.5 min. Whereas, the gradient 

during the shutdown run was initially 100% A1 (0% B1) at 0.30 mL min-1 for the first 4.0 

min, and the concentration of A1 was dropped to 0% (100% B1) for the next 4.0 min. 

This gradient was kept steady for a minute, and the flow rate was doubled (i.e. 0.60 mL 

min-1) starting at the time 11.0 min for the remaining 4 min. The LC gradient used for the 

analysis of standards and samples was initially 2% A1 (98% B1) at 0.4 mL min-1 for the 

first 5 min. Then, the gradient was increased from 2% to 50% A1 (dropped from 98% to 

50% B1) for the next 2.5 min, before ramping the flow rate to 0.5 mL min-1 over the next 

1.5 min until 9.0 min. The gradient then decreased to 2% A1 (increased to 98%) by 9.5 

min, increasing to a flow rate of 0.8 mL min-1 at 10.0 min, holding until 10.6 min, and 

dropping back to 0.4 mL min-1 for the remaining 0.4 min.  

The tandem quadrupole mass spectrometer (MS/MS) coupled to the UHPLC 

was used for the quantification of PST toxins. The MS/MS acquisition methods are set 

up using the specific multiple reaction monitoring (MRM) transitions recommended for 

PST/TTX acquisition as summarized in Turner et al. (2019). Toxins were monitored 

using positive and negative electrospray ionization modes (ESI+ and ESI-, 

respectively). Saxitoxin (STX), neosaxitoxin (NEO), decarbamoyl saxitoxin (dcSTX), 

decarbamoyl neosaxitoxin (dcNEO), deoxydecarbamoyl-STX (doSTX), and tetrodotoxin 

(TTX) were monitored using ESI+ mode. Gonyautoxins 1 (GTX 1), gonyautoxins 2 (GTX 

2), decarbamoyl gonyautoxins 1 (dcGTX 1), decarbamoyl gonyautoxins 2 (dcGTX 2), 

and N-sulfocarbamoyl toxins (C1) are monitored in ESI- mode. The remaining 

analogues of gonyautoxins (i.e. GTX3, GTX4, GTX5, GTX6), decarbamoyl 
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gonyautoxins (i.e. dcGTX3, dcGTX4), and  N-sulfocarbamoyl toxins (i.e. C2, C3, and 

C4) are monitored with both ESI+ and ESI-.  Validation protocol was applied to certified 

reference toxins as described in Turner et al. (2019). Quantification of the PSP toxins 

was not performed since their presence in the extracted samples of Alexandrium strains 

were not detected.  

 

5.2.3.5 Analysis of lipophilic toxins in Prorocentrum spp.  

Samples of Prorocentrum strains extracted in methanol were remained 

unhydrolysed. The crude methanolic extracts were analysed for the presence of 

lipophilic toxins (LT) such as okadaic acid (OA), dinophysis toxins (DTX1 and DTX2), 

pectenotoxins (PTX1 and PTX2), azaspiracids (AZA1, AZA2 and AZA3), and 

yessotoxins (YTX, homo YTX, 45−OH YTX, and 45−OH homo-YTX)  by UHPLC-

MS/MS using the method described in Dhanji-Rapkova et al. (2019, 2018).  

The UHPLC-MS/MS system for LT analysis used a Waters Corp. (Manchester, 

UK) BEH C18 column (50 x 2.1 mm, 1.7 µm) in conjunction with Waters Corp. 

(Manchester, UK) VanGuardTM BEH C18 (5 x 2.1 mm, 1.7 µm) held at 50°C. The 

chromatography  was performed in an alkaline condition (pH 11), which was achieved 

by adjusting the alkalinity of mobile phases A (2mM ammonium bicarbonate) and B 

(2mM ammonium bicarbonate in 90% acetonitrile) to pH 11±	0.2 with ammonium 

hydroxide following the method by Gerssen, Mulder, McElhinney, & de Boer (2009) with 

modifications described in Dhanji-Rapkova et al. (2019, 2018). The mobile phases were 

delivered at 0.6 mL min-1 in a gradient mode.  The gradient was initially set at 75% A for 

the first 0.2 min. This was decreased from 75% A to 50% A for the next 1.4 min and the 

gradient was kept steady for 1.0 min. The composition of mobile phase A was 

sequentially decreased by half every minute until it reached 0% by 3.0 min, holding it 
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until 3.5 min. The composition was ramped from 0% A to 75% A for the next 0.5 min, 

keeping It steady for the remaining 0.5 min. A total cycle run time of 4.5 min. The 

injection volume was set to 3 µL.  

The MS/MS acquisition methods were set up using the MRM transitions 

recommended for LT acquisition as summarized in Dhanji-Rapkova et al. (2019, 2018). 

OA, DTX1, DTX2, YTX, homo YTX, 45−OH YTX, and 45−OH homo-YTX were 

monitored using negative electrospray ionization modes (ESI-).  PTX1, PTX2, AZA1, 

AZA2, and AZA3 were monitored using positive electrospray ionization modes (ESI+).  

Certified reference materials for LT were obtained from the Institute of Biotoxin 

Metrology, National Research Council Canada (NRCC, Halifax, Nova Scotia, Canada), 

which were diluted in 100% methanol to form concentrated stock standard solutions 

prior to further dilution to make the calibration standards. Among the lipoliphic toxins, 

the presence of OA, DTX1, and DTX2 were detected in the Prorocentrum samples, and 

hence, only these toxins were quantified.  

The peak area response was measured using instrument quantitative data 

processing software (i.e. Waters Corp. MassLynxTM v.4.1). The peak area response 

data for the calibration standards were fitted against the concentration of the certified 

reference toxins in linear regression curves. These linear regression models were used 

to interpolate the concentration of the toxins in the sample using the following equation: 

Equation 5.1   𝑇𝑜𝑥𝑖𝑛	𝑐𝑜𝑛𝑐𝑒𝑛𝑟𝑎𝑡𝑖𝑜𝑛	([𝑇]; 	µg	L!") = 	 #!$
%

 

where 𝑦 is the peak response area, 𝑏 is the intercept of the regression line, and 𝑎 is the 

slope of the calibration curve.  

The cellular toxin content and cellular toxin production were computed using the 

equations as shown below: 

Equation 5.2   Cellular	toxin	content	(𝑇&; 	pg	cell!") 	= 	
[(]
*
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Equation 5.3   Cellular	toxin	production	(𝑇+; pg	cell!"	d!") = 	
,-.%/	(!	!	-.-1-%/	(!	

	1
 

where [𝑇] is the toxin concentration (µg L-1), 𝑁 is the cell density (cells L-1), and 𝑡 is the 

incubation time (in days).  

 

5.2.4 Data processing and analyses  

Analysis of variance (ANOVA) and post hoc Tukey were used (1) to determine 

the cell-density dependence of toxin concentration and whether this dependence varies 

across thermal conditions (2) to determine the temperature dependence of the 

concentration, cellular content, and relative composition of toxins and whether this 

dependence varies between experiments without and with thermal acclimatisation, (3)  

to test the main effect temperature on cellular toxin production rates. A simple linear 

regression was used to examine the relationship between cellular toxin production rates 

and growth rates. Data processing and analyses were implemented in R version 3.6.1 

(R Core Team, 2019).   

 

5.3 RESULTS 

 

5.3.1 Variation in toxin production 

 

5.3.1.1 Toxin concentration  

This study revealed that P. lima CCAP 1136/11 strain is highly toxigenic. This 

strain produced a detectable concentration of okadaic acid (OA;  713.49 ± 106.12 µg L-

1; 116.80 – 2375.50 µg L-1), dinophysistoxins 1 (DTX1; 74.45 ± 10.72 µg L-1; 17.30 – 

241.50 µg L-1), and dinophysistoxins 2 (DTX2; 0.63 ± 0.17 µg L-1; 0.20 – 5.40 µg L-1).  

Toxin concentration appeared to vary across cell density (Figure 5.1). Analysis of 
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variance revealed cell density dependency in the concentration of OA (F(1,26) = 6.88, p < 

0.05) and DTX1 (F(1,26) = 16.14, p < 0.05), but not in DTX2 (F(1,26) = 1.08, p > 0.05). 

Among the toxins, only the concentration of OA showed to vary between experimental 

designs (F(1,26) = 7.60, p < 0.05). There was no significant interaction between the 

effects of the cell density and the experimental design on the toxin concentration.  

 

Figure 5.1. Cell density dependence of toxin concentration. The concentration of okadaic acid (OA) and 
dinophysistoxins (DTX1  and DTX2) in Prorocentrum lima CCAP 1136/11 strain were fitted  against cell 
density in a linear regression (A – C, respecitvely). Blue and red circles represent the toxin concentration 
estimated in the tube-based experiments without and with stepwise acclimatisation, respectively. The 
solid lines represent the linear fit with 95% confidence interval in grey shading. 

 

The analysis of variance on the concentration of okadaic acid (OA) yielded 

significant variation across temperatures (F(4,21) = 10.15, p < 0.05), experimental 

designs (F(1,21) = 10.14, p < 0.05) and their interaction (F(3,21) = 11.95, p < 0.05) (Figure 

5.2 A). The mean concentration of OA at 25 °C was 1363.18  ±  348.50 µg L-1, which 

was significantly higher than the mean estimate at 10 °C (364.40  ±  146.97 µg L-1), 15 

°C (517.33  ±  127.01 µg L-1), and 20 °C (640.08  ±  129.69 µg L-1). On average, OA 

concentration estimated from tube-based experiments without stepwise acclimatisation 

(TB1) was 844 .42 ± 161.84 µg L-1 that was significantly higher than the mean 
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concentration estimated from the experiments with stepwise acclimatisation (TB2) 

(517.08 ± 87.50 µg L-1). The highest mean OA concentration was 2120 ± 180 µg L-1 at 

25 °C from TB1, which was 1222.60 – 1987.33 µg L-1 greater than the mean estimates 

from other groups of the two-way interaction.   

The concentration of dinophysistoxins 1 (DTX1) also vary across temperatures 

(F(4,21) = 10.39, p < 0.05), but did not vary between experiments (Figure 5.2 B). 

However, the two-way interaction was significant (F(3,21) = 14.62, p < 0.05). Mean DTX1 

concentration at 25 °C was 149.81 ± 29.05 µg L-1, which was 71.17 – 117.80 µg L-1 

higher than the mean concentration at lower temperatures. The highest mean DTX1 

concentration was 212.47 ± 17.07 µg L-1 at 25 °C from TB1, which was 92.7 – 192.40 

µg L-1 greater than the mean estimates from other groups of the two-way interaction. 

Also, DTX1 concentration at 20 °C from TB1 was higher than the concentration at 20 °C 

from TB1 and at 10 °C from TB2.  

There was no significant variation in the concentration of dinophysistoxins 2 

(DTX2) across temperatures and experimental designs (Figure 5.2 C).  
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Figure 5.2. Temperature dependence of the concentration and cellular content of toxins. The mean 
concentration of okadaic acid (OA) and dinophysistoxins (DTX1  and DTX2) in Prorocentrum lima CCAP 
1136/11 strain across the temperature gradient in the tube-based experiments without and with stepwise 
acclimatisation (colored blue and red, respectively) are presented (A – C) as circles with error bars that 
represents the standard error of the mean. The mean cellular content of OA, DTX1 and DTX2 (D – F) and 
their relative proportion (G – I) across the assay temperatures in the culture experiments are also 
presented.  

 

5.3.1.2 Cellular content of toxins 

There was a significant difference in the cellular content of OA across 

temperatures (F(4,21) = 26.44, p < 0.05) (Figure 5.2 D). Neither the experimental design 

nor its interaction with temperature yielded a significant variation in the cellular content 

of OA. Mean cellular content at 5 °C was 89.90 ± 21.50 pg cell-1, which was 63.12 – 
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85.95 pg cell-1 higher than the temperature in TB1 and TB2.  Mean cellular content of 

OA were the same across temperatures below 5 °C. 

Similar pattern was observed in the cellular content of DTX1. It varied 

significantly with temperature (F(4,21) = 105.69, p < 0.05) and not with experimental 

design (Figure 5.2 E). Also, the two-way interaction was not significant. The mean 

cellular content of DTX1 was 7.26 ± 2.08 pg cell-1, which was 5.27 – 6.78  pg cell-1 

higher than the temperatures in TB1 and TB2. There was no evident variation in mean 

cellular content of DTX1  across temperatures below 5 °C. 

Analysis of variance revealed no significant difference in  the cellular content of 

DTX2 across temperatures and experimental designs (Figure 5.2 F). However, post hoc 

Tukey test showed significant variations between groups paired by temperature and its 

interaction with experimental design.   

 

5.3.1.3 Cellular content of toxins ratio 

The relative proportion between cellular content of OA and DTX1 varied 

significantly across temperatures (F(4,21) = 3.45, p < 0.05) and between experiments 

(F(1,21) = 26.61, p < 0.05) (Figure 5.2 G). However, the two-way interaction between 

variables were not significant. OA:DTX1 at 5 °C was 12.67 ± 0.81, which was 

significantly higher than the relative proportion at 20 °C (8.72 ± 0.80) and 25 °C (8.46 ± 

0.70). Differences in OA:DTX1 between several of the paired groups in two-way 

interaction were significant.  

On the other hand, there was a significant variation in the ratio between OA and 

DTX2 across temperatures (F(4,21) = 3.16, p < 0.05), experimental designs (F(1,21) = 6.23, 

p < 0.05), and their interaction (F(3,21) = 6.76, p < 0.05) (Figure 5.2 H). OA:DTX1 at 25 

°C (2006 ± 356.28) was significantly higher than the ratio at 10 °C (937.44 ± 331.95). 
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Also, significant differences in OA:DTX2 between several of the paired groups in two-

way interaction were found.  

Ratio between DTX1 and DTX2 also differed significantly across temperatures 

(F(4,21) = 7.21, p < 0.05) but not between experimental designs (Figure 5.2 I). There was 

a significant interaction between the variables (F(3,21) = 7.60, p < 0.05). However, the 

post hoc Tukey tests did not reveal significant differences between paired groups.  

 

5.3.1.4 Cellular toxin production rates 

There was a significant effect of temperature on the production rate of OA 

(F(4,10) = 72.86, p < 0.05). On average, the highest production rate of OA was 6.37 ± 

1.54 pg cell-1 d-1 at 5 °C, which was 4.51 – 6.12 pg cell-1 d-1 greater than the rates at 

higher temperatures (Figure 5.3 A). OA production drastically dropped to 1.86 ± 0.61 pg 

cell-1 d-1 at 10 °C, and it gradually declined to its lowest rate (0.03 ± 0.01 pg cell-1 d-1) at 

20 °C. It then slightly increased to 1.21 ± 0.07 pg cell-1 d-1 at 25 °C. However, the 

difference in OA production across temperatures above 5 °C was not significant.  

The main effect of temperature on DTX1 production was also significant (F(4,10) 

= 7.60, p < 0.05).  Similar trend was observed in DTX1 production in which the highest 

rates (0.52 ± 0.15 pg cell-1 d-1) was observed at 5 °C (Figure 5.3 B). Also, it steeply 

declined to 0.14 ± 0.03 pg cell-1 d-1 at 10 °C and slowly dipped to 0.03 ± 0.01 pg cell-1 d-

1 at 20 °C. Finally, it increased to 0.12 ± 0.01 pg cell-1 d-1 at 25 °C. Still, there was no 

significant variation in DTX1 production across temperatures above 5 °C.  

Furthermore, the significance of the effect of temperature on DTX2 production 

was found (F(4,10) = 7.60, p < 0.05). DTX2 production at 5 °C was 0.005 ± 0.0006 pg cell-

1 d-1, which was 4x – 11x greater than the rates at higher temperatures (Figure 5.3 C). 

Also, a sharp decline of rates was observed from 5 °C to 10 °C, followed by a gradual 



Chapter 5 – Temperature affects toxin production 
 

 156  

decline of the rates until it reached the lowest rate at 20 °C. Mean production of DTX2 

were statistically similar across 10 °C – 25 °C.  

 

 

Figure 5.3. Temperature dependence of toxin production and growth rate and their relationship. The 
mean rates of production (solid circles connected with solid lines) of okadaic acid (OA) and 
dinophysistoxins (DTX1  and DTX2) and the mean growth rate (open circles connected with dashed lines) 
in Prorocentrum lima CCAP 1136/11 strain across the temperature gradient in the first tube-based 
experiments are presented (A – C) with error bars representing the standard error of the mean. Toxin 
production rates were fitted against the log of growth rates in a linear regression (D – F). The solid lines 
represent the linear fit with 95% confidence interval in grey shading. 

 

5.3.2 Relationship between toxin production and growth rates 

Trends in the production of toxins across the temperature was opposite to 

observed patterns observed in growth rates (Figure 5.3 A – C). As presented in Figure 

5.3 D – F,  toxin production and growth rates appeared to be inversely related. A simple 

linear regression was used to determine significance of the inverse relationship. A 

significant linear relationship with the growth rate was found for the production of OA  

(F(1,13) = 86.88, p < 0.05; adjusted R2 of 0.86), DTX1 (F(1,13) = 57.36, p < 0.05; adjusted 
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R2 of 0.80), and DTX2 (F(1,13) = 40.20, p < 0.05; adjusted R2 of 0.74). For every log 

increase in growth rate, production of OA decreased by 2.39 ± 0.26 (with the  intercept 

of  -5.84 ± 0.89), DTX1  production decreased by 0.18 ±  0.02  (with the  intercept of  -

0.45 ± 0.09), and  DTX2  production decreased by  0.0016 ± 0.0002 (with the intercept 

of  -0.0037 ± 0.0008).   

 

5.4 DISCUSSION 

 

5.4.1 Toxin production in dinoflagellates 

This study examined the presence of saxitoxin (STX) and its derivatives in 

Alexandrium spp. These toxins are comprised of a tri-cyclic perhydropurine, a nitrogen-

rich alkaloid (Gupta et al., 1989). Despite its similarity to purines of primary metabolism, 

STX and its derivatives appears to be synthesized by a totally different pathway 

(Shimizu et al., 1984). It has been suggested that arginine, acetate, and methionine 

serve as the building blocks of this compound (Gupta et al., 1989; Shimizu et al., 1984). 

STX modifies ion channels specifically by binding to voltage-gated sodium channels. It 

blocks the opening and prevents the sodium ion flux across the membrane. This 

neurotoxin alters the propagation of action potential generated across the nerve 

membrane and thus prevents normal nerve function. STX is the causative agent for 

paralytic shellfish poisoning (PSP) (Cusick and Sayler, 2013). As expected, these toxins 

were not detected in A. tamutum. Surprisingly, the strain of A. minutum was tested 

negative for the presence of PSP toxins. A. minutum is a dinoflagellate species known 

to produce toxins (Flores-Moya et al., 2012; Wang et al., 2005), but non-toxic strains 

are reported in several studies (Touzet et al., 2007; Yang et al., 2010). It is also likely 
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that their ability to produce toxins have lost because they possibly have been cultivated 

in the laboratory for a long period.  

Among the model organisms in this present study, only Prorocentrum lima 

CCAP 1136/11 strain was found to produce okadaic acid (OA) and dinophysistoxins 

(DTX1 and DTX2). These toxins are linear polyethers that are linked to diarrhetic 

shellfish poisoning (DSP) (Hackett et al., 2009; Quilliam et al., 1996).  These lipoliphic 

toxins are known to bind to the phosphatase proteins, specifically serine/threonine 

phosphatases, and inhibit the activity of the protein by hyperphosphorylation that 

modifies secretion of sodium ions and cell permeability of solutes (Garibo et al., 2013).  

 

5.4.2 Cell density dependence of toxin concentration 

The P. lima CCAP 1136/11 strain is highly toxigenic, with variable toxin 

concentration across all experimental conditions. This variability can be attributed to the 

cell density in the cultures. The results in this study show direct linear relationship 

between toxin concentration and cell density (Figure 5.1). Only OA and DTX1 exhibit 

this relationship, suggesting that the concentration of these toxins is dependent on the 

cell density of the culture. The cell density dependence of OA and DTX1 concentration 

substantiates the importance of population growth in promoting production of these 

toxins in P. lima. As secondary metabolites, the synthesis of OA and its analogues is 

completely uncoupled from cell growth (López-Rosales et al., 2013). These toxins are 

mainly accumulated during the stationary phase of growth at which cells are under long-

term starvation (López-Rosales et al., 2013). However, it is assumed in this present 

study that toxins are produced during the exponential growth phase. Hence, the 

estimates of toxin concentration are lower compared to the values expected during the 

stationary growth phase that takes time to achieve in sub- and supra- optimal 
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conditions. It is therefore reasonable to take into account the effect of cell density when 

comparing toxin production across treatments by normalising the toxin concentration by 

cell density to produce the cellular toxin content that is expressed in pg cell-1.  Figure 

5.4 presents the variation of cellular content of OA, DTX1, and DTX2 in P. lima 

observed in this study and in literature.  

 

5.4.3 Inter-strain variability in cellular toxin content 

The results from the present study show that the cultured P.  lima CCAP 

1136/11 strain is actively producing OA. Varkitzi et al. (2010) reported that the OA 

cellular content for this CCAP 1136/11 strain ranges from 0.10 – 1.25 pg cell-1 within 1 – 

15 days of incubation at 20°C,  and it reaches the maximum value of 11.27 ± 3.30 pg 

cell-1 after 34 days of incubation. However, our findings show higher OA cellular 

content, varying between 1.86 and 11.02 pg cell-1 after 14 – 16 days of incubation at 

20°C. This P. lima CCAP 1136/11 strain was isolated from Ria de Vigo in Spain, similar 

to the isolation location of the toxic P.  lima strains reported in previous studies (Barbier 

et al., 1999; Bravo et al., 2001; Lee et al., 1989; Martine Morlaix and Patrick Lassus, 

1992). Bravo et al. (2001) reported a range of OA cellular content (0.19 – 12.87 pg cell-

1) in 19 strains of P. lima isolated in the Pontevedra and Ria de Vigo, which is 

comparable to the present study. On the other hand, several studies have reported 

higher OA cellular content (5 – 24.5 pg cell-1) in the isolates from Ria de Vigo than the 

reported estimates in CCAP 1136/11 strain (Barbier et al., 1999; Lee et al., 1989; 

Martine Morlaix and Patrick Lassus, 1992). This discrepancy suggests the inter-strain 

variability in OA cellular content within the same or adjacent isolation location, which 

may be linked to the differences in the environment, including temperature, light, and 

nutrient conditions employed in the cultivation.  
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Figure 5.4. Inter-strain variability of cellular toxin content in Prorocentrum lima observed in this present 
study and in literature. The circles indicate the reported estimates or the observed mean estimates of cell 
toxin content with error bars representing the standard error. The red solid line indicates the 
reported/observed range. Enclosed in the bracket is the isolation location followed the assayed 
temperature in °C. This data is also summarised in Supplementary Table 5.1. [Abbreviations: (na) not 
available/acquired; (a) within 1 – 15 days incubation; (b) after 34 days of incubation; (c) cultured cells; (d) 
natural cells] 
 

Comparing the results to other strains from other isolation locations, the mean 

estimates of OA cellular content at 10 – 25 °C in this present study are higher than the 

values reported for isolates from Fleet Lagoon, Dorset in UK (0.1 – 1.8 pg cell-1) (Foden 

et al., 2005) but are generally within the reported range in several studies in the same 

location (0.42 – 17.13 pg cell-1) (Aquino-Cruz, 2012; Nascimento et al., 2005).  

Furthermore, the mean estimates at 20 °C are also within the lower half of the range 
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reported for isolates from Adriatic Sea in Italy (6.69 – 15.8 pg cell-1) (Vanucci et al., 

2010) and Lisbon Bay in Portugal (8.8 – 41 pg cell-1) (Vale et al., 2009), but are 

generally lower than the reported value for isolates from Marseille in France (1.9 pg cell-

1) (Barbier et al., 1999) and from Heron Island in Australia (1.31 – 5.88 pg cell-1) (Morton 

and Tindall, 1995). The mean estimate 20 °C in the first test tube experiments (TB1) is 

within the range of the OA cellular content for isolates from Virgin Islands in USA (2.33 

– 7.06 pg cell-1) (Morton and Tindall, 1995) and from Mahone Bay in Nova Scotia, 

Canada (0.37 – 6.6 pg cell-1) (Pan et al., 1999), but the mean estimate in the second 

test tube experiment (TB2) is higher than the reported range in the same isolation 

locations. At higher temperature (25 °C), the mean OA cellular content values observed 

in TB2 is generally lower than the reported estimates for isolates from Bizerte Bay in 

Tunisia (7.13 – 28.33 pg cell-1) (Ben-Gharbia et al., 2016) and from Dry Tortugas in 

Florida, USA (7.5 – 14.2 pg cell-1) (Tomas and Baden, 1993), but the mean value 

observed in TB1 is generally within and higher than the estimates reported in these 

isolation locations, respectively. Lee et al. (1989) recorded a cellular toxin content of 26 

pg cell-1 in isolates from Okinawa, Japan, which was comparable to the mean estimate 

at 10°C in TB1. Moreover, Mackenzie et al. (2011) reported OA cellular content for 

isolates from Rangaunu Harbour in New Zealand, varying between 90 – 108 26 pg cell-

1. These values are the highest reported in literature, and are comparable to the range 

of OA cellular content in P. lima strains incubated at 5 °C observed in this present 

study. Overall, these results suggest the OA cellular content in P. lima strains is 

contingent to the geographic locations where the strains are isolated, which may be 

linked to variable environmental conditions that were experienced by P. lima strains at 

that time.  
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Furthermore, results of this present study revealed that the cultured P. lima 

CCAP 1136/11 strain is also actively producing OA analogues such as lipophilic 

dinophysistoxins (DTX1 and DTX2). To our knowledge, this is the first study that 

demonstrated the presence of DTX1 and DTX2 in P. lima CCAP 1136/11 strain.  DTX1 

cellular content in P. lima CCAP 1136/11 strain is 1.69 ± 0.40 pg cell-1 on average, 

varying between 0.25 and 11.26 pg cell-1 across temperature range of 5 – 25 °C. Except 

at 5°C, the mean estimates of DTX1 cellular content found in this present study are 

lower compared to that of P. lima strain isolated from the same locations (i.e. Ria de 

Vigo, Spain) with the value of 2.10 pg cell-1  (Barbier et al., 1999). Furthermore, these 

mean estimates are within the lower half of the range reported for the isolates from Ria 

de Vigo, varying between 0 and 14.3 pg cell-1 (Bravo et al., 2001; Lee et al., 1989). 

Comparing to isolates from other location, the results at 20°C are within the reported 

range for the isolates from Mahone Bay (0.04 – 2.60 pg cell-1) (Pan et al., 1999), lower 

than the values for isolates from Adriatic Sea (0.12 – 0.39 pg cell-1) (Vanucci et al., 

2010), and higher than the estimates for isolates from Lisbon Bay (2.5 – 12 pg cell-1) 

(Vale et al., 2009). Moreover, the mean estimates observed in this present study are 

generally within the lower half of the range of DTX1 cellular content observed for 

isolates from Fleet Lagoon (0.2 – 11.29 pg cell-1) (Aquino-Cruz, 2012; Foden et al., 

2005; Nascimento et al., 2005). Barbier et al. (1999) reported a DTX1 cellular content 

value of 0.8 pg cell-1 at 20 °C, which was higher and lower than the estimates observed 

at 20 °C in TB1 and TB2, respectively. At 25 °C, the present study yields a lower 

estimate of DTX1 cellular content compared to the values for isolates from Bizerte Bay, 

which vary from 2.23 to 7.4 pg cell-1 (Ben-Gharbia et al., 2016). Delgado et al. (2005) 

reported DTX1 cellular content for cultured (7.15 pg cell-1) and natural population (4.20 

pg cell-1) of P. lima cells isolated from Havana City in Cuba  (Delgado et al., 2005), 



Chapter 5 – Temperature affects toxin production 
 

 163  

which was generally higher than the observed values in this present study. Morton and 

Tindall (1995) reported higher estimates of DTX1 cellular content for Heron Island 

isolates, varying between 4 and 8 pg cell-1, which are also higher than observations at 

10 – 25 °C in this present study. P. lima isolates from Okinawa is reported to contain 13 

pg cell-1 of DTX1 (Lee et al., 1989), which is the highest value found in literature. On the 

other hand, DTX2 cellular content in P. lima CCAP 1136/11 strain is 0.028 ± 0.015 pg 

cell-1 on average, varying between 0.0023 and 0.45 pg cell-1 across temperature range 

of 5 – 25 °C. Bravo et al. (2001) reported the DTX2 cellular content for isolates from Ria 

de Vigo, ranging from 0 to 1.14 pg cell-1. The mean estimates of DTX2 cellular content 

observed in this present study is generally within the lowest extreme of the range 

reported in Bravo et al. (2001). These findings also suggest inter-strain variability of 

DTX1 and DTX2 in P. lima and this large variability may also be explained by the 

varying environmental conditions experienced by strains in the different isolation 

locations.  

As observed, both the content and composition in P. lima CCAP 1136/11 strain 

are variable across the experimental conditions. Cellular content of OA is 9.70 ± 0.50 

times (6.17 – 15.40 times) higher than DTX1, and it is 1446.16 ± 137.29 times (21.63 – 

3159.30 times) higher than the DTX2. On the other hand, cellular content of DTX1 is 

151.83 ± 14.41 times (3.20 – 355 times) higher than DTX2. Studies on the relative 

composition of cellular toxin in P. lima is limited. OA:DTX1 of P. lima CCAP 1136/11 

strain observed in this present study is higher than the reported estimates in P. lima 

isolates from Mahone Bay in Nova Scotia, Canada (OA:DTX1 is nearly 1:1) (Jackson et 

al., 1993; Marr et al., 1992) and from El Pardito in Gulf of California, Mexico (OA:DTX1 

is 1:2) (Heredia-Tapia et al., 2002). This suggests variability in the relative composition 

of toxins within the P. lima species.  
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Cellular toxin content indicates the amount of toxin initially accumulated in a cell 

and the gross toxin production that reflects the balance between the net production and 

loss of toxins  (Kamiyama et al., 2010). Catabolism, leakage, and/or cell division 

contribute to the net toxin loss  (Anderson et al., 1990), and among these processes, 

cell division is thought to be crucial in laboratory experiments (Kamiyama et al., 2010).  

In this present study, cellular toxin production rates were determined to examine further 

the dynamics of toxin production in P. lima CCAP 1136/11 strain for each of the thermal 

condition in TB1. The initial cellular toxin content was not obtained in TB2, and hence, 

the cellular toxin production rate for this experimental condition cannot be computed. 

However, it is assumed that the rates will be the same with the estimates in TB1, since 

the variation in cellular toxin content between the experimental designs was not 

significant. Results showed the cellular toxin production for OA is 2.09 ± 0.66 pg cell-1 d-

1 (0.045 – 9.38 pg cell-1 d-1), for DTX1 is 0.18 ± 0.05 pg cell-1 d-1 (0.01 – 0.80 pg cell-1 d-

1), and for DTX2 is 0.0014 ± 0.0004 pg cell-1 d-1 (0.0001 – 0.0059 pg cell-1 d-1). Cellular 

toxin production rate in P. lima is not well studied, but it expected to vary among strain 

since the cell toxin content is highly variable. Comparing the results of this study to the 

rates of other species found in literature, the mean cellular production rate of OA in P. 

lima is within the reported range of rates in Dinophysis acuminata (1.18 – 2.31 pg cell-1 

d-1) (Kamiyama et al., 2010). However, DTX1 cellular production rates in P. lima 

estimated in this present study is higher than the reported values in D. acuminate (0.06 

– 0.08 pg cell-1 d-1) (Kamiyama et al., 2010).  This suggests inter-species variability of 

the cellular toxin production rates in toxic dinoflagellates.  

P. lima is not only known to accumulate intracellular toxins, but it also releases 

considerable amount of toxins to the surrounding (Nascimento et al., 2005; Vale et al., 

2009). Furthermore, the filtration employed in the extraction of algal toxins may have 
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produced enough pressure on cells, forcing to leak extracellularly. In this study, toxins 

were not obtained, hence our findings may be biased by this, which underestimates the 

toxin production in P. lima CCAP 1136/11 strain. 

 

5.4.4 Thermal dependence of toxin production  

Another objective of this study was to examine the effect of varying temperature 

on the total concentration, cellular content, composition, and production rates of toxins 

in marine phytoplankton, using  Prorocentrum lima as a model organism. The results 

revealed that the concentration of OA and DTX1 in P. lima CCAP 1136/11 strain are 

temperature dependent (Figure 5.2 A). The temperature dependence  in the OA and 

DTX1 concentration was contingent on whether the test organism was drastically or 

gradually (without or with stepwise acclimatisation, respectively) exposed to new 

thermal condition. Drastic exposure of P. lima strain to 25 °C yielded higher OA and 

DTX1 concentration than the estimates at 15°C,  but the gradual exposure produced no 

difference from the estimates at 15°C. However, this is unlikely an indication of 

response to heat stress since the total toxin concentration is also dependent on cell 

density (Figure 5.1). Furthermore, the findings show temperature dependence of the 

cellular content of OA and DTX1 in P. lima CCAP 1136/11 strain (Figure 5.2 B). This 

dependence on temperature is attributed to cellular toxin content at 5 °C, which was 

greater than the estimates at higher temperature. However, no difference in the cellular 

content across 10 – 25  °C, regardless of whether the strain is exposed drastically or 

gradually to new temperature. This suggest that the cellular accumulation of OA and 

DTX1 in P. lima strain is not a response of heat stress. However, production of these 

toxins in response to cold stress warrants further investigation. The relative proportion 

between OA and its analogues (DTX1 and DTX2) in P. lima CCAP 1136/11 strain varies 
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across thermal conditions (Figure 5.2 C). Across all temperatures, drastic exposure to 

new temperature yielded higher estimates of OA:DTX1 as compared to the ratios 

produced by strains that undergo a stepwise acclimatisation. These findings suggest 

that the relative toxin composition is also dependent on the thermal exposure 

conditions. Cellular production rate of OA, DTX1, DTX2 in P. lima CCAP 1136/11 strain 

exhibit temperature dependence (Figure 5.3 A). Low cellular toxin production rates are 

observed at thermal optimum for growth (20°C), whilst higher production rates are 

observed at sub- and supra-optimal temperatures. This suggests that temperature may 

indirectly affect toxin production and that the temperature-dependence of population 

growth influences toxin production in P. lima strain.  

 

5.4.5 Inverse relationship between growth and toxin production 

The results of this study indicate there is an inverse linear relationship between 

toxin production rates and growth rates in P. lima CCAP 1136/11 strain (Figure 5.3 B), 

suggesting that the toxin production rate increases with decreasing growth rates. Toxin 

production is postulated to dispense with excess photosynthetic energy when toxic 

species growth is no longer optimal (Bates, 1998; Pan et al., 1996). Growth at the sub-

optimal thermal range was observed to favour a high cell PSP toxin quota in 

Alexandrium  spp. (Usup et al., 1994), which may suggest that cellular nitrogen is more 

allocated to toxin synthesis than protein biosynthesis at this condition (Anderson et al., 

1990). The same observation was found in Pseudo-nitzchia seriata where growth at 

lower temperature produce higher levels of cellular DA, but it is still unclear whether this 

is due to physiological stress at this condition (Bates, 1998). It is also observed that 

cellular OA/DTX content is increased in P. lima at lower temperature which may be also 

attributed to a division rate rather an increase in production (Wright and Cembella, 
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1998). Furthermore, cell growth in Pseudo-nitzchia multiseries at higher temperature 

and light did increase the cellular DA content, which may suggest increase supply of 

photosynthetic energy to enhance DA production (Bates, 1998). Some species produce 

toxin in response to stressful thermal conditions when growth is strongly inhibited 

(Aquino-Cruz, 2012). Long-term starvation allows toxic species to accumulate toxins 

(Lee et al., 2016), which can be induced when increased temperature limits their 

capacity to uptake nutrients (Sterner and Grover, 1998). 

 

5.5 CONCLUSIONS 

 

This present study demonstrated the toxigenicity of Prorocentrum lima CCAP 

1136/11 strain. The strain has variable concentrations of okadaic acid (OA) and 

dinophysistoxins (DTX1 and DTX2) across all experimental conditions, which can be 

attributed to the cell density in the cultures. The strain also has cellular contents of OA, 

DTX1, and DTX2 that were comparable to the reported values in the literature. 

Furthermore, the concentration, cellular content, relative composition, and cellular 

production rate of toxins in this strain was temperature dependent. The findings also 

present an inverse linear relationship between toxin production rates and growth rates 

in this strain. Overall, the results in this present study improve our current 

understanding on the toxin production in marine phytoplankton, which have a potential 

implication on the toxic blooms in the future climate scenarios.  
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THE EFFECT OF WARMING ON GROWTH AND COMPETITION IN MARINE 

DINOFLAGELLATES  

 

ABSTRACT 

 

Ocean warming is having a profound impact on the physiology and ecology of 

phytoplankton. This present study examines how warming affects the growth and 

competition of marine dinoflagellate, some of which are responsible for toxic algal 

blooms. Specifically, this study sets out to determine (1) the growth responses of 

species to warming, (2) the species specificity of the temperature dependence of growth 

and competition, and (3) the relationship between growth response and competition 

response to warming. Six phytoplankton species representing two co-occurring genera 

of dinoflagellates (i.e. Prorocentrum and Alexandrium) were incubated at three 

temperatures(15, 20, and 25 °C) in monocultures and pairwise mixed cultures. Results 

showed that (1) temperature is a limiting factor for growth and competition in marine 

dinoflagellates, (2) temperature dependence of growth and competition is specific to the 

species identity of the focal and competitor strain, and not to their toxicity, (3) 

interspecific competition influence the growth responses to temperature, (4) warming 

affects interspecific competition, (5) strong direct relationship between growth and 

competition, and (6) ecological response is predictable from growth responses. In light 

of these findings, it is expected that interspecific competition of marine phytoplankton is 

likely to change the community structure under a future climate scenario.  
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6.1 INTRODUCTION 

 

Climate change is recognised as a major threat to global biodiversity and 

predicted to be the main cause of the extinction of thousands of species over the next 

century (Bellard et al., 2012; Thomas et al., 2004). There has been recent advancement 

of our understanding of the ecological consequence of climate change (Hoegh-

Guldberg and Bruno, 2010; McCarty, 2001; Pecl et al., 2017). In fact, a rapid increase in 

the number of experiments has been conducted in the last decades with the aim to 

establish mechanistic understanding of how climate change might transform the 

biological world (Wernberg et al., 2012).  Despite the considerable efforts, our current 

knowledge of the role of species interactions in responses to climate change is still 

limited, especially the ecological responses of the aquatic primary producers to ocean 

warming.  

Due to climate change, the oceans are warming at a rate of ~0.13 °C per 

decade (Rhein et al., 2013), and is having a profound effect on phytoplankton from its 

physiology to ecology (Regaudie-De-Gioux and Duarte, 2012; Thomas et al., 2012; 

Toseland et al., 2013). Most phytoplankton studies are focused on the response of 

single-species population that reflect the direct physiological response of organism to 

changing temperature (e.g. Boyd et al., 2013; Coello-Camba and Agustí, 2017; Huertas 

et al., 2011),  but often disregarded the contribution of species interaction that may 

either improve or aggravate a species’ response to increased temperature. Warming 

affects species interaction, and changes in species interaction may influence the 

impacts of climate change on populations (Bellard et al., 2012; Cahill et al., 2013; 

Tylianakis et al., 2008). Hence, understanding how warming affects species interaction 
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is critical for predicting how climate change will alter the structure and function of 

phytoplankton communities in the future oceans.  

Competition exists in nature between organisms with similar needs and habits 

living in the same environment (Keddy, 2001). This interaction occurs when more than 

one organisms demand for the same resources of the environment that are limited in 

availability, causing a negative effect to one or more organisms (Crombie, 1947). At the 

species level, two species that are competing for the same limited resources in the 

same environment cannot survive together unless they have equal competitive ability 

(Crombie, 1947). Hence, competition can cause the exclusion of a species that has 

lower competitive ability than other species (Chesson, 2000). Several studies have 

demonstrated the significance of competition and the environment in predicting the 

community composition and diversity (Durant et al., 2012; Grover, 2000; Hodge and 

Fitter, 2013; Kennedy, 2010; Stenseth et al., 2015), but there have been very few 

empirical studies that assess how temperature influences community structure through 

its effects on interspecific competition.  

Temperature has effects on species interaction, mainly through its influence on 

the metabolism of organism (Brown et al., 2004; Van Der Meer, 2006). Several life 

history traits that determine fitness (e.g. population growth and biotic interactions) are 

governed by the most fundamental biological rate –  the metabolic rate (Brown et al., 

2004). Temperature dependence of metabolic rates vary across species, and this 

interspecific differences in the thermal performance curves can greatly influence 

species interactions (Dell et al., 2014). The key role of metabolic traits, i.e. the 

temperature dependence of growth and resource acquisition can be used to predict the 

outcome of interspecific competition in phytoplankton (Bestion et al., 2018). The 

temperature dependence of growth rate is directly relevant to species interactions, and 
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the effect of temperature on growth rate is expected to change the competitive 

interactions among species in a community (Lord and Whitlatch, 2015). Changes in 

growth with temperature can be used to predict the outcome of competition (Clusella-

Trullas et al., 2011; Milazzo et al., 2013).  The growth responses to temperature are 

typically characterised as asymmetrical curves, known as the thermal performance 

curves or the thermal reaction norms, which are often unimodal and negatively skewed 

in ectotherms (Eppley, 1972; Kingsolver, 2009; Knies and Kingsolver, 2010). The range 

of temperature at which organism can survive defines the thermal niche of species 

(Boyd et al., 2013; Chen, 2015). Vulnerability to warming is dependent on the thermal 

niche of species, and it is expected that those with narrower thermal tolerance range 

are more susceptible to warming (Magozzi and Calosi, 2015; Pacifici et al., 2015).  

Different growth responses to temperature drive the changes in the interspecific 

competition in several groups of organism including bacteria, phytoplankton, plants, and 

invertebrates (Bestion et al., 2018; Chu et al., 1978; Johannes et al., 1983; Nedwell and 

Rutter, 1994). Thermal tolerance differs between toxic and non-toxic phytoplankton 

within genus (Rhodes et al., 1994), but not within species (Huisman et al., 2005). 

Hence, it is expected that the warming will have an effect the competitive interaction 

between non-toxic and toxic species. 

Hence, in this chapter, the main objective is to examine the effect of warming on 

the growth and competition in phytoplankton using marine dinoflagellates as test 

organisms. Specifically, this chapter aims to (1) evaluate the growth responses of 

species to warming in the absence and presence of competitors, (2) test whether the 

growth and competitive responses to different temperature treatments are dependent or 

not on the taxonomic identity and toxicity of focal and competitor species, and (3) 
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assess the relationship between growth rates and competition coefficients across the 

different temperature treatments. 

 

6.2 MATERIALS AND METHOD 

 

6.2.1 Experimental design  

Six phytoplankton species representing two co-occurring genus of 

dinoflagellates (i.e. Prorocentrum and Alexandrium) were used as model organisms, i.e. 

(1) Prorocentrum sp. NRR 188, (2)  Prorocentrum micans CCAP 1136/15, (3) 

Alexandrium tamutum PARALEX 242, (4) Prorocentrum minimum Poulet, (5) 

Prorocentrum lima CCAP 1136/11,and (6) Alexandrium minutum PARALEX 246, which 

were obtained from different culture collections.  The first three species are categorised 

as non-toxic, whereas the remaining three species are categorised as potentially toxic. 

Further information about their origin, culture condition, and toxicity is available in 

Chapter 4. These species belonging to a taxonomic group that consist the majority of 

the toxic bloom-forming species. The ecological and economic relevance of 

dinoflagellates are very important and understudied. Dinoflagellates can be mixotrophic 

and endosymbiotic, but can cause economically damaging tides.  

Cultures were maintained in 30 mL stock cultures in artificial seawater (ASW) 

enriched with K minimum nutrients (K medium), which were stored in T25 cell culture 

flask with filter caps. They were kept inside a growth chamber at 15 °C, under a 

continuous light cycle at irradiance levels of 221 ± 12 μmol m−2 s−1. All stock cultures 

were maintained in exponential growth with a 1:10 dilution every 14 days.  

Prior to the experiment (see Figure 6.1 for schematic representation of the 

experimental design), each strain was acclimated for two weeks at three different 
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temperature treatments (i.e. 15, 20, and 25 °C) under 12:12 hr light:dark cycle at 

irradiance levels of 251 ± 10 μmol m−2 s−1. In each temperature treatment, six stocks of 

monocultures (single-species cultures) and 15 stocks of pairwise co-cultures (mixed-

species cultures) were prepared (Figure 6.1 A). These stock cultures were prepared by 

inoculating the same biomass (using fluorescence as proxy) of the pre-acclimated 

cultures into 250 mL Erlenmeyer flask. All experiments were conducted in triplicates in 

T25 cell culture flask (with filter caps), containing 20 mL of the stock cultures. The 

single- and mixed-species cultures were incubated for 20 days at three different 

temperature treatments (i.e. 15, 20, and 25 °C) inside custom-built water baths (Figure 

6.1 B) with circulating water. The temperature of the circulated water was regulated by 

external recirculating water baths. The water baths were placed on platform rockers set 

to 70 rotations per minute (rpm) and kept inside a growth chamber (Adaptis CMP6010, 

Conviron, Canada). 

To monitor changes in the cultures throughout the experiment, 200 μL samples 

were collected from all cultures every 48 hours for 20 days (the cultures were shaken to 

homogenise the cells prior to collection). The samples were placed into 96-well 

microtiter plates and were immediately fixed with Lugol’s solution (1% final 

concentration). For every sampling, each sample was consistently inoculated into a well 

following the well plate format in Figure 6.2. The samples were then stored at 4°C until 

they were analysed through microscopy. 
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Figure 6.1. Schematic representation of the experimental designs to examine effect of temperature on 
the competition in marine phytoplankton. 

 

6.2.2 High throughput microscopy 

Microscopy was performed with a Leica DMI6000B inverted light microscope 

equipped with Leica DFC310FX camera (Figure 6.2 A), and the acquisition and device 

control were performed by Leica AF6000 Modular Systems (LAS AF) v4.6 (Leica 

Microsystems CMS GmbH, Ernst-Leitz-Strasse, Wetzlar, Germany).  
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Figure 6.2. Workflow of high throughput microscopy and image processing and analysis. The samples in 
the 96-well microplate were examined under a Leica DMI6000B inverted light microscope at 100x 
magnification (A). Each sample in a well was scanned (the red lines indicate the scanning path) on a 3x5 
rectangular pattern producing 15 image tiles per sample (B). Each microscope image (C1) was processed 
(C2 – C7) by executing an ImageJ macro in FIJI to produce a spreadsheet of parameters (C8) and an 
image overlaid with outlines (C9). Input and output files for each samples for every sampling date were 
organised in a directory with a structure shown in D.  
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The 96-well plate without the lid was placed securely on a multi-well plate stage 

insert. The samples were initially examined through the eyepiece under 50x 

magnification with a bright field illumination and to have a clear view of the stained 

specimen. We then switched to a colour camera under 100x magnification to have a live 

view of the specimen on the LAS AF screen and the focus was adjusted to obtain 

optimal image quality. A 3x5 rectangular pattern was constructed repeatedly for each of 

96 wells to acquire 15 image tiles for each well (Figure 6.2 B). Images were acquired 

with an automated scanning of the pattern with autofocus. All images were saved as 

bitmap files in best resolution of 1392 × 1040 pixels and kept in a directory with a 

structure shown in Figure 6.2. In this directory, the images were organised by folders 

that correspond to the sampling date (e.g. ./Data/20190412). Within these folders are 

subfolders that correspond to the well position of the sample in the microplate 

(./Data/20190412/A1), which in every subfolder contains all the 15 image tiles from 

each replicate in every sample.   

 

6.2.3 Image processing for cell characterisation 

FIJI (FIJI is Just ImageJ) software was used to process and analyse the 

microscope image data (Schindelin et al., 2012). The processing was automated using 

a script written in ImageJ Macro programming language (Supplementary Information 

6.1). The script was executed one sampling date at a time in the macro interface in FIJI  

as soon as the image data were acquired. The script requires the path of the working 

directory. The function in the macro script has 9 major steps to process and analyse an 

image (Figure 6.2 C Step 1 – 9): (1) opening and duplication of an image file; (2) 

enhancement of contrast of the image; (3) converting to 8-bit image and inverting the 

look-up table; (4) setting the threshold using MaxEntropy; (5) converting to Mask; (6) 
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opening, filling the holes, and watershading; (7) setting the measurements, analysing 

particles with parameters set to size = 50 – Infinity and circularity=0.50-1.00, and 

displaying the outputs; and saving the outputs that includes (8) a spreadsheet (in .csv 

format) enumerating all the detected cells and their corresponding size and shape 

parameters and (9) an image overlaid with outlines of the detected cells (in .tif format) 

that were labelled with identification number matching to the identification number in the 

spreadsheet. The script performs a for loop of this function for every image in every 

subfolder in the specified directory (Figure 6.2 D).  

The spreadsheet data produced in FIJI were processed and analysed in R 

version 3.6.1 (R Core Team, 2019) . We collated all spreadsheet data into one data 

frame and curated it to retain records within the expected range of species-specific 

dimensions. This resulted to a data frame with observations for 45 variables. Five 

identification parameters (treatment, date, trial, culture, code) and 13 morphometric 

features (Area, Perimeter, Width, Height, Circularity, Feret, FeretX, FeretY, Feret Angle, 

Mini, AR, Roundness, and Solidity; see 

https://imagej.nih.gov/ij/docs/menus/analyze.html for description) were selected and 

used for the succeeding analysis.  

 

6.2.4 Deep learning for species identification 

A deep neural network model for each pairwise combination was developed 

using the 13 morphometric features to predict the species identity in mixed-species 

cultures. In each combination, a dataset of 30,000 observations for each species 

sampled randomly from the single-species dataset was assembled. The dataset was 

split into training (80%) and test (20%) datasets using the R package rsample (Kuhn et 

al., 2019). The predictor variables were normalised (scaled and centered), whilst the 
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categorical response variables were one-hot encoded. Both the training and test 

datasets were pre-processed using the recipes package in R (Kuhn and Wickham, 

2019).  

The training dataset was used to train and validate a four-layer neural network 

model using the keras package in R (Allaire and Chollet, 2019). A sequential model was 

initialised, and an input layer with 13 variables, three hidden layers with 16, 8, and 4 

nodes, and an output layer with 2 nodes were applied (Figure 6.3).  All hidden layers 

were set with a uniform kernel initialiser and a rectified linear unit activation function. 

The input shape in the first hidden layer was set to the number of variables in the input 

layer (i.e. 13). A dropout layer after each hidden layer was added at a rate of 0.10, 

which eliminate weights below the cut-off threshold (i.e. 10%) to prevent overfitting. 

Also, the output layer was set with a uniform kernel initialiser and a sigmoid activation 

function. The model was compiled with a common optimisation algorithm (i.e. adam), 

categorical cross entropy loss, and accuracy metrics. The model was trained with a 

training cycle set to 100 epochs (i.e. iterations), a batch size set to 100 samples per 

gradient update within each epoch, and a validation split set to 0.10 to include 10% of 

the data for model validation. All the settings for the neural network model described 

above are results of tuning.  

The model was assessed based on the cross entropy loss and accuracy of the 

training and validation (Figure 6.4 A). Also, the true performance of the model was 

assessed by generating the class predictions from the model on the test datasets using 

the yardstick package in R (Kuhn and Vaughan, 2020), which was then inspected using 

a confusion matrix (Figure 6.4 B). From the confusion matrix, the accuracy of the model 

was calculated by determining the proportion of correctly classified individuals against 

the total population (i.e. total number of individuals that have been classified). The 
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accuracy of the models used to classify species in pairwise mixed-species cultures is 

summarised in Supplementary Table 6.1. The model accuracy was used as inclusion 

criteria for the succeeding data analysis. Pairs with average model accuracy of <0.80 

(highlighted in grey) were included in the dataset (referred as filtered dataset 

hereinafter), which was used in the succeeding data analysis.  The identity of species in 

a mixed-species culture was predicted using the morphometrics data (centered and 

scaled similar to the normalisation rule of the training dataset) observed in the co-

culture dataset, which were fed into the trained model.   

 

 

Figure 6.3. A deep neural network architecture showing an input layer with 13 variables, three hidden 
layers with 16, 8, and 4 nodes, and an output layer with 2 nodes used to classify species in pairwise 
mixed cultures.  
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Figure 6.4. Diagnostic plots used to assess the performance of the deep neural network models used in 
this study. The line plots (A) show the cross-entropy loss and classification accuracy over epochs for the 
training (blue) and validation (red) datasets. The confusion matrix heat map (B) shows the counts of 
correct and incorrect classification of species in a pairwise mixed-species culture.  The loss and accuracy 
of models used to classify species in pairwise mixed-species cultures at three different temperature 
treatments are shown in Supplementary Figure 6.1 – 6.3. The confusion matrices of these models are 
shown in Supplementary Figure 6.4 – 6.6.  

  

6.2.5 Quantitation of growth and competition 

Growth for each species in monocultures and co-cultures was quantified in 

terms of change in total biomass accumulated per day as described subsequently. First, 

the biovolume (BV) for each cell was computed using the linear dimensions (i.e. length 

and width) following the equation of Sun and Liu (2003) (BV = 1/6 x 3.1416 x length x 

width x height) and was converted to biomass (BM) using the equation of Eppley et al. 

(1970) (BM = 0.251 x BV0.94). It was assumed that the height of the cell is equivalent to 

its width in Alexandrium spp. whilst it is equal to one-third of the width in Prorocentrum 

spp. The total biomass (pg C) was estimated by multiplying the sum of the biomass or 

cellular carbon content (pg C cell-1) and total cell count. Finally, the log of total biomass 

within the exponential phase was fitted against time in a linear model to estimate the 

growth rate in monocultures and co-cultures (r and r*, respectively; expressed in d-1) 

(Supplementary Figure 6.7). Relative growth index (RG) was determined by the 

proportion between growth rate in monocultures and co-cultures (RG = r* /r). RG was 



Chapter 6 – Warming alters interspecific competition 

 184 

used to examine whether the presence of the competitors has decreased (RG < 1) or 

increased (RG > 1) the growth of species. The nature of the species interaction 

between pairs in the mixed-species growth experiments was also examined RG. RG < 1 

indicates a fitness cost incurred by interspecific competition since growth rate in co-

culture is lower than the rate that the species achieved in monoculture. On the other 

hand, RG > 1 indicates facilitation since growth rate is increased in the presence of 

other species. 

Competition coefficients (c) of two competing species, i.e. (1) focal species and 

(2) its competitor were computed following Low-Decarie et al. (2011) using the equation 

below: 
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The predicted competition coefficients or PCC (c1 and c2) were calculated as the 

difference between the growth rates of species in monocultures (r1 and r2) standardised 

by the growth rate of the community (rc). The realised competition coefficients or RCC 

(c1* and c2*) were calculated as a function of observed change in relative total biomass 

(b) of each species in a co-culture through time accounting for the growth of the 

community overall (gc, number of generations across the community).  Competition 

coefficients were used to examine whether focal species outcompete competitors (PCC 

or RCC > 0).  

 

6.2.6 Data analyses 

Response of growth rates and relative growth index were assessed using an 

analysis of variance (ANOVA). The main effects and interactions of temperature and 

competition on the response variables among six different species, between two 
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different genera, and between non-toxic and potentially toxic dinoflagellates were 

tested. Also, the main effects and interactions of the focal species and competitors 

taxonomic identity and toxicity on the response variables among the three different 

temperature treatments (i.e. 15, 20, and 25 °C) were tested. Post hoc Tukey tests were 

also conducted to determine the significant difference in the mean estimates between 

paired groups. A total of 18 analyses were conducted using ANOVA and post hoc 

Tukey tests (see Supplementary Table 6.2 for description). Results of ANOVA are 

summarised in Supplementary Table 6.3 – 6.7, whereas the results of post hoc Tukey 

tests are visualised in Supplementary Figure 6.8 – 6.12. Generally, the statistical results 

for filtered and full datasets were comparable. Hence, the results for the filtered dataset 

are preferably reported in the main text. Finally, to examine the relationship between 

growth rates and competition coefficients, a simple linear regression was used. Data 

processing and analyses were implemented in R version 3.6.1 (R Core Team, 2019) 

using packages implemented in the previous chapters.   

 

6.3 RESULTS  

 

6.3.1 Growth response in monocultures  

The main effect of temperature on growth in monocultures was significant in all 

six species (Figure 6.5; ANOVA 1 in Supplementary Table  6.3). All six species showed 

a significant increase in growth at higher temperature (Supplementary Figure 6.8 A), 

except for the growth in Prorocentrum sp. and Prorocentrum micans that declined at 25 

°C. On average, growth of Prorocentrum increased at 20 °C and then declined at 25 °C 

whereas growth of Alexandrium increased with increasing temperature (ANOVA 2 in 

Supplementary Table 6.3; Supplementary Figure 6.8 B). Similarly, non-toxic 
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dinoflagellates showed increase in growth at 20 °C, which subsequently declined at 25 

°C; however, potentially toxic dinoflagellates had higher growth at higher temperature 

(ANOVA 3 in Supplementary Table 6.3; Supplementary Figure 6.8 C).  

 

Figure 6.5. Growth rates of marine dinoflagellates in monocultures and co-cultures across temperature 
treatments.  The points represent the growth rates of focal species in monocultures (black) and co-
cultures (coloured), whereas the lines represent the trend of growth in monocultures (broken) and co-
cultures (solid) over temperature.  

 

Significance of the main effects of taxonomic identity and toxicity of 

dinoflagellate species on growth in monoculture were found in all temperature 

treatments, except for the effect of genus identity and toxicity at 15 °C (ANOVA 4 – 6 in 

Supplementary Table 6.3). Growth in pure culture in all temperature treatments were 

different across dinoflagellate species, ranging from 0.11 – 0.48 d-1 . Among 

dinoflagellate species, P. lima had the lowest growth across all temperature, whilst P. 

minimum, A. tamutum and A. minutum had the highest growth at 15, 20, and 25°C, 

respectively (Supplementary Figure 6.8 D). There was no difference in growth between 

the two genus of dinoflagellate at 15 °C, but growth of Alexandrium was significantly 
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higher than the growth of Prorocentrum at higher temperature (Supplementary Figure 

6.8 E). Similarly, growth between non-toxic and toxic dinoflagellates were similar at 15 

°C but different at higher temperature. Non-toxic dinoflagellates had a higher growth at  

25°C, whilst potentially toxic dinoflagellates had a higher growth at 25°C 

(Supplementary Figure 6.8 F). 

 

6.3.2 Growth response in co-cultures 

Generally, the main effects of temperature and competitor species identity and 

their interaction effect on growth in co-cultures were significant in all species (Figure 

6.5; ANOVA 7 in Supplementary Table 6.4) with few notable exceptions (e.g. interaction 

effect on growth in Alexandrium tamutum and  Prorocentrum lima). Growth in co-

cultures significantly increased at higher temperature in most dinoflagellate species. 

Trends in the growth in co-cultures were generally comparable to the patterns observed 

in monoculture. Notably, a different trend was observed in the growth of Prorocentrum 

sp. at 25 °C where growth had increased when paired with P. minimum. Similar 

increasing pattern was observed in the growth of P. micans when paired with A. 

tamutum, P. minimum, and P. lima. On the other hand, growth of P. minimum at 25 °C 

had decreased when paired with P. micans, which is different from pattern observed in 

monoculture. All species differed in growth response to temperature that is generally 

dependent on the identity of competitor species (Supplementary Figure 6.9 A). 

Temperature and competitors had significant effect on growth in both the 

dinoflagellate genera but their interaction effect on growth was significant only in 

Alexandrium (ANOVA 8 in Supplementary Table 6.4). The average growth in 

Prorocentrum species in co-cultures increased at 20°C that subsequently decreased at 

25°C whilst average growth in Alexandrium in increased with increasing temperature, 



Chapter 6 – Warming alters interspecific competition 

 188 

which is a similar pattern observed in monocultures (Supplementary Figure 6.9 B). 

Average growth of Prorocentrum species in co-cultures was higher when paired with P. 

lima compared to the growth when paired with P. micans and A. minutum. On the other 

hand, average growth of Alexandrium species in co-cultures was lower when paired 

with P. minimum compared to the growth when paired with the other Prorocentrum 

species. Furthermore, the average growth in Prorocentrum species in co-cultures 

increased at 20°C that subsequently decreased at 25°C whilst average growth in 

Alexandrium in increased with increasing temperature, which is a similar pattern 

observed in monocultures. The effect of temperature on the average growth in 

Alexandrium was dependent on the competing species. 

Also, the significance of the effects of temperature and competitors on growth 

was found in non-toxic and potentially toxic dinoflagellates, but the interaction effect on 

growth was significant only in non-toxic species (ANOVA 9 in Supplementary Table 

6.4). Average growth of non-toxic and potentially toxic dinoflagellates in co-cultures at 

15°C was higher than the average growth at higher temperatures, but average growth in 

co-cultures at 20°C and at 25°C were comparable, deviating from the patterns observed 

in monocultures (Supplementary Figure 6.9 C). Average growth of non-toxic species in 

co-cultures was lower when paired with A. minutum compared to the growth when 

paired with other species except for P. lima. On the other hand, average growth of 

potentially toxic dinoflagellates in co-cultures was higher when paired with P. lima 

compared to the growth when paired with the other species. Unlike non-toxic species, 

average growth of potentially toxic dinoflagellates differed across temperature 

independent of the competitors.  

The growth was dependent on the taxonomic identity of  focal and competitor 

species in all temperature treatments (ANOVA 10 – 11 in Supplementary Table 6.4). 
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The range of the difference in growth across focal species identity was from -0.28 d-1 to 

0.33 d-1 across temperature (Supplementary Figure 6.9 D). On the other hand, the 

difference in growth across competitor species identity ranged from –0.063 d-1 to 0.073 

d-1 across temperature. The difference in growth across the interaction between focal 

and competitive species identity ranged from –0.39 d-1 to 0.42 d-1 across temperature. 

The average growth in Prorocentrum and Alexandrium were different across all 

temperature and the scale of difference was independent on the genus of competitor 

species at higher temperature (Supplementary Figure 6.9 E). Alexandrium had a higher 

growth compared to the estimate in Prorocentrum, and this difference increased with 

increasing temperature. Average growth in co-cultures had decreased when a 

dinoflagellate was competing against Alexandrium at 15 °C. Furthermore, the average 

growth was independent of toxicity of focal and competitor species in all temperature 

treatments (ANOVA 12 in Supplementary Table 6.4; Supplementary Figure 6.9 F).  

 

6.3.3 Relative growth index 

Sensitivity of relative growth index (RG) to temperature and competitor species 

identity was generally significant (Figure 6.6; ANOVA 13 in Supplementary Table 6.5).  

Generally, RG  significantly increased at higher temperature in all species, except for 

Alexandrium species (Supplementary Figure 6.10 A). The difference in relative growth 

across the competitive species identity ranged from -0.46 to 0.50. Prorocentrum sp. had 

lower RG when paired with A. tamutum than with P. minimum and P. lima, but it had 

higher RG when paired with P. minimum than with other potentially toxic dinoflagellates. 

On the other hand, RG in P. micans was higher when paired with P. minimum 

compared to RG when paired to P. minimum and Alexandrium species. A. tamutum had 

lower RG when paired with P. minimum than with other Prorocentrum species. P. 
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minimum had higher RG when paired with P. lima than with non-toxic Prorocentrum 

species. It also had higher RG when paired with A. tamutum than with P. micans. 

Furthermore, RG in P. lima was higher when paired with A. minutum compared to the 

index when paired with P. micans. A. minutum had higher RG when paired with P. 

micans than with Prorocentrum sp. Prorocentrum species differed in growth response to 

temperature that is generally dependent on the identity of competitor species. 

The main effects of temperature and competitors and their interaction on RG 

were generally significant in Prorocentrum species (ANOVA 14 in Supplementary Table 

6.5). However, only the significance of the effect of competitor was found in 

Alexandrium species. RG in Prorocentrum species was significantly higher at higher 

temperature whilst RG in Alexandrium species was similar across temperature 

treatments (Supplementary Figure 6.10 B). Furthermore, Prorocentrum species had 

higher RG when paired with P. minimum than with other species, except with A. 

minutum. However, they had lower RG when paired with P. micans than with P. lima 

and A. minutum. On the other hand, Alexandrium species had lower RG when paired 

with P. minimum than with other Prorocentrum species. The effect of temperature on 

RG in Prorocentrum species was dependent on the identity of competing species.  

Significance of the effect of temperature and competitors and their interaction 

on the RG was found in both non-toxic and potentially toxic dinoflagellates (ANOVA 15 

in Supplementary Table 6.5). RG in non-toxic species was highest at 25 °C 

(Supplementary Figure 6.10 C). Whereas, RG in potentially toxic species was lowest at 

15 °C. Relative growth varied across temperature in both non-toxic and toxic 

dinoflagellate dependent of the toxicity of competitor species.  

The main effects of the species identity of focal and competitor species and 

their interaction effect on RG were significant in all temperature treatments (ANOVA 16 
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in Supplementary Table 6.5). The difference in relative growth ranged from -1.23 to 1.43 

across focal species identity whilst it ranged from -0.29 to 0.36 across competitor 

species identity across temperature (Supplementary Figure 6.10 D). Significance of the 

effect of the genus identity of focal and competitor species was found (ANOVA 17 in 

Supplementary Table 6.5). Alexandrium had higher RG compared to the RG in 

Prorocentrum at 15°C, opposite to the trend at 25 °C (Supplementary Figure 6.10 E). 

RG was decreased when a dinoflagellate was competing against Alexandrium at lower 

temperature. Toxicity of focal species had significant effect on RG in all temperature 

treatments, except at 25 °C (ANOVA 18 in Supplementary Table 6.5). At 25 °C, toxicity 

of competitor species had significant effect on RG. Non-toxic dinoflagellates had higher 

RG compared to potentially toxic counterparts at 15 °C, opposite to the trend at 20 °C 

(Supplementary Figure 6.10 F). Surprisingly, RG was higher when competing against 

potentially toxic species at 25 °C.  Interaction effect between toxicity of focal and 

competitor species on RG was not significant.  

Based on the RG estimates, three species interaction scenarios were observed. 

Overall, 14 % of pairs demonstrated a mutual competition scenario, 63 % of pairs fell 

into intermediate scenario where one species was facilitated while the other 

experienced interspecific competition, and the remaining 23 % of pairs exhibited a full 

facilitation scenario. Hence, the interactions in the experiment are mostly competitive 

sensu stricto.  
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Figure 6.6. Relative growth rates of marine dinoflagellates across temperature. The points represent the 
growth rates of focal species in monocultures (black) and co-cultures (coloured), whereas the lines 
represent the trend of growth in monocultures (broken) and co-cultures (solid) over temperature. Points 
above the horizontal line indicate higher growth in co-culture than in monoculture.  
 

6.3.4 Relationship between growth and competition 

There were direct proportional relationship between growth and competition in 

all temperature treatments (Figure 6.7). The slope between the growth in monocultures 

and predicted competition coefficient (PCC) had decreased with increasing temperature 

(Figure 6.7 A). On the other hand, the slope between the growth in co-cultures and 

realised competition coefficient (RCC) was lower at  25 °C compared to the slope at 

lower temperatures (Figure 6.7 B). Among the dinoflagellate species, P. lima had the 

lowest growth rates in monocultures and co-cultures across all temperature treatments. 

Hence, it had the lowest PCC and RCC across all temperature treatments (except for 

RCC at 25 °C), which were below zero regardless of its competitors. On the other hand, 

growth of non-toxic Prorocentrum species (i.e. Prorocentrum sp., and P. micans) in 

monocultures and co-cultures were higher than the estimates in P. lima. Similar trend to 
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their PCC and RCC in all temperatures, which were either below or above zero 

depending on their competitors. Among Prorocentrum species, the potentially toxic P. 

minimum had the highest growth rates in monocultures and co-cultures across all 

temperature treatments. Their PCC and RCC were generally above zero across all 

temperatures. Furthermore, growth of Alexandrium species in monocultures and co-

cultures were the higher than the estimates in Prorocentrum species across all 

temperatures. They had the highest PCC ad RCC across all temperatures, which above 

zero regardless of their competitors.  

 

6.3.5 Relationship between predicted and realised competition 

Also, there were direct proportional relationships between predicted and 

realised competition coefficient in all temperature treatments (Figure 6.7 C). The slope 

of the linear relationship between PCC and RCC peaked at 20 °C (i.e. ~0.17), whilst the 

slopes at extreme temperatures were comparable (i.e. ~0.10). Generally,  P. minimum 

and Alexandrium species outcompeted other dinoflagellates species, whereas P. lima 

and non-toxic Prorocentrum species fell behind the competition. These outcomes of the 

competition inferred from PCC and RCC were comparable at 20 °C. However, a few 

discrepancy of the outcomes was observed at extreme temperatures. For instance, 

PCC and RCC  differed from their outcomes of competition in several co-cultures that 

paired with Prorocentrum sp. at 15 °C. Also, PCC and RCC had a mismatch of the 

outcomes of the competition in several co-cultures that paired with P. micans and P. 

minimum at  25 °C. 
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Figure 6.7. Linear relationship between growth and competition in marine dinoflagellate in three 
temperature treatments. Relationship between growth in monocultures and predicted competition 
coefficient (PCC) and the relationship between growth in co-cultures and realised competition coefficient 
(RCC)  are presented (A and B, respectively). Also, the relationship between PCC and RCC is also 
presented (C). The colour-coded points represent the estimates obtained from focal species in the 
competition. The solid lines represent the fits with the linear model displayed at the bottom. The points 
above the horizontal broken lines or at the right side of the vertical broken lines indicate that focal species 
outcompetes competitor, whilst points below or at the left side of the broken lines indicates that 
competing species outcompetes focal species.   
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6.4 DISCUSSION 

 

6.4.1 Temperature as a limiting factor  

Competitive performance of a species can be measured in terms of growth rate, 

which is dependent on temperature (Amarasekare and Savage, 2011; Savage et al., 

2004). The findings in this study reveal the temperature dependence of growth and 

competition in marine dinoflagellates, suggesting that temperature is a limiting factor. 

These results are not surprising since existing studies recognised the critical role of 

temperature on the physiology, growth, species interaction, biogeographical distribution 

in phytoplankton (Bestion et al., 2018; Brun et al., 2015; Coello-Camba et al., 2015; 

Grimaud et al., 2017; Raven and Geider, 1988). This present study provides new 

empirical evidence of the effect of temperature on interspecific competition in non-toxic 

and potentially toxic dinoflagellates, which is limited in literature. 

 

6.4.2 Focal and competitor species-specificity of responses to temperature  

Generally, the main effects of temperature and competitor species identity and 

the interaction effect on growth and competition were significant, suggesting that the 

temperature dependence of the responses in the pairwise mixed-species cultures is 

contingent on the identity of the competitor species.  

In single-species growth experiments, there were significant differences in 

growth rates across the focal species identity and toxicity, suggesting the dependence 

of the growth on the focal species identity and toxicity. These patterns were observed in 

warmer temperature, but not evident in 15 °C where no significant variation in the 

average growth was found between the genera Alexandrium and Prorocentrum and 

between non-toxic and potentially toxic dinoflagellates.  
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On the other hand, in the mixed-species growth experiments, there were 

significant variations in growth rates and competition across the taxonomic identity of 

the focal and competitor species, but no significant difference in the responses between 

non-toxic and potentially toxic species. The results suggest the dependence of growth 

on both the focal and competitor species identity and not on their toxicity. These 

patterns were observed across all temperature treatments. 

Overall, these findings suggest the importance of focal and competitor species-

specificity of the competitive response to warming. This species-specificity of 

competition is expected since the temperature dependence of metabolic rates varies 

across species, and this interspecific differences in the thermal performance can greatly 

influence species interactions (Dell et al., 2014). Furthermore, the results suggest that 

the toxicity of focal species influence growth in the absence of competition at elevated 

temperature. These results are anticipated since the average thermal optimum (Topt ) in 

potentially toxic species was higher than the average Topt  in non-toxic species (see 

previous chapter). The toxicity of the focal and competitor species does not influence 

the growth and competition across all temperature. This findings does not provide 

evidence to support the hypothesis that warming will affect the competitive interaction 

between non-toxic and toxic dinoflagellates. 

 

6.4.3 Competition effect on growth responses to temperature  

Interspecific competition is defined here as the interaction between species, 

which leads to a decline in the growth rate of a species by the presence of another. In 

this study, the relative growth (RG) index was used to identify the nature of the species 

interaction between pairs in the mixed-species growth experiments. RG is referred here 

as the ratio between the growth rates in mixed- and single-species cultures, which 
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similar at some extent to the relative density or yield reported in recent studies (Bestion 

et al., 2018; Fritschie et al., 2014). Based on the relative growth (RG) index, majority of 

the interactions in the experiment are competitive.  

Moreover, this present study used the relative growth index to investigate the 

competition effect on temperature response. The results show the significance of the 

main effects of temperature and competitor species identity and their interaction effect 

on RG in all species, generally. These indicate the dependency of the effect of 

competition on the growth to temperature, which is contingent on the competitors 

identity. Also, the findings generally reveal the significance of the main effects of the 

taxonomic identity of focal and competitor species on RG in all temperature treatments. 

These results suggest that the competition effect on growth depends on the interacting 

species. However, RG is independent on the toxicity of focal and competitor species.  

Overall, the findings of this study support the hypothesis that interspecific 

competition modifies temperature dependence of growth in marine dinoflagellates. 

Previous studies have demonstrated the dependence of growth rates on interspecific 

interactions (e.g. Anholt and Werner, 1995; Baker, 1982). A recent study found that 

temperature responses are modified by competitive interactions, and the strength of 

their effect is species-specific (Nilsson-Örtman et al., 2014). Therefore, temperature 

dependence of growth rates in laboratory may be different at some extent from the  

temperature responses in natural conditions (Gilman et al., 2010; Moenickes et al., 

2012). Moreover, species-specific variation in physiological response leads to a 

surprising shift in species interactions with increasing temperatures (Davis et al., 1998; 

Lang et al., 2012).  
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6.4.4 Effect of warming on interspecific competition  

In this study, the competitive interaction is also expressed as predicted and 

realised competition coefficients (PCC and RCC, respectively). Results of the study 

reveal that warming alters the competitive interaction in marine dinoflagellates, which 

further suggest that the competitive response is dependent on temperature. The 

temperature dependence of competition can be explained by the metabolic theory of 

ecology (MTE). MTE attempts to provide mechanistic links between the different levels 

of organisation in biology and ecology, e.g. from organelles to ecosystems (Brown et 

al., 2004). As a fundamental dimension of the MTE, temperature plays a key role in 

shaping the ecosystem structure and function (Brown et al., 2004; Gillooly, 2001). The 

effect of temperature on interspecific interactions such as competition is recognised in 

prior works (e.g. Dunson and Travis, 1991; Park, 1954; Tilman, 1981) and in recent 

studies (e.g Amarasekare, 2008, 2007; Gilman et al., 2010; Kordas et al., 2011; 

Tylianakis et al., 2008; Woodward et al., 2010). 

This temperature dependence of competition coefficients is also contingent on 

the competitors species identity. This can be explained by the species specificity of the 

growth responses to temperature. The thermal performance curves (TPC) between two 

species can be compared to predict the outcome of competition. In a given temperature, 

patterns of species replacement with the dominance of species with the higher growth 

rate can be observed along a thermal gradient, which can occur in several ways. One 

way is when both species are generalists with similar TPC but have different thermal 

optimum (Topt). Another way is when one species is a specialist and the other is a 

generalist, but both have the same Topt. In both ways, dominance of a species is 

dependent on local temperature. Species replacement patterns can also occur when 

the competing species have unequal strengths of density dependence that differ with 
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temperature. In this scenario, a species can be outcompeted by competitor due to its 

sensitivity to the per capita effects of the competing species in a given temperature, and 

not because it has low carrying capacity (Reuman et al., 2014).  

A most recent study has developed a simple theoretical model that 

demonstrated the key role of metabolic traits, i.e. the temperature dependence of 

growth and resource acquisition, in determining the effect of temperature on 

interspecific competition in phytoplankton (Bestion et al., 2018). The model assumes 

that the population are initially rare and the cells are exponentially growing at a constant 

rate (Bestion et al., 2018). This model differs in several aspects from the assumption of 

resource competition (Tilman, 1981) and adaptive dynamic (Dieckmann and Law, 1996) 

theories that assume that a rare species must have lower equilibrium resource 

requirements (R*) than that of the resident (at population dynamics equilibrium) in order 

to successfully invade. Moreover, the model is able to predict the outcomes of the 

competition experiment with good accuracy, suggesting that metabolic rates are useful 

in predicting the effects of warming on the ecological dynamics of phytoplankton 

communities (Bestion et al., 2018). 

 

6.4.5 Direct relationship between growth and competition  

The findings reveal the strong direct proportional relationships between growth 

rates and competition coefficients, suggesting that growth clearly influence competition 

in marine dinoflagellates. This direct effect of growth on competition is also 

demonstrated in bacteria (Nedwell and Rutter, 1994), plants (Goldberg and Landa, 

1991), marine invertebrates (Johannes et al., 1983; Lord and Whitlatch, 2015). 

Furthermore, the slope of the linear relationship between growth and competition were 

found to vary across temperature, suggesting the temperature dependence of the effect 
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of the growth on competition. This further imply that warming could lead to shift in 

community composition in marine dinoflagellates where growth rates strongly influence 

competition. The results also show that the variation in growth explain the majority of 

the variation in competition, however more than 25% of variation remained unexplained. 

These results suggest that other than the growth, other factors may also influence 

competition.  

However, the complexity of the effect of temperature makes it challenging to 

develop a mechanistic model to predict responses to climate change. This is because 

the processes at different biological and ecological levels (i.e. from organism to 

ecosystem) do not just depend on the direct effects of temperature on physiology, but 

also on how these direct effects occur in the context of other processes. For example, 

the species distribution along the environmental temperature reflects interactions of 

species, not just the direct effects of temperature (e.g. Gross and Price, 2000; Price and 

Kirkpatrick, 2009). 

 

6.4.6 Predictable ecological response 

The findings also reveal the direct proportional relationships between predicted 

and realised competition coefficients (PCC and RCC, respectively) in all temperature 

treatments (with average R2 =  0.64), suggesting the predictability of the realised 

competition. Hence, the growth rates of species in monocultures can be used to predict 

the outcomes of competition in co-cultures. The outcomes of the competition inferred 

from PCC and RCC were comparable with 92% of the outcomes are matched. 

Generally, the results show that P. minimum and Alexandrium species outcompete 

other dinoflagellates species, whereas P. lima and non-toxic Prorocentrum species fall 

behind the competition.  
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The study attempts to use competition coefficients to infer the possible 

community composition at three different temperature treatments. In each treatment, 

the number of instances that a focal species outcompete competitors is determined 

based on PCC and RCC and is expressed as relative frequency. Figure 6.8 shows the 

PCC- and RCC-based relative frequency of species in all temperature treatments. 

 

Figure 6.8. Predicted community structure of marine dinoflagellates in three temperature treatments. 
Filled bars represent the relative frequency of non-toxic and potentially toxic dinoflagellate species 
across, which were based from the predicted and realised competition coefficients (PCC and RCC, 
respectively).  

 

Based on PCC, A. tamutum  is expected to dominate across all temperatures 

(i.e. 33%), except at 15 °C. This is followed by A. minutum with relative frequency of 

25% that remains constant in all temperatures. It is expected that P. minimum will 

dominate at 15 °C (33%), but it is predicted to decreased at higher temperatures (19% – 

25%). Relative frequency of Prorocentrum sp. peaks at 20 °C (14%) whilst the 

estimates at extreme temperatures are comparable (8%). P. micans yields a relative 

frequency of 11% at 15 °C, and is expected to decrease at higher temperatures (8%). 

P. lima is expected to be extinct across all temperatures. Potentially toxic species is 

expected to dominate over non-toxic species at 15 °C, whilst non-toxic species is 
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predicted to dominate at 20 °C. Both non-toxic and potentially toxic species are 

expected to co-exist at 20 °C. These PCC-based patterns are comparable to RCC-

based relative frequency with few exceptions. For instance, RCC-based relative 

frequency of Prorocentrum sp. is expected to decrease with increasing temperature. 

Also, RCC-based relative frequency of P. micans is expected to be higher at 15 °C than 

the estimates at lower temperatures.  

On the other hand, P. lima is expected to contribute the least to the community 

composition 25 °C but predicted to be extinct at lower temperature. Both non-toxic and 

potentially toxic species are expected to co-exist at 15 °C. RCC-based relative 

frequency of non-toxic species is expected to increase with temperature, opposite to the 

pattern observed in potentially toxic species. Therefore, competition coefficients can be 

used to predict the structure of the community. However, the accuracy of the prediction 

cannot be determined since the study is limited to pairwise competition. A full 

community competition experiment (e.g. Low-Décarie et al., 2011; Pardew et al., 2018) 

is required to test accuracy of the prediction.   

 

6.4.7 Caveats   

The findings presented in this study should be interpreted with caution in 

consideration of the following caveats with the design: (1) Marine dinoflagellates 

species were used because they are ecologically relevant organisms comprising the 

majority of the toxic bloom-forming species. Expanding the results to other taxonomic 

phytoplankton groups (e.g. diatoms, cyanobacteria, haptophytes) certainly needs 

additional experimental validation.  (2) These test organisms are also easy to keep in 

good condition over many transfers; however, they are not maintained in axenic 

cultures. The results may be suffered from the interference from the possible effect of 
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the presence of bacteria in the culture. (3) Among the test organisms, only P. lima is 

confirmed to produce toxins (see the previous chapter) and it is grouped with P. 

minimum and A. minutum as potentially toxic species. Extending the results to toxic 

phytoplankton species also requires further experimental validation. (4) Prior the 

experiment, the cultures were pre-acclimated at three different temperature treatments 

and two weeks may not be enough to fully acclimatised to the new thermal conditions. 

(5) In few samples, low quality of image data acquired through high throughput 

microscopy affects the image processing to detect the cells. It is for this reason why the 

image acquisition is done semi-automatedly per well and not completely automated per 

plate in order to improve the quality of the image data. (6) Few of the deep learning 

models yielded a low accuracy in discriminating one species from another species in 

pairwise mixed cultures (Supplementary Table 6.1), and pairs with low model accuracy 

were excluded in the analysis. The results of the analysis using the filtered dataset were 

comparable to that of the full dataset, and hence the findings presented in this study 

were robust. (7) Growth rate was used as proxy for fitness, which are dependent on 

specific experimental conditions that vary for different organisms and from lab to lab. (8) 

The design allows the treatment effect to be partitioned among species, genera, and 

toxicity and the replication is small. Additional experiments are needed to establish the 

generality of the conclusions. 

 With these caveats, the experiment can be used to evaluate the effect of 

warming on the growth rate in monocultures and the competitive response of two 

species in mixed cultures. 
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6.5 CONCLUSIONS  

 

This chapter concludes the following: (1) temperature limits growth and 

competition, (2) growth response to temperature depends on the interacting focal and 

competitor species, (3) interspecific competition modifies temperature dependence of 

growth, (4) warming alters interspecific competition, (5) growth rates strongly influence 

competition, (6) ecological response to warming is predictable. The results provide new 

empirical evidence of the effect of warming on growth and competition in marine 

dinoflagellates. Concisely, this study helps the advancement of our current knowledge 

on how species respond to climate change, and challenges the use of single-species 

laboratory experiments for predicting community responses to climate change. 
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GENERAL DISCUSSION 

 

Climate change poses a serious threat to phytoplankton communities. 

Recognising the beneficial and harmful impacts of phytoplankton to the environment, to 

humans, and to other organisms, it is crucial to understand how physiology and ecology 

of phytoplankton are affected by temperature, which is expected to change with climate. 

In this thesis, I have addressed some of the existing gaps in our knowledge of the 

thermal responses in marine phytoplankton. Specifically, I analysed species occurrence 

data (Chapters 2 and 3), published temperature-growth data (Chapter 3), and data from 

laboratory experiments (Chapters 4 to Chapter 6) to provide new information on the 

thermal limitation to the distribution, growth, toxin production, and competition in marine 

phytoplankton. In the following sections, key findings of the research and their 

implications are discussed, and future research directions that have come to light from 

the work are presented. 

 

7.1 KEY RESEARCH FINDINGS 

7.1.1 Temperature limits the current biogeography 

In Chapter 2, an analysis of the global dataset of species occurrence data was 

conducted to examine the global patterns in the realised thermal niche and geographic 

range of marine phytoplankton. Overall, the findings shed light on the complexity of 

biogeographical patterns of marine phytoplankton species, which do not necessarily 

conform to classical macroecological rules. Below are the key results of this chapter: 

Thermal niches vary non-monotonously with latitude. This trend is due to the 

latitudinal variation in the difference between the minimum and maximum average 
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annual SST or in the difference between the seasonal temperature extremes 

experienced by phytoplankton in the contemporary ocean. This pattern in the thermal 

niche breadth reflects the asymmetrical variation in the thermal limits, in which the 

irregular monotonous behaviour of the lower and upper thermal limits leads to the non-

monotonous latitudinal pattern in the niche breadth. 

Thermal niches in the tropics are narrower. The thermal niches of phytoplankton 

species in the tropics are narrower than those in higher latitudes following Janzen’s 

rule. Thermal limits are influenced by climate variability and in turn affect the distribution 

of marine phytoplankton. In general, temperature is linked to the role of phytoplankton in 

regulating biological processes and patterns in ecology as per the metabolic scaling 

hypothesis, therefore impacting the extent and rate of their metabolic performance rate. 

Tropical phytoplankton species achieve ecological success in warmer conditions 

(Payne and Smith, 2017), due to their ability to perform over a narrower thermal range 

based on the scaling of physiological rates in higher temperatures. 

Latitudinal variation in geographic range is not evident. The results showcase a 

complex relationship between latitude and geographic size range that contradicts 

Rapoport’s rule which dictates that tropical species have small range sizes due to their 

adaptation to little seasonal variation in climate whereas temperate species are 

expected to occupy a larger range size due to their tolerance to greater climate 

variability. This contradiction of the results to the theory suggests that several factors 

(such as transport or thermal niche breadth) may influence the geographic range size in 

marine phytoplankton other than climate variability. 

Thermal niches and geographic range are related. A weak trend of 

geographical range size increasing with increasing thermal niche breadth in marine 

phytoplankton was detected in the data, suggesting that niche breadth to some extent 
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limits the geographic distribution of these communities. This observation supports the 

validity of the niche breadth–range size hypothesis, which suggests that marine 

phytoplankton become more widespread when they can utilise resources (e.g. light and 

nutrients) within a wider thermal condition (Slatyer et al., 2013). 

Patterns are explained by temperature and other environmental factors. 

Temperature and climate variability are important explanatory variables for the trends in 

thermal niche breadth. The diversity and habitat availability are relatively more 

influential as variables for range size than the climate variability since geographic range 

size decreases with increasing diversity which in turn increases with higher habitat 

availability. Thus, species may have large range size without adapting to high climate 

variability if exposed to the environment with low diversity and more thermally suitable 

habitats. 

 

7.1.2 Biogeography and phylogeny explain variability in thermal attributes  

In Chapter 3, the global patterns of physiology- and occurrence-based thermal 

traits (TTp and TTo), thermal sensitivity, and warming exposure and vulnerability in 

marine phytoplankton were examined. Generally, the findings indicate that the variation 

of these thermal attributes can be attributed to biogeography and phylogeny of marine 

phytoplankton. The key findings in this chapters are as follows: 

Physiology- and occurrence-based thermal traits are congruent but not equal. 

These support the hypothesis that TTp and TTo express different aspects of species 

thermal niche. TTp is expected to estimate the fundamental niche of a species, defined 

by their physiological tolerance range to environmental factors (e.g. temperature) in the 

absence of biotic interactions (Hutchinson, 1957). However, the fundamental niche may 
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be reduced in the presence of biotic interaction such as predation, competition, 

mutualisms, species dispersal limitation (Sánchez-Fernández et al., 2016), and limited 

climate availability (Soberón and Nakamura, 2009), resulting in TTp becoming higher 

than TTo. 

Thermal attributes vary across latitude. Generally, thermal traits in marine 

phytoplankton vary across latitude as demonstrated in previous studies using data on 

algal physiology (Chen, 2015; Thomas et al., 2016, 2012) and occurrence (Chapter 2). 

As observed, the difference between TTp and TTo generally vary non-monotonously 

with latitude, suggesting that the inequality between these traits may increase or 

decrease depending on the geographic locations where the species are 

collected/isolated. Thermal sensitivity in marine phytoplankton also varies across 

latitude, indicating that temperate species experience low cold safety margins and 

therefore they are at risk to live beyond the limit of their cold tolerance as compared to 

species in the tropics. On the other hand, tropical species have low heat safety margins 

and hence they are more vulnerable to warming than the species thriving at higher 

latitudes (Clusella-Trullas et al., 2011; Deutsch et al., 2008; Diamond et al., 2012; Huey 

et al., 2009). This is further supported by the latitudinal trend in warming vulnerability, 

indicating that the local temperatures will surpass the physiological upper thermal limits 

in tropical species faster than the temperate species, despite the warming rate being 

slower in the lower latitudes. 

Interspecific variations in thermal attributes is evident. The results reveal that a 

significant proportion of the variation in all thermal attributes is mainly explained by 

taxonomic identity, suggesting that the thermal attributes are most variable among 

species within genera. Although the variation is largely explained by species, the supra-

specific taxonomic levels frequently explained more variation than expected by the tip-
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randomisation null-models. This indicates presence of phylogenetic signal in the 

physiology- and occurrence-based thermal traits, their inequalities, and thermal 

sensitivity in marine phytoplankton. 

Phylogenetic conservatism in the thermal attributes is absent. The results 

suggest that phylogenetic signals are present, but too weak to detect the presence of 

phylogenetic conservatism. These results further suggest that the thermal attributes are 

more similar among closely related species than expected from a null model from the 

same phylogeny, but there is no evidence of the tendency of species to retain their 

ancestral thermal traits more than expected from a Brownian null model of evolution. 

 

7.1.3 Temperature influences the algal growth  

In Chapter 4, laboratory experiments were conducted to examine the 

temperature dependence of growth in marine dinoflagellates. In general, the findings 

reveal the comparison between non-toxic and potentially toxic phytoplankton in terms of 

how temperature change affects their growth. Below are the key results in this chapter: 

Growth is temperature-dependent. Generally, the results revealed an 

asymmetrical pattern of the thermal growth curve indicating that their growth is more 

sensitive to warmer conditions. This can be attributed towards the physiological 

processes in phytoplankton that is mainly driven by the kinetics of enzymes which is 

influenced by temperature. When temperature increases, it affects the enzyme 

activation and its process rate finding stability at high temperatures (Knies and 

Kingsolver, 2010). This in turn impacts growth rates which increase exponentially with 

increasing temperature below the thermal optimum (Topt), following the Arrhenius 
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kinetics (Arrhenius, 1915). Once the Topt is reached, growth rate decreases due to the 

denaturation of essential proteins (Hochachka and Somero, 2002). 

Thermal traits in non-toxic and toxic species are comparable, but not their 

growth rates. This variation in temperature dependence of growth between the non-

toxic and potentially toxic phytoplankton has an ecological implication especially in the 

changing climate, as toxic species may dominate over the non-toxic species (or vice 

versa). Under future climate scenarios, toxic species could employ adaptive strategies 

to expand their thermal tolerance, while toxin production may provide toxic species a 

selective advantage. 

Maximum growth rates and thermal traits are unrelated. Results suggests that 

there is no clear trade-off between maximum growth rate and thermal traits. The 

relationship between the maximum growth rate of phytoplankton and temperature is 

initially described by an exponential envelope function (Eppley, 1972), which the “hotter 

is better” hypothesis is based on. Under this hypothesis, the maximum growth rate is 

expected to be greater at higher optimal temperature. 

Thermal traits are linked to environmental temperatures. Results suggest that 

there is a strong link between the cardinal temperatures and the ambient temperature 

experienced by marine phytoplankton at their local habitat, indicative of local adaptation 

(Thomas et al., 2012). This shows the importance of the environment in shaping the 

physiology of phytoplankton. 

Warming vulnerability in non-toxic and toxic species is comparable. Nearly all 

the non-toxic and potentially toxic phytoplankton species were thriving within the 

thermal safety zone in the present climate scenario. Thermal sensitivity also remain 

comparable between non-toxic and potentially toxic phytoplankton. Overall, vulnerability 
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to climate change is highly variable among the strains, and less variable between 

toxicity in marine phytoplankton. 

7.1.4 Temperature affects toxin production  

In Chapter 5, laboratory experiments were also conducted to examine the 

temperature dependence toxin production in marine dinoflagellates. The findings 

elucidate how change in temperature influences the production of toxins in a toxic 

phytoplankton. Below are the key results in this chapter: 

Toxin production is temperature-dependent. The concentration, cellular content, 

relative composition, and cellular production rate of toxins are dependent on 

temperature. The temperature dependence of toxin production is contingent on whether 

the test organism is drastically or gradually exposed to new thermal conditions. Drastic 

exposure to higher temperature yielded higher toxin concentration than the estimates at 

lower temperature, but the gradual exposure produced no difference from the estimates 

at lower temperature. The results of this study indicate there is an inverse linear 

relationship between toxin production rates and growth rates, suggesting that the toxin 

production rate increases with decreasing growth rates. Toxin production is believed to 

dispense with excess photosynthetic energy when toxic species growth is no longer 

optimal (Bates, 1998; Pan et al., 1996).  

 

7.1.5 Warming alters growth and competition 

In Chapter 6, laboratory experiments were conducted to examine the effect of 

increased temperature on growth and competition in marine phytoplankton using 

dinoflagellates as test organisms. Overall, the findings provide a new insight on how 

warming influences interspecific competition in marine phytoplankton, which is crucial 
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for predicting the change in the phytoplankton communities in response to climate 

change. The key results of this chapter are as follows: 

Temperature is a limiting factor for growth and competition. The findings reveal 

the temperature dependence of growth and competition in marine dinoflagellates, 

suggesting that temperature is a limiting factor. These results are not surprising since 

existing studies recognised the critical role of temperature on the physiology, growth, 

species interaction, biogeographical distribution in phytoplankton (Bestion et al., 2018; 

Brun et al., 2015; Coello-Camba et al., 2015; Grimaud et al., 2017; Raven and Geider, 

1988). 

 Temperature dependence of growth and competition is specific to the species 

identity of the focal and competitor species, and not to their toxicity. The results suggest 

the importance of focal and competitor species-specificity to the competitive response 

to warming. This species-specificity of competition is expected since interspecific 

differences in the thermal performance can greatly influence species interactions (Dell 

et al., 2014). However, the toxicity of the focal and competitor species does not 

influence the growth and competition across all temperatures. The results are 

insufficient to support the hypothesis that warming will affect the competitive interaction 

between non-toxic and toxic dinoflagellates. 

Interspecific competition influences the growth responses to temperature. 

Results support the hypothesis that the interspecific competition modifies temperature 

dependence of growth in marine dinoflagellates. Previous studies demonstrate the 

dependence of growth rates on interspecific interactions (e.g. Anholt and Werner, 1995; 

Baker, 1982) while recent studies report that temperature responses are modified by 

competitive interactions, and the strength of their effect is species-specific (Nilsson-

Örtman et al., 2014). Therefore, there may be slight variations between the temperature 
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dependence of growth rates in laboratories compared to those in natural conditions 

(Gilman et al., 2010; Moenickes et al., 2012).  

Warming affects interspecific competition. Warming alters the competitive 

interaction in marine dinoflagellates, which further suggests that the competitive 

response is temperature dependent. This could be explained by metabolic theory of 

ecology (MTE) that attempts to provide mechanistic links between the different levels of 

organisation in biology and ecology (Brown et al., 2004). Temperature plays a key role 

in shaping the ecosystem structure and function as a fundamental dimension of the 

MTE (Brown et al., 2004; Gillooly, 2001) and its effect on interspecific interactions such 

as competition is recognised in previous studies (e.g. Dunson and Travis, 1991; Park, 

1954; Tilman, 1981; Amarasekare, 2008, 2007; Gilman et al., 2010; Kordas et al., 2011; 

Tylianakis et al., 2008; Woodward et al., 2010). 

Growth and competition is are related. There were strong direct proportional 

relationships between growth rates and competition coefficients, suggesting that growth 

clearly influences competition in marine dinoflagellates. The slope of the linear 

relationship between growth and competition were found to vary across temperature, 

suggesting the temperature dependence of the effect of the growth on competition. This 

further implies that warming could lead to shifts in community composition in marine 

dinoflagellates where growth rates strongly influence competitive ability. 

Ecological response is predictable from growth responses. There were also 

direct proportional relationships between predicted and realised competition coefficients 

(PCC and RCC, respectively) in all temperature treatments, suggesting the predictability 

of the realised competition. Hence, the growth rates of species in monocultures can be 

used to predict the outcomes of competition in co-cultures. The competition coefficients 

can be used to predict the structure of the community. 
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7.2 IMPLICATIONS TO CLIMATE CHANGE ECOLOGY  

The vulnerability of phytoplankton to climate change is attributed to the impact 

of temperature change on their physiological processes and growth, which may alter 

marine ecosystem structure and function. Marine phytoplankton are generally living in 

the present climate scenario within the thermal safety zone. However, with the ongoing 

climate change, the warming temperature may likely exceed the physiological limits of 

marine phytoplankton species. They must avoid the extreme temperatures or else they 

are at risk of the thermal danger. They may either adapt or migrate to new favourable 

habitats to survive, otherwise, their extinction is inevitable.  

The findings of this thesis reinforce the current thought that ocean warming will 

likely trigger the poleward shifts in thermal niches of marine phytoplankton species 

(Barton et al., 2016), the decline of phytoplankton diversity in the tropics (Thomas et al., 

2012), the occupancy of non-indigenous and invasive species in new thermally defined 

habitats (Sorte et al., 2010), and the shift in phytoplankton community structure 

(Acevedo-Trejos et al., 2015). Hence, highly diverse communities of phytoplankton in 

the tropics may be the most at threat from global warming. The high biodiversity of 

marine phytoplankton in the tropics (Righetti et al., 2019) entails intensification of the 

biotic interaction in the tropical phytoplankton community and hence may narrow the 

realised thermal niche in the tropics. Narrowing of the niche in tropics may also be 

attributed to the rates of biotic interactions and processes, or the rate of evolutionary 

diversification, which are higher in a warmer climate than in a colder climate (Allen et 

al., 2002; Mittelbach et al., 2007).  The findings further imply that species in the tropics 

are thermal specialists and have a higher affinity to warm temperature than the 

temperate species. Despite the advantage of having these traits, tropical species have 

a low heat safety margin, which makes them more vulnerable to warming. 
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 The warming of the climate is likely affecting the distribution of marine 

phytoplankton in time and space. Consequently, the climate-induced changes in the 

phenology and biogeography of the phytoplankton bloom are likely to impact the 

primary production and carbon cycling in the future ocean. It is expected that 

phytoplankton species will advance their timing of the spring bloom and will persist 

during fall because of the ocean warming. This advanced timing will be relevant to the 

subsequent productivity of the marine ecosystems. Along with the shift in phenology, 

biogeographical distribution and community structure of phytoplankton are also 

expected to shift in the warming ocean due to alteration in their thermal tolerance. It is 

expected that species range will shift towards the poles and may contract or expand in 

response to climate change.  

The changes in phenology and biogeography due to warming are also likely to 

change the ecological interactions. Since different phytoplankton species have different 

ecological responses to temperature, it is expected that they differ in vulnerability to 

warming and dispersal capability, and hence changes in the community composition are 

inevitable in the future. It is predicted that climate change will decrease diversity in the 

lower latitudes and increase diversity in higher latitudes. Also, it is expected that more 

changes in phytoplankton community composition will occur in tropics as compared to 

the temperate regions in response to climate change. 

The shifts in the structure and function of the ecosystem are inevitable under 

the climate change. It is expected that the primary production will be enhanced in many 

regions in the future since phytoplankton growth is enhanced at an increased 

temperature below their thermal optimum. This change in the primary productivity will 

support more aquatic life in the future, and therefore the present biodiversity can be 

sustained. However, the enhancement of primary production has possible feedback on 
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global warming. A sink for carbon dioxide may be formed due to higher primary 

production of phytoplankton. Increased emission of carbon dioxide and increased 

temperature can enhance primary production by phytoplankton.  

In the context of harmful bloom-forming phytoplankton, climate change may 

provide favourable conditions for toxic algae to occur  (Hallegraeff, 2010). It is likely that 

toxic blooms and their impacts may be exacerbated in the future where their duration, 

intensity, and frequency may increase in response to changes in the climate. The 

possible impacts of climate change on toxic blooms have important implications on how 

to manage and control harmful algal blooms (HAB) in the future. At present, our 

projections of the HAB response to the future climate scenarios are highly speculative. 

Our predictive understanding can be improved if evidence for the effect of change in 

environmental and ecological factors, not just temperature change, on the biogeography 

and phenology of toxic phytoplankton species is obtained. 

 

7.3 FUTURE RESEARCH DIRECTIONS 

7.3.1 Predicting ecological response to climate change 

This thesis provides new information on how marine phytoplankton respond to 

temperature. However, our current understanding on the ecological responses of non-

toxic and toxic marine phytoplankton to future climate scenarios is still limited. Other 

than simple inductive reasoning, further studies are required to advance our knowledge 

of the climate change ecology of marine phytoplankton. Correlative and mechanistic 

ecological niche modeling (introduced in Chapter 1) can be applied to examine the 

effect of climate change on non-toxic and toxic phytoplankton species. In correlative 

ENM, the species occurrence data collected in Chapters 2 and 3 can be linked to 
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environmental data (e.g. temperature, salinity, nutrients, photosynthetically active 

radiation, salinity, current velocity, and others) to forecast the suitability of a particular 

habitat for the species. In mechanistic ENM, the thermal performance curves (TPC) 

obtained in Chapters 3 and 4 can be used to establish a causal relationship between 

species distribution and temperature. Mechanistic ENM can be further improved by 

integrating the findings in Chapter 6 to take into account the effect of biotic interaction 

on the temperature dependence of growth. Both the correlative and mechanistic ENM 

can be projected into the present and future climate scenarios and can be compared to 

provide a better insight on the ecological responses of non-toxic and toxic 

phytoplankton to climate change. Hence, the correlative and mechanistic ENM 

projections can be used to examine the following climate-induced trends in marine 

phytoplankton: 

Latitudinal range shifts. Latitudinal limits and range of species can be projected 

in the present and future climate scenarios (Figure 7.1). The projected limits can be 

compared to investigate the magnitude and direction of the climate-induced shift in the 

equatorial and polar boundaries of species range. Furthermore, the projected latitudinal 

range can be compared to examine the extent of expansion or contraction of species 

range in response to climate change. 

 
Figure 7.1. Predicted shifts in the latitudinal limits and range of marine phytoplankton. These are 
projected using correlative and mechanistic ecological niche models (ENM) based on the present and 
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future climate scenarios (RCP 2.6 and RCP 8.5). The points indicate the projected estimates in non-toxic 
and potentially toxic species (coloured blue and red, respectively). The points above the 1:1 dashed line 
indicate a poleward shift in the lower and upper limits of latitudinal range (A and B, respectively) and 
expansion of latitudinal range (C). On the other hand, the points below the 1:1 dashed line indicate a shift 
towards the equator in the limits of species range (A and B) and a range contraction (C). As shown, most 
of the species are expected to experience no change or poleward shift in the lowest and highest latitude 
at which they can exist. It is also expected that the species range may expand, contract, or remain 
unchanged in the future climate scenarios. The shifts in the latitudinal limits and range may be dependent 
on the taxonomic identity and toxicity of phytoplankton species. The results are based on the preliminary 
analysis, which will not be discussed in detail since it is not within the scope of this chapter. This figure is 
for demonstration purpose only to show how correlative and mechanistic ENM projections are used to 
examine ecological response of marine phytoplankton to climate change. 
 

Changes in habitat suitability. The number of suitable and unsuitable habitats 

can also be estimated from the ENM projections (Figure 7.2 A and B). The relative 

change in the predicted number of suitable habitats can be determined to examine how 

habitat suitability of marine phytoplankton is shifted in response to changes in the 

climate. This can be expressed by finding the difference between the number of suitable 

habitats projected in the  future and present climate scenarios over the present 

projections. Based on the implemented ENM,  that relative change in habitat suitability 

differ across latitude and the latitudinal variation may also vary across species’ 

taxonomic identity and toxicity. Furthermore, the percentage of habitat loss and gain 

can also be investigated to examine how much of the suitable habitats can be 

disappeared or emerged in the future climate scenario (Figure 7.2 C).  

 
Figure 7.2. Predicted changes in the habitat suitability for marine phytoplankton. The number of suitable 
and unsuitable habitats are projected using correlative and mechanistic ecological niche models (ENM) 
based on the present and future climate scenarios (RCP 2.6 and RCP 8.5). The points indicate the 
projected estimates in non-toxic and potentially toxic species (coloured blue and red, respectively). The 
points above the 1:1 dashed line indicate an increase in number of suitable and unsuitable habitats, and 
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points below this line indicate the decline in the estimates (A and B). The latitudinal variation of the 
relative change in the predicted number of suitable habitats is also presented (C). It is predicted that the 
percentage of new and loss habitats in the future may vary across phytoplankton species and between 
non-toxic and toxic species. The results are based on the preliminary analysis, which will not be 
discussed in details since it is not within the scope of this chapter. This figure is for demonstration 
purpose only to show how correlative and mechanistic ENM projections are used to examine ecological 
response of marine phytoplankton to climate change. 
 
 

Changes in the community structure. Phytoplankton diversity in terms of 

species richness can be obtained by summing the ENM projections of all species. In 

this, the total number of unique species that are projected to exist in a particular location 

(0.08° spatial resolution) is determined. To examine the climate-induced change in 

diversity, the difference in species richness between the present and future projections 

can be estimated, which can be expressed as change in species richness per decade 

(Figure 7.3). Furthermore, Sorensen’s index in each location can be estimated to 

examine how similar the phytoplankton community in the present and future climate 

(Figure 7.4). 

Changes in relative composition of toxic species. The difference between the 

relative proportion of the number of non-toxic and potentially toxic species can also be 

estimated (Figure 7.5). This projected estimates in the present and future climate 

scenarios can be compared to examine how climate change affect the dominance of 

toxic species.  

Figure 7.3. Predicted changes in the diversity of marine phytoplankton. The species richness (SR) is 
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projected using correlative and mechanistic ecological niche models (ENM) based on the present and 
future climate scenarios (RCP 2.6 and RCP 8.5). The colour gradient represents the change in species 
richness per decade (DSR) (A to D). The latitudinal variation of DSR is also presented (E). It is predicted 
that climate change will decrease of diversity in the lower latitudes and increase diversity in higher 
latitudes. The results are based on the preliminary analysis, which will not be discussed in details since it 
is not within the scope of this chapter. This figure is for demonstration purpose only to show how 
correlative and mechanistic ENM projections are used to examine ecological response of marine 
phytoplankton to climate change. 

 
 

 
Figure 7.4. Predicted changes in the community composition of marine phytoplankton. The Sorensen’s 
index (SI) is projected using correlative and mechanistic ecological niche models (ENM) based on the 
present and future climate scenarios (RCP 2.6 and RCP 8.5). The colour gradient represents the 
projected estimates of SI (A to D). The latitudinal variation of SI  is also presented (E). It is predicted that 
more changes in phytoplankton community composition is expected in tropics as compared to the 
temperate regions in response to climate change. The results are based on the preliminary analysis, 
which will not be discussed in details since it is not within the scope of this chapter. This figure is for 
demonstration purpose only to show how correlative and mechanistic ENM projections are used to 
examine ecological response of marine phytoplankton to climate change. 
 

 
Figure 7.5. Predicted changes in the relative proportion of potentially toxic and non-toxic phytoplankton 
(D PT - NT). The relative proportion of the number of non-toxic and potentially toxic species are projected 
using correlative and mechanistic ecological niche models (ENM) based on the present and future 
climate scenarios (RCP 2.6 and RCP 8.5). The colour gradient represents the projected estimates of D 
PT - NT (A to D). The latitudinal variation of D PT - NT is also presented (E). As per mechanistic ENM, it 
is expected that the relative composition of toxic species decreased in lower latitude. However, this 
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projection is different from the correlative ENM that show a complex latitudinal pattern in D PT – NT. The 
results are based on the preliminary analysis, which will not be discussed in details since it is not within 
the scope of this chapter. This figure is for demonstration purpose only to show how correlative and 
mechanistic ENM projections are used to examine ecological response of marine phytoplankton to 
climate change.  
 

However, the ecological niche models are only as good as the data that were 

used for calibration. As discussed in the previous chapters, there are a number of 

caveats associated with the use of species occurrence data (Chapter 2 and 3) and 

temperature-growth data (Chapter 3 and 4), which are needed to be considered when 

interpreting the findings of ENM.  

 

7.3.2 Assessing the thermal growth curve in toxic species from other major taxa 

Even though the majority of harmful bloom-forming species and toxigenic 

strains belong to dinoflagellates (Anderson et al., 2012), characterisation of the thermal 

response curves in representatives from other phytoplankton taxa, i.e. diatoms, 

haptophytes and cyanobacteria, is crucial to advance our knowledge on the taxon-

specific differences in the growth thermotolerance between non-toxic and toxic 

phytoplankton. Pooling the experimental data obtained from this study with the datasets 

compiled from published laboratory culture experiments allows the comparison of 

thermal growth response between phytoplankton groups with an adequate number of 

observations (Chapter 4). However, there are still limitations linked with this dataset 

even if this was compiled from several studies. The limitations include studies with low 

temperature resolution, incomplete observation of full thermal range, over 

representation of non-toxic phytoplankton, few observations on toxic species that are 

mostly dinoflagellates, and insufficient number of freshwater species. Hence, future 
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work will include examination of growth thermotolerance in toxigenic algal strains from 

other major taxa. 

 

7.3.3 Determining the physiological responses across thermal gradients 

Physiological responses across thermal gradient have to be determined in order 

to examine the trade-offs between toxicity-related traits (i.e. toxin production and 

reactive oxygen species (ROS)) and biomass-related traits (i.e. photophysiology, 

photosynthesis and respiration), which may provide ecological advantages for toxigenic 

strains to survive thermal stress. These additional physiological measurements will 

improve our understanding of the bloom-forming capacity of toxic phytoplankton to 

adjust to changing ocean conditions and will provide insights of the phenotypic 

responses in current and future climate scenarios. 

 

7.3.4 Determining the combined effects of warming and acidification 

This study only accounts the effect of increasing temperature. Single factor 

experiments (e.g. de Boer et al., 2004; Hikosaka et al., 2005; Low-Décarie et al., 2011) 

may not lead to an accurate predictions of the physiological and ecological responses of 

phytoplankton in natural habitats, where phytoplankton are under the influence of the 

interacting multiple environmental stressors like warming and acidification (Häder & 

Gao, 2015). The possible additive or multiplicative effects of warming and acidification 

suggest that single-factor experiments may provide misleading implications about 

ecophysiological responses of phytoplankton in a multivariate natural environment. 

However, information about the combined effects of warming and acidification on the 

ecophysiology of phytoplankton, especially relative success of non-toxic and toxic 
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species, is scarce but of critical importance for linking ecological shift of toxic blooms 

with climate change. 

 

7.3 CONCLUDING REMARKS 

 

In this thesis, I have provided new information about the thermal responses of 

marine phytoplankton. The main findings of this thesis are as follows: (1) the current 

distribution of marine phytoplankton is limited by temperature, (2) their thermal traits are 

contingent on their biogeography and phylogeny, (3) their growth and toxin production is 

affected by temperature, and (4) interspecific competition in dinoflagellates is altered by 

increasing temperature. The findings of this thesis advance our current predictive 

understanding on the ecological responses of marine phytoplankton to climate change. 

In particular, the information collected in this thesis can be used to develop models to 

predict climate-induced ecological trends such as changes in range, habitat suitability, 

diversity, and community composition. Accurate predictions are challenging to produce, 

but the existing models are useful to improve our insights of the climate change biology 

of marine phytoplankton.  
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Supplementary Table 2.1. Total number of observations and unique phytoplankton taxa in the raw and processed data (i.e. data before and after spatial 
filtering, respectively) across hemispheres, climate zones, and habitats.  

Datasets Factors Levels No. of observations 
(% contribution) 

No. of unique taxa 
Species Genus Family Order Class Phylum 

Raw Hemispheres North 665058 (86.23) 1514 468 191 84 16 8 
 South 106228 (13.77) 975 351 151 69 16 8 
Climate zones Polar 7533 (0.98) 204 124 85 51 12 6 
 Temperate 704462 (91.34) 1561 466 190 83 16 8 
 Tropics 59291 (7.69) 917 338 144 69 16 8 
Habitats Coastal 711113 (92.20) 1644 488 195 84 16 8 

  Ocean 60173 (7.80) 469 209 107 56 14 7 
Processed Hemisphere North 53799 (85.95) 247 125 74 41 13 7 

 South 8798 (14.05) 178 96 58 34 8 5 
Climate zones Polar 787 (1.26) 12 7 4 4 3 3 
 Temperate 52877 (84.47) 318 151 86 47 13 7 
 Tropics 8933 (14.27) 171 82 53 31 10 6 
Habitats Coastal 45705 (73.01) 306 149 85 47 13 7 

  Ocean 16892 (26.99) 147 75 49 32 6 5 
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Supplementary Table 2.2. Summary statistics of the  likelihood ratio (LR) test used to determine the significance of the linear and quadratic terms in the 
generalized linear mixed model (GLMM) (i.e. intercept only (M1: y ~ 1), linear term of the predictor (M2: y ~ x), and linear and quadratic terms of the predictor 
(M3: y ~ x + x2). Akaike information criterion (AIC) was used to determine whether a full model with linear and quadratic terms would describe the relationship 
better than a reduced model. Coefficient of determination for each model was estimated to describe the proportion of variance explained by the fixed factor 
alone (i.e. mariginal R2) and by both the fixed and random factors (i.e. conditional R2). Summary of GLMMs can be found in Supplementary Table 2.3. 
 

GLMM 
ID 

Variables  AIC 
 Likelihood ratio test statistics   Coefficient of  

Determination 
Dependent Independent Model Structure ID  Test C2 df p-value  R2GLMMm R2GLMMc 

GLMM 01 LTL LM M1 4350.01            M2 4059.87  M1 vs M2 292.14 1 <0.01  0.13 0.39 
   M3 4002.03  M2 vs M3 59.83 1 <0.01  0.19 0.42 

GLMM 02 UTL LM M1 4831.28            M2 4448.57  M1 vs M2 384.71 1 <0.01  0.19 0.31 
   M3 4411.02  M2 vs M3 39.55 1 <0.01  0.25 0.34 

GLMM 03 RTN LM M1 5063.91            M2 5054.62  M1 vs M2 11.29 1 <0.01  <0.01 0.05 
   M3 5056.54  M2 vs M3 0.08 1 0.78  <0.01 0.05 

GLMM 04 LTL* LM M1 4971.27            M2 4702.36  M1 vs M2 270.91 1 <0.01  0.14 0.27 
   M3 4645.52  M2 vs M3 58.84 1 <0.01  0.19 0.33 

GLMM 05 UTL* LM M1 4517.39            M2 4153.92  M1 vs M2 365.47 1 <0.01  0.17 0.34 
   M3 4136.46  M2 vs M3 19.45 1 <0.01  0.21 0.35 

GLMM 06 RTN* LM M1 5360.44            M2 5360.14  M1 vs M2 2.30 1 0.13  <0.01 0.10 
   M3 5356.41  M2 vs M3 5.73 1 0.02  <0.01 0.12 

GLMM 07 LTL TM M1 4350.01            M2 3562.92  M1 vs M2 789.08 1 <0.01  0.51 0.54 
   M3 3506.42  M2 vs M3 58.51 1 <0.01  0.55 0.57 

GLMM 08 UTL TM M1 4831.28            M2 3562.53  M1 vs M2 1270.75 1 <0.01  0.63 0.65 
   M3 3506.20  M2 vs M3 58.33 1 <0.01  0.64 0.66 

GLMM 09 RTN TM M1 5063.91            M2 5034.49  M1 vs M2 31.42 1 <0.01  0.02 0.08 
   M3 4978.14  M2 vs M3 58.35 1 <0.01  0.03 0.09 
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GLMM 10 LTL* TM* M1 4971.27            M2 3844.69  M1 vs M2 1128.57 1 <0.01  0.55 0.60 
   M3 3738.40  M2 vs M3 108.30 1 <0.01  0.58 0.61 

GLMM 11 UTL* TM* M1 4517.39            M2 3844.03  M1 vs M2 675.35 1 <0.01  0.38 0.45 
   M3 3737.62  M2 vs M3 108.41 1 <0.01  0.43 0.47 

GLMM 12 RTN* TM* M1 5360.44            M2 5316.47  M1 vs M2 45.97 1 <0.01  0.03 0.13 
   M3 5210.16  M2 vs M3 108.30 1 <0.01  0.05 0.12 

GLMM 13 GR LM M1 3438.61            M2 3439.39  M1 vs M2 1.22 1 0.27  <0.01 0.01 
   M3 3428.36  M2 vs M3 13.02 1 <0.01  <0.01 0.01 

GLMM 14 GR TM M1 3438.61            M2 3439.68  M1 vs M2 0.92 1 0.34  <0.01 0.01 
   M3 3441.60  M2 vs M3 0.08 1 0.77  <0.01 0.01 

GLMM 15 GR TM* M1 3438.61            M2 3436.80  M1 vs M2 3.81 1 0.05  <0.01 0.01 
   M3 3438.74  M2 vs M3 0.06 1 0.81  <0.01 0.01 

GLMM 16 GR LTL M1 3438.61            M2 3418.38  M1 vs M2 22.22 1 <0.01  <0.01 0.01 
   M3 3412.32  M2 vs M3 8.06 1 <0.01  0.01 0.02 

GLMM 17 GR UTL M1 3438.61            M2 3431.01  M1 vs M2 9.60 1 <0.01  <0.01 0.01 
   M3 3429.97  M2 vs M3 3.04 1 0.08  <0.01 0.02 

GLMM 18 GR RTN M1 3438.61            M2 3328.30  M1 vs M2 112.30 1 <0.01  0.01 0.02 
   M3 3280.41  M2 vs M3 49.89 1 <0.01  0.01 0.02 

GLMM 19 GR LTL* M1 3438.61            M2 3429.16  M1 vs M2 11.45 1 <0.01  <0.01 0.01 
   M3 3431.10  M2 vs M3 0.06 1 0.81  <0.01 0.01 

GLMM 20 GR UTL* M1 3438.61            M2 3440.58  M1 vs M2 0.02 1 0.88  <0.01 0.01 
   M3 3438.51  M2 vs M3 4.08 1 0.04  <0.01 0.01 

GLMM 21 GR RTN* M1 3438.61            M2 3421.71  M1 vs M2 18.90 1 <0.01  <0.01 0.01 
   M3 3360.28  M2 vs M3 63.43 1 <0.01  0.01 0.02 

  



 
 

Supplementary Tables 

 232 

Supplementary Table 2.3. Summary of the generalised linear mixed models (GLMM) models used to determine the effect of latitude (expressed as absolute 
latitudinal midpoint, LM, °) and the effect of temperature (expressed as thermal midpoint, TM, °C) on the thermal niche parameters (i.e. lower thermal limit 
(LTL, °C), upper thermal limits (UTL, °C), and realised thermal niche breadth (RTN, °C) derived from long-term annual average and seasonal extreme 
(indicated by an asterisk) sea surface temperature (SST) ) (GLMM 01 – 12)  and geographic range size (GR, km2 in log10 scale) (GLMM 13 – 15)  of marine 
phytoplankton. GLMMs were also used to test the relationship between thermal niche parameters and geographic range size (GLMM 16 – 21). Random 
effects taxonomic class nested in ocean realms was incorporated in all GLMMs that were weighted by the number of unique occurrence locations.  (Notes: SE 
=  standard error; t = t value; SD = standard deviation). 

GLMM 
ID 

Dependent 
Variables 

Models with linear term only (M2)  Models with linear and quadratic terms (M3) 
Fixed  Random  Fixed  Random 

Coefficients Estimates SE t  Variables SD  Coefficients Estimates SE t  Variables SD 
GLMM 01 LTL Intercept 23.61 0.82 28.75  class:region 0.61  Intercept 20.62 0.86 23.93  class:region 0.73 

  LM -0.23 0.01 -19.03  region 4.58  LM 0.06 0.04 1.49  region 4.28 
       residual 7.15  LM2 <-0.01 <0.01 -7.96  residual 6.91 

GLMM 02 UTL Intercept 31.04 0.74 41.85  class:region 0.90  Intercept 28.28 0.81 34.89  class:region 0.87 
  LM -0.32 0.01 -22.87  region 3.53  LM -0.05 0.04 -1.17  region 2.93 
       residual 8.67  LM2 <-0.01 <0.01 -6.48  residual 8.58 

GLMM 03 RTN Intercept 6.52 0.71 9.19  class:region 1.02  Intercept 6.35 0.96 6.64  class:region 1.01 
  LM -0.06 0.02 -3.38  region 2.39  LM -0.04 0.06 -0.72  region 2.39 
       residual 11.92  LM2 <-0.01 <0.01 -0.26  residual 11.93 

GLMM 04 LTL* Intercept 22.36 0.85 26.33  class:region 0.73  Intercept 18.26 0.99 18.44  class:region 0.82 
  LM -0.30 0.02 -18.83  region 4.11  LM 0.08 0.05 1.61  region 4.18 
       residual 9.89  LM2 -0.01 <0.01 -7.83  residual 9.56 

GLMM 05 UTL* Intercept 32.57 0.73 44.69  class:region 0.79  Intercept 30.86 0.78 39.45  class:region 0.78 
  LM -0.27 0.01 -21.50  region 3.76  LM -0.10 0.04 -2.48  region 3.31 
       residual 7.48  LM2 <-0.01 <0.01 -4.53  residual 7.46 

GLMM 06 RTN* Intercept 10.32 1.01 10.23  class:region 1.02  Intercept 12.17 1.27 9.56  class:region 1.05 
  LM 0.03 0.02 1.51  region 4.35  LM -0.14 0.07 -1.99  region 4.71 
       residual 13.61  LM2 <0.01 <0.01 2.53  residual 13.52 

GLMM 07 LTL Intercept -0.17 0.43 -0.40  class:region 0.49  Intercept 3.20 0.60 5.32  class:region 0.49 
  TM 0.88 0.02 43.75  region 1.44  TM 0.34 0.07 4.57  region 1.35 
       residual 5.87  TM2 0.02 <0.01 7.74  residual 5.72 

GLMM 08 UTL Intercept 0.18 0.43 0.42  class:region 0.49  Intercept -3.18 0.60 -5.30  class:region 0.49 
  TM 1.12 0.02 55.61  region 1.44  TM 1.66 0.07 22.67  region 1.35 
       residual 5.87  TM2 -0.02 <0.01 -7.73  residual 5.72 

GLMM 09 RTN Intercept 0.35 0.85 0.41  class:region 0.97  Intercept -6.38 1.20 -5.31  class:region 0.97 
  TM 0.24 0.04 5.92  region 2.88  TM 1.33 0.15 9.04  region 2.70 
       residual 11.74  TM2 -0.03 <0.01 -7.73  residual 11.43 

GLMM 10 LTL* Intercept -8.71 0.57 -15.27  class:region 0.52  Intercept -2.24 0.75 -2.98  class:region 0.47 
  TM* 1.17 0.02 47.06  region 2.26  TM* 0.23 0.09 2.62  region 1.69 
       residual 6.64  TM*2 0.03 <0.01 10.88  residual 6.39 

GLMM 11 UTL* Intercept 8.71 0.57 15.28  class:region 0.52  Intercept 2.24 0.75 2.98  class:region 0.47 
  TM* 0.83 0.02 33.33  region 2.26  TM* 1.77 0.09 20.07  region 1.69 
       residual 6.64  TM*2 -0.03 <0.01 -10.89  residual 6.38 

GLMM 12 RTN* Intercept 17.41 1.14 15.27  class:region 1.04  Intercept 4.48 1.50 2.98  class:region 0.94 
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  TM* -0.34 0.05 -6.87  region 4.52  TM* 1.54 0.18 8.72  region 3.38 
       residual 13.28  TM*2 -0.06 0.01 -10.88  residual 12.77 

GLMM 13 GR Intercept 5.21 0.20 26.05  class:region 0.28  Intercept 6.23 0.35 18.01  class:region 0.29 
  LM 0.01 <0.01 1.09  region 0.39  LM -0.07 0.02 -3.27  region 0.39 
       residual 5.84  LM2 <0.01 <0.01 3.62  residual 5.80 

GLMM 14 GR Intercept 5.57 0.19 29.31  class:region 0.29  Intercept 5.50 0.35 15.84  class:region 0.29 
  TM -0.01 0.01 -0.93  region 0.39  TM <0.01 0.05 0.03  region 0.39 
       residual 5.84  TM2 <-0.01 <0.01 -0.24  residual 5.84 

GLMM 15 GR Intercept 5.75 0.20 29.24  class:region 0.29  Intercept 5.69 0.38 15.04  class:region 0.29 
  TM* -0.02 0.01 -1.94  region 0.38  TM* -0.01 0.05 -0.23  region 0.39 
       residual 5.83  TM*2 <-0.01 <0.01 -0.19  residual 5.83 

GLMM 16 GR Intercept 6.13 0.18 34.66  class:region 0.28  Intercept 6.99 0.30 23.29  class:region 0.29 
  LTL -0.05 0.01 -4.78  region 0.44  LTL -0.19 0.04 -4.65  region 0.61 
       residual 5.77  LTL2 <0.01 <0.01 3.29  residual 5.69 

GLMM 17 GR Intercept 4.61 0.24 19.59  class:region 0.28  Intercept 3.88 0.45 8.66  class:region 0.27 
  UTL 0.04 0.01 3.71  region 0.57  UTL 0.14 0.05 2.59  region 0.61 
       residual 5.76  UTL2 <-0.01 <0.01 -1.81  residual 5.75 

GLMM 18 GR Intercept 4.72 0.11 42.95  class:region 0.25  Intercept 4.20 0.13 32.03  class:region 0.22 
  RTN 0.14 0.01 10.94  region 0.46  RTN 0.37 0.03 10.90  region 0.47 
       residual 5.53  RTN2 -0.02 <0.01 -7.16  residual 5.40 

GLMM 19 GR Intercept 5.74 0.13 43.36  class:region 0.28  Intercept 5.77 0.15 38.10  class:region 0.28 
  LTL* -0.03 0.01 -3.41  region 0.42  LTL* -0.04 0.03 -1.54  region 0.43 
       residual 5.80  LTL*2 <0.01 <0.01 0.32  residual 5.80 

GLMM 20 GR Intercept 5.34 0.26 20.72  class:region 0.29  Intercept 4.37 0.55 7.98  class:region 0.28 
  UTL* <0.01 0.01 0.26  region 0.41  UTL* 0.11 0.05 2.02  region 0.41 
       residual 5.83  UTL*2 <-0.01 <0.01 -2.01  residual 5.83 

GLMM 21 GR Intercept 4.78 0.17 28.52  class:region 0.28  Intercept 2.85 0.29 9.88  class:region 0.26 
  RTN* 0.05 0.01 4.56  region 0.50  RTN* 0.37 0.04 8.98  region 0.43 
       residual 5.76  RTN*2 -0.01 <0.01 -8.09  residual 5.61 
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Supplementary Table 2.4. Summary statistics of the intercept and smooth terms in generalized additive mixed models (GAMM) models used to determine 
the effect of latitude (expressed as absolute latitudinal midpoint, LM, °)  and the effect of temperature (expressed as thermal midpoint, TM, °C) on the thermal 
niche parameters (i.e. lower thermal limit (LTL, °C), upper thermal limits (UTL, °C), and realised thermal niche breadth (RTN, °C) derived from long-term 
annual average and seasonal extreme (indicated by an asterisk) sea surface temperature (SST) ) (GAMM 01 – 12) and geographic range size (GR, km2 in 
log10 scale) (GAMM 13 – 15)  of marine phytoplankton. GAMMs were also used to test the relationship between thermal niche parameters and geographic 
range size (GAMM 16 – 21). Random effects taxonomic class nested in ocean realms was incorporated in all GLMMs that were weighted by the number of 
unique occurrence locations.  (Notes: SD = standard deviation; t = t value; edf =  estimated degrees of freedom; Ref df = Reference degree of freedom; Adj. 
R2= adjusted coefficient of determination). 
 

GAMM  
 ID 

Variables  Intercept Term  Smooth Terms Adj. R2 Dependent Independent  Estimate SD t p-value  Coefficients edf Red df F p-value 
GAMM 01 LTL LM  15.76 0.58 27.00 <0.01  s(LM) 7.45 7.45 69.80 <0.01 0.65 
GAMM 02 UTL LM  20.37 0.38 53.20 <0.01  s(LM) 6.94 6.94 123.00 <0.01 0.78 
GAMM 03 RTN LM  4.77 0.40 11.90 <0.01  s(LM) 5.68 5.68 9.46 <0.01 -0.39 
GAMM 04 LTL* LM  12.31 0.62 20.00 <0.01  s(LM) 6.56 6.56 74.80 <0.01 0.60 
GAMM 05 UTL* LM  23.64 0.44 53.50 <0.01  s(LM) 8.39 8.39 90.50 <0.01 0.66 
GAMM 06 RTN* LM  11.42 0.74 15.40 <0.01  s(LM) 7.45 7.45 8.63 <0.01 -0.38 
GAMM 07 LTL TM  15.85 0.24 65.90 <0.01  s(TM) 8.77 8.77 312.00 <0.01 0.91 
GAMM 08 UTL TM  20.73 0.24 86.20 <0.01  s(TM) 8.77 8.77 504.00 <0.01 0.91 
GAMM 09 RTN TM  4.88 0.48 10.20 <0.01  s(TM) 8.77 8.77 54.80 <0.01 -0.90 
GAMM 10 LTL* TM*  12.28 0.34 36.10 <0.01  s(TM*) 8.53 8.53 370.00 <0.01 0.85 
GAMM 11 UTL* TM*  23.83 0.34 70.00 <0.01  s(TM*) 8.53 8.53 203.00 <0.01 0.83 
GAMM 12 RTN* TM*  11.54 0.68 17.00 <0.01  s(TM*) 8.53 8.53 43.90 <0.01 -0.21 
GAMM 13 GR LM  5.36 0.09 59.80 <0.01  s(LM) 5.25 5.25 5.21 <0.01 -0.08 
GAMM 14 GR TM  5.38 0.08 66.00 <0.01  s(TM) 4.31 4.31 2.44 0.06 -0.20 
GAMM 15 GR TM*  5.38 0.08 63.50 <0.01  s(TM*) 7.42 7.42 6.48 <0.01 -0.21 
GAMM 16 GR LTL  5.30 0.11 48.30 <0.01  s(LTL) 7.91 7.91 9.12 <0.01 -0.08 
GAMM 17 GR UTL  5.48 0.14 40.20 <0.01  s(UTL) 8.03 8.03 8.29 <0.01 -0.60 
GAMM 18 GR RTN  5.32 0.10 55.80 <0.01  s(RTN) 6.82 6.82 38.50 <0.01 0.05 
GAMM 19 GR LTL*  5.36 0.09 62.50 <0.01  s(LTL*) 1.00 1.00 11.50 <0.01 -0.10 
GAMM 20 GR UTL*  5.38 0.09 56.70 <0.01  s(UTL*) 5.77 5.77 8.92 <0.01 -0.17 
GAMM 21 GR RTN*  5.41 0.09 62.80 <0.01  s(RTN*) 8.69 8.69 20.60 <0.01 0.14 
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Supplementary Table 2.5. Summary statistics of the fixed and random effects in generalized additive mixed models (GAMM) used to determine the effect of 
latitude (expressed as absolute latitudinal midpoint, LM, °)  and the effect of temperature (expressed as thermal midpoint, TM, °C) on the thermal niche 
parameters (i.e. lower thermal limit (LTL, °C), upper thermal limits (UTL, °C), and realised thermal niche breadth (RTN, °C) derived from long-term annual 
average and seasonal extreme (indicated by an asterisk) sea surface temperature (SST) ) (GAMM 01 – 12) and geographic range size (GR, km2 in log10 
scale) (GAMM 13 – 15)  of marine phytoplankton. GAMMs were also used to test the relationship between thermal niche parameters and geographic range 
size (GAMM 16 – 21). Random effects taxonomic class nested in ocean realms was incorporated in all GLMMs that were weighted by the number of unique 
occurrence locations. (Notes: AIC = Akaike information criteria; SD = standard deviation; SE = standard error). 

GAMM 
ID 

Variables AIC Fixed Effects  Random Effects 
Dependent Independent Coefficients Estimates SE  Coefficients SD 

GAMM 01 LTL LM 3993.8 Intercept 0.34 0.13  class:region 0.72 
    s(LM) 0.13 3.35  region 3.67 
        residual 6.83 

GAMM 02 UTL LM 4367.7 Intercept 0.15 0.06  class:region 0.81 
    s(LM) 0.06 2.63  region 2.28 
        residual 8.40 

GAMM 03 RTN LM 5028.4 Intercept 0.16 0.04  class:region 0.92 
    s(LM) 0.04 2.67  region 2.29 
        residual 11.72 

GAMM 04 LTL* LM 4628.0 Intercept 0.38 0.12  class:region 0.81 
    s(LM) 0.12 3.53  region 3.82 
        residual 9.41 

GAMM 05 UTL* LM 4035.6 Intercept 0.19 0.12  class:region 0.72 
    s(LM) 0.12 4.12  region 2.70 
        residual 7.04 

GAMM 06 RTN* LM 5319.7 Intercept 0.55 0.25  class:region 0.96 
    s(LM) 0.25 8.94  region 4.56 
        residual 13.15 

GAMM 07 LTL TM 3233.0 Intercept 0.06 0.00  class:region 0.53 
    s(TM) 0.00 0.90  region 1.45 
        residual 4.83 

GAMM 08 UTL TM 3233.1 Intercept 0.06 0.00  class:region 0.53 
    s(TM) 0.00 0.90  region 1.45 
        residual 4.83 

GAMM 09 RTN TM 4704.7 Intercept 0.23 -0.02  class:region 1.07 
    s(TM) -0.02 3.61  region 2.90 
        residual 9.66 
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GAMM 10 LTL* TM* 3595.9 Intercept 0.12 -0.02  class:region 0.42 
    s(TM*) -0.02 1.26  region 2.12 
        residual 5.81 

GAMM 11 UTL* TM* 3594.8 Intercept 0.12 -0.02  class:region 0.42 
    s(TM*) -0.02 1.26  region 2.12 
        residual 5.80 

GAMM 12 RTN* TM* 5067.8 Intercept 0.46 -0.06  class:region 0.84 
    s(TM*) -0.06 5.03  region 4.24 
        residual 11.61 

GAMM 13 GR LM 3425.6 Intercept 0.01 0.00  class:region 0.29 
    s(LM) 0.00 0.36  region 0.42 
        residual 5.74 

GAMM 14 GR TM 3442.5 Intercept 0.01 0.00  class:region 0.30 
    s(TM) 0.00 0.17  region 0.35 
        residual 5.81 

GAMM 15 GR TM* 3415.5 Intercept 0.01 0.00  class:region 0.29 
    s(TM*) 0.00 0.54  region 0.38 
        residual 5.69 

GAMM 16 GR LTL 3398.3 Intercept 0.01 0.00  class:region 0.33 
    s(LTL) 0.00 0.52  region 0.56 
        residual 5.56 

GAMM 17 GR UTL 3419.4 Intercept 0.02 0.00  class:region 0.28 
    s(UTL) 0.00 1.18  region 0.75 
        residual 5.59 

GAMM 18 GR RTN 3231.4 Intercept 0.01 0.00  class:region 0.21 
    s(RTN) 0.00 0.22  region 0.50 
        residual 5.21 

GAMM 19 GR LTL* 3431.2 Intercept 0.01 0.00  class:region 0.28 
    s(LTL*) 0.00 0.00  region 0.40 
        residual 5.80 

GAMM 20 GR UTL* 3411.1 Intercept 0.01 0.00  class:region 0.27 
    s(UTL*) 0.00 0.43  region 0.46 
        residual 5.69 

GAMM 21 GR RTN* 3294.6 Intercept 0.01 0.00  class:region 0.29 
    s(RTN*) 0.00 0.37  region 0.42 
        residual 5.31 
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Supplementary Table 2.6. Summary of the generalised additive models (GAM) for the relationship of latitude with sea surface temperature (SST), climate 
variability (CV), habitat availability (HA) habitat availability variability (HAV), diversity (D), and diversity variability (DV). (Notes: SD = standard deviation; t = t 
value; edf =  estimated degrees of freedom; Ref df = Reference degree of freedom; Adj. R2= adjusted coefficient of determination). 
 

GAM  
 ID 

Variables  Intercept Term  Smooth Terms Adj. R2 Dependent Independent  Estimate SD t p-value  Coefficients edf Red df F p-value 
GAM 01 SST Latitude  13.43 0.04 358.50 <0.01  s(Latitude) 8.9 9.0 9968.0 <0.01 0.998 
GAM 02 CV Latitude  4.76 0.04 111.10 <0.01  s(Latitude) 8.8 9.0 496.1 <0.01 0.964 
GAM 03 HA Latitude  9.42 <0.01 10270.00 <0.01  s(Latitude) 9.0 9.0 500000.0 <0.01 0.761 
GAM 04 HAV Latitude  8.85 <0.01 8312.00 <0.01  s(Latitude) 9.0 9.0 156225.0 <0.01 0.309 
GAM 05 D Latitude  4.28 0.01 363.90 <0.01  s(Latitude) 8.8 9.0 1518.0 <0.01 0.880 
GAM 06 DV Latitude  2.28 0.03 74.86 <0.01  s(Latitude) 8.9 9.0 228.1 <0.01 0.285 
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Supplementary Table 2.7. Summary statistics of the  likelihood ratio (LR) test used to determine the significance of the variables added sequentially in the 
nested generalised linear models (GLM) for the relationship of different environmental variables (i.e. sea surface temperature (SST), climate variability (CV), 
habitat availability (HA) habitat availability variability (HAV), diversity (D), and diversity variability (DV)) with the extreme thermal niche breadth (RTN*) (GLM 
01 – 07) and with geographic range size  (GR) (GLM 08 – GLM 14). Akaike information criterion (AIC) was used to determine which model would describe the 
relationship best. Selected models are highlighted in grey 
 

Model  
ID Model Structure AIC  Null  Residual  Test p -value  df Deviance  df Deviance  

GLM x RTN* ~ 1 531.36     96 1304.42    
GLM 01 RTN* ~ CV 475.56  1 585.6  95 718.82  GLM x vs GLM 1 <0.01 
GLM 02 RTN* ~ CV + SST 463.69  1 95.72  94 623.1  GLM 1 vs GLM 2 <0.01 
GLM 03 RTN* ~ CV + SST + D 465.07  1 4.02  93 619.08  GLM 2 vs GLM 3 0.43 
GLM 04 RTN* ~ CV + SST + D + HA 465.66  1 8.94  92 610.14  GLM 3 vs GLM 4 0.24 
GLM 05 RTN* ~ CV + SST + D + HA + HAV 467.61  1 0.27  91 609.88  GLM 4 vs GLM 5 0.84 
GLM 06 RTN* ~ CV + SST + D + HA + HAV + DV 464.74  1 29.9  90 579.98  GLM 5 vs GLM 6 0.03 
GLM 07 RTN* ~ CV + SST + CV:SST 462.23  1 21.86  93 601.24  GLM 2 vs GLM 7 0.07 
GLM y GR ~ 1 145.63     96 24.46    
GLM 08 GR ~ D 141.75  1 1.44  95 23.02   GLM y vs GLM 8 0.01 
GLM 09 GR ~ D + HA 137.38  1 1.46  94 21.56   GLM 8 vs GLM 9 0.01 
GLM 10 GR ~ D + HA + CV 136.35  1 0.66  93 20.89   GLM 9 vs GLM 10 0.09 
GLM 11 GR ~ D + HA + CV + SST 138.3  1 0.01  92 20.88   GLM 10 vs GLM 11 0.82 
GLM 12 GR ~ D + HA + CV + SST + HAV 140.09  1 0.04  91 20.84   GLM 11 vs GLM 12 0.66 
GLM 13 GR ~ D + HA + CV + SST + HAV + DV 141.99  1 0.02  90 20.82   GLM 12 vs GLM 13 0.76 
GLM 14 GR ~ D + HA + D:HA 136.21  1 0.69  93 20.86   GLM 13 vs GLM 14 0.08 
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Supplementary Table 2.8. Summary of the generalised linear models (GLM) for the relationship of different environmental variables (i.e. sea surface 
temperature (SST), climate variability (CV), habitat availability (HA) habitat availability variability (HAV), diversity (D), and diversity variability (DV)) with the 
extreme thermal niche breadth (RTN*) (GLM 01 – 07) and with geographic range size  (GR) (GLM 08 – GLM 14). Selected models are highlighted in grey. 
(Notes: SE = standard error; t = t value; df =  degrees of freedom).  
  
GLM ID Dependent 

Variables Terms Coefficients  Null  Residual 
Estimate SE t p-value  df Deviance  df Deviance 

GLM 01 RTN* Intercept 5.92 0.72 8.23 0.00     96 1304.42 
  CV 0.93 0.11 8.80 0.00  1 585.60  95 718.82 
GLM 02 RTN* Intercept 2.10 1.21 1.73 0.09     96 1304.42 
  CV 1.13 0.11 10.06 0.00  1 585.60  95 718.82 
  SST 0.14 0.04 3.80 0.00  1 95.72  94 623.10 
GLM 03 RTN* Intercept 2.28 1.24 1.84 0.07     96 1304.42 
  CV 1.08 0.13 8.34 0.00  1 585.60  95 718.82 
  SST 0.09 0.08 1.22 0.23  1 95.72  94 623.10 
  D 0.01 0.02 0.78 0.44  1 4.02  93 619.08 
GLM 04 RTN* Intercept 1.37 1.46 0.94 0.35     96 1304.42 
  CV 1.14 0.14 8.19 0.00  1 585.60  95 718.82 
  SST 0.07 0.08 0.92 0.36  1 95.72  94 623.10 
  D 0.01 0.02 0.87 0.39  1 4.02  93 619.08 
  HA 4.51E-05 3.88E-05 1.16 0.25  1 8.94  92 610.14 
GLM 05 RTN* Intercept 1.46 1.54 0.95 0.34     96 1304.42 
  CV 1.14 0.14 8.14 0.00  1 585.60  95 718.82 
  SST 0.07 0.08 0.93 0.35  1 95.72  94 623.10 
  D 0.01 0.02 0.73 0.47  1 4.02  93 619.08 
  HA 4.76E-05 4.11E-05 1.16 0.25  1 8.94  92 610.14 
  HAV -1.22E-05 6.09E-05 -0.20 0.84  1 0.27  91 609.88 
GLM 06 RTN* Intercept 2.66 1.61 1.66 0.10     96 1304.42 
  CV 1.12 0.14 8.08 0.00  1 585.60  95 718.82 
  SST 0.06 0.08 0.72 0.47  1 95.72  94 623.10 
  D 0.02 0.02 1.12 0.27  1 4.02  93 619.08 
  HA 1.75E-05 4.26E-05 0.41 0.68  1 8.94  92 610.14 
  HAV -2.10E-06 5.99E-05 -0.04 0.97  1 0.27  91 609.88 
  DV -0.08 0.04 -2.15 0.03  1 29.90  90 579.98 
GLM 07 RTN* Intercept 4.58 1.81 2.54 0.01     96 1304.42 
  CV 0.72 0.25 2.85 0.01  1 585.60  95 718.82 
  SST -1.61E-03 0.09 -0.02 0.99  1 95.72  94 623.10 
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  CV:SST 0.03 0.01 1.84 0.07  1 21.86  93 601.24 
GLM 08 GR Intercept 5.96 0.13 44.26 0.00     96 24.46 
  D -3.51E-03 1.44E-03 -2.44 0.02  1 1.44  95 23.02 
GLM 09 GR Intercept 5.80 0.15 39.80 0.00     96 24.46 
  D -4.57E-03 1.46E-03 -3.12 0.00  1 1.44  95 23.02 
  HA 1.46E-05 5.76E-06 2.53 0.01  1 1.46  94 21.56 
GLM 10 GR Intercept 6.15 0.25 24.37 0.00     96 24.46 
  D -4.52E-03 1.45E-03 -3.12 0.00  1 1.44  95 23.02 
  HA 7.76E-06 6.94E-06 1.12 0.27  1 1.46  94 21.56 
  CV -0.04 0.02 -1.72 0.09  1 0.66  93 20.89 
GLM 11 GR Intercept 6.13 0.27 22.68 0.00     96 24.46 
  D -0.01 2.84E-03 -1.79 0.08  1 1.44  95 23.02 
  HA 7.37E-06 7.18E-06 1.03 0.31  1 1.46  94 21.56 
  CV -0.04 0.03 -1.37 0.17  1 0.66  93 20.89 
  SST 3.29E-03 0.01 0.23 0.82  1 0.01  92 20.88 
GLM 12 GR Intercept 6.09 0.28 21.47 0.00     96 24.46 
  D -4.57E-03 3.08E-03 -1.49 0.14  1 1.44  95 23.02 
  HA 6.32E-06 7.59E-06 0.83 0.41  1 1.46  94 21.56 
  CV -0.04 0.03 -1.35 0.18  1 0.66  93 20.89 
  SST 1.58E-03 0.01 0.11 0.92  1 0.01  92 20.88 
  HAV 4.96E-06 1.13E-05 0.44 0.66  1 0.04  91 20.84 
GLM 13 GR Intercept 6.06 0.30 19.93 0.00     96 24.46 
  D -4.75E-03 3.14E-03 -1.51 0.13  1 1.44  95 23.02 
  HA 7.14E-06 8.08E-06 0.88 0.38  1 1.46  94 21.56 
  CV -0.03 0.03 -1.32 0.19  1 0.66  93 20.89 
  SST 2.07E-03 0.02 0.14 0.89  1 0.01  92 20.88 
  HAV 4.68E-06 1.14E-05 0.41 0.68  1 0.04  91 20.84 
  DV 2.14E-03 0.01 0.31 0.76  1 0.02  90 20.82 
GLM 14 GR Intercept 6.19 0.27 23.10 0.00     96 24.46 
  D -0.01 3.55E-03 -2.89 0.00  1 1.44  95 23.02 
  HA -1.05E-05 1.54E-05 -0.68 0.50  1 1.46  94 21.56 
  D:HA 3.34E-07 1.90E-07 1.76 0.08  1 0.69  93 20.86 
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Supplementary Table 3.1. Summary of the generalised linear models (GLM) for testing the relationship between physiology- and occurrence-based thermal 
traits (TTp and TTo, respectively). Highlighted in grey are reported in the main text. (Notes: SE = standard error; t = t value; df =  degrees of freedom; AIC = 
Akaike information criteria; Adj. R2 = coefficient of determination). 

Model ID Dependent 
Variables 

Coefficients  Null  Residual AIC Adj. R2 
Terms Estimate SE t p  df Deviance  df Deviance   

GLM 01 Topt * Intercept -1.48 2.22 -0.67 0.51     123 6334.32 766.16 0.47 
  TM 1.27 0.12 10.47 <0.01  1 2997.73  122 3336.59   
GLM 02 CTmin* Intercept -1.82 0.86 -2.13 0.04     122 2559.04 668.64 0.38 
  LTL 0.68 0.08 8.70 <0.01  1 984.63  121 1574.41   
GLM 03 CTmax* Intercept 3.75 3.04 1.24 0.22     90 4538.52 572.32 0.41 
  UTL 0.92 0.12 7.83 <0.01  1 1851.18  89 2687.34   
GLM 04 FTN* Intercept 16.49 2.29 7.21 <0.01     90 3258.40 583.98 0.06 
  RTN 0.36 0.15 2.44 0.02  1 203.67  89 3054.73   
GLM 05 Topt* Intercept -0.25 2.27 -0.11 0.91     123 6334.32 774.66 0.44 
  TM* 1.29 0.13 9.71 <0.01  1 2760.78  122 3573.53   
GLM 06 CTmin* Intercept 1.90 0.44 4.28 <0.01     122 2559.04 654.62 0.45 
  LTL* 0.67 0.07 9.97 <0.01  1 1154.24  121 1404.80   
GLM 07 CTmax* Intercept -1.24 4.18 -0.30 0.77     90 4538.52 581.55 0.34 
  UTL* 1.00 0.15 6.84 <0.01  1 1564.35  89 2974.17   
GLM 08 FTN* Intercept 11.17 3.37 3.32 <0.01     90 3258.40 579.81 0.10 
  RTN* 0.46 0.14 3.22 <0.01  1 340.55  89 2917.85   
GLM 09 Topt  Intercept 1.77 2.26 0.78 0.43     156 8107.20 1005.20 0.34 
  TM 1.07 0.12 8.97 <0.01  1 2768.60  155 5338.60   
GLM 10 CTmin Intercept 1.55 1.68 0.93 0.36     69 2361.46 432.04 0.24 
  LTL 0.56 0.12 4.59 <0.01  1 559.08  68 1802.38   
GLM 11 CTmax Intercept 0.34 5.21 0.07 0.95     84 4387.27 553.93 0.28 
  UTL 1.09 0.19 5.75 <0.01  1 1250.15  83 3137.11   
GLM 12 FTN Intercept 23.13 2.51 9.23 <0.01     47 1145.94 293.94 0.01 
  RTN -0.12 0.16 -0.74 0.46  1 13.64  46 1132.30   
GLM 13 Topt  Intercept 3.07 2.47 1.24 0.22     156 8107.20 1020.68 0.27 
  TM* 1.06 0.14 7.63 <0.01  1 2215.37  155 5891.82   
GLM 14 CTmin Intercept 3.18 1.10 2.88 0.01     69 2361.46 422.33 0.34 
  LTL* 0.69 0.12 5.86 <0.01  1 792.49  68 1568.97   
GLM 15 CTmax Intercept -6.04 6.30 -0.96 0.34     84 4387.27 553.83 0.29 
  UTL* 1.22 0.21 5.76 <0.01  1 1253.83  83 3133.44   
GLM 16 FTN Intercept 17.75 3.68 4.82 <0.01     47 1145.94 293.49 0.02 
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  RTN* 0.17 0.17 0.99 0.33  1 24.05  46 1121.89   
 
Supplementary Table 3.2. Summary statistics of the intercept and smooth terms in generalized additive models (GAM) models used to determine the effect 
of latitude (expressed as absolute latitude, lat,° ) on the difference between physiology- and occurrence-based thermal traits (TTp and TTo, respectively), i.e. 
difference in optimal temperature (DOT), cold tolerance limit (DCL), heat tolerance limit (DHL), and thermal range (DTR)(see Supplementary Information SI1 
for description).  Highlighted in grey are reported in the main text. (Notes: SD = standard deviation; t = t value; edf =  estimated degrees of freedom; Ref df = 
Reference degree of freedom; Adj. R 2= coefficient of determination). 

GAM Variables   Intercept Term   Smooth Terms Adj. R2 AIC N  ID Dependent Independent   Estimate SD t p-value   Coefficients edf Red df F p-value 
GAM 01 DOT1 abs(lat)  3.27 0.42 7.82 <0.01  s(abs(lat)) 6.67 7.65 7.13 <0.01 0.31 687.59 116.00 
GAM 02 DCL1 abs(lat)  -5.04 0.37 -13.77 <0.01  s(abs(lat)) 1.00 1.00 0.07 0.79 -0.01 644.78 115.00 
GAM 03 DHL1 abs(lat)  1.62 0.48 3.36 <0.01  s(abs(lat)) 6.61 7.66 5.62 <0.01 0.32 524.08 88.00 
GAM 04 DTR1 abs(lat)  6.69 0.60 11.18 <0.01  s(abs(lat)) 7.01 8.00 3.92 <0.01 0.24 562.82 88.00 
GAM 05 DOT2 abs(lat)  4.50 0.44 10.27 <0.01  s(abs(lat)) 6.64 7.62 6.68 <0.01 0.29 698.38 116.00 
GAM 06 DCL2 abs(lat)  0.30 0.34 0.86 0.39  s(abs(lat)) 4.61 5.56 1.58 0.15 0.06 633.95 115.00 
GAM 07 DHL2 abs(lat)  -1.34 0.50 -2.68 0.01  s(abs(lat)) 6.36 7.42 6.14 <0.01 0.34 530.83 88.00 
GAM 08 DTR2 abs(lat)  -1.64 0.55 -3.01 <0.01  s(abs(lat)) 6.10 7.17 5.86 <0.01 0.31 545.76 88.00 
GAM 09 DOT3 abs(lat)  3.01 0.40 7.51 <0.01  s(abs(lat)) 7.66 8.52 7.01 <0.01 0.27 955.41 156.00 
GAM 10 DCL3 abs(lat)  -3.99 0.58 -6.86 <0.01  s(abs(lat)) 3.80 4.68 4.66 <0.01 0.23 426.99 70.00 
GAM 11 DHL3 abs(lat)  2.83 0.49 5.79 <0.01  s(abs(lat)) 6.53 7.72 9.51 <0.01 0.46 506.26 85.00 
GAM 12 DTR3 abs(lat)  6.47 0.87 7.47 <0.01  s(abs(lat)) 5.47 6.59 3.15 0.01 0.27 316.12 48.00 
GAM 13 DOT4 abs(lat)  4.13 0.41 10.07 <0.01  s(abs(lat)) 7.65 8.52 8.18 <0.01 0.30 963.10 156.00 
GAM 14 DCL4 abs(lat)  0.67 0.53 1.28 0.21  s(abs(lat)) 3.06 3.79 5.73 <0.01 0.23 412.36 70.00 
GAM 15 DHL4 abs(lat)  0.53 0.48 1.11 0.27  s(abs(lat)) 6.77 7.92 10.26 <0.01 0.49 502.99 85.00 
GAM 16 DTR4 abs(lat)   -0.25 0.76 -0.34 0.74   s(abs(lat)) 5.70 6.82 2.73 0.02 0.25 303.70 48.00 
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Supplementary Table 3.3. Summary statistics of the intercept and smooth terms in generalized additive models (GAM) models used to determine the effect 
of latitude (expressed as absolute latitudinal midpoint, lat, ° )  on the sensitivity to cold temperature (Smin) sensitivity to warm temperature (Smax), warming 
exposure (WR) and vulnerability (V) based on different climate scenarios (i.e. RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5) (Supplementary Information SI1 for 
description). GAM 17 – 26 shows the fits of the data in CTMI-derived datasets, whilst GAM 27 – 36 shows the fits of data in published datasets. Highlighted in 
grey are reported in the main text. (Notes: SD = standard deviation; t = t value; edf =  estimated degrees of freedom; Ref df = Reference degree of freedom; 
Adj. R2= adjusted coefficient of determination). 

GAM Variables   Intercept Term   Smooth Terms Adj. R2 AIC N  ID Dependent Independent   Estimate SD t p-value   Coefficients edf Red df F p-value 
GAM 17 Smin * abs(lat)  -4.40 0.35 -12.73 <0.01  s(abs(lat)) 4.27 5.21 29.16 <0.01 0.50 878.96 152 
GAM 18 Smax* abs(lat)  4.67 0.48 9.81 <0.01  s(abs(lat)) 7.41 8.33 6.34 <0.01 0.31 697.44 113 
GAM 19 WR2.6* abs(lat)  0.01 <0.01 42.73 <0.01  s(abs(lat)) 8.05 8.75 5.77 <0.01 0.22 -1355.13 154 
GAM 20 WR4.5* abs(lat)  0.02 <0.01 78.66 <0.01  s(abs(lat)) 7.28 8.24 19.67 <0.01 0.51 -1368.10 154 
GAM 21 WR6.0* abs(lat)  0.02 <0.01 90.71 <0.01  s(abs(lat)) 8.05 8.75 11.18 <0.01 0.38 -1352.33 154 
GAM 22 WR8.5* abs(lat)  0.04 <0.01 89.58 <0.01  s(abs(lat)) 7.55 8.44 14.10 <0.01 0.43 -1178.83 154 
GAM 23 V2.6* abs(lat)  2.74 0.04 78.03 <0.01  s(abs(lat)) 2.15 2.63 2.72 0.04 0.08 62.41 90 
GAM 24 V4.5* abs(lat)  2.51 0.03 72.17 <0.01  s(abs(lat)) 2.20 2.70 6.72 <0.01 0.16 62.33 91 
GAM 25 V6.0* abs(lat)  2.42 0.04 68.16 <0.01  s(abs(lat)) 2.17 2.66 9.44 <0.01 0.21 68.11 92 
GAM 26 V8.5* abs(lat)  2.19 0.04 61.35 <0.01  s(abs(lat)) 2.08 2.55 6.00 <0.01 0.14 68.53 92 
GAM 27 Smin abs(lat)  -5.22 0.30 -17.40 <0.01  s(abs(lat)) 8.12 8.80 8.32 <0.01 0.36 655.57 123 
GAM 28 Smax abs(lat)  7.10 0.32 22.17 <0.01  s(abs(lat)) 8.24 8.83 8.40 <0.01 0.31 866.40 153 
GAM 29 WR2.6 abs(lat)  0.01 <0.01 33.25 <0.01  s(abs(lat)) 7.69 8.56 11.83 <0.01 0.24 -2430.31 311 
GAM 30 WR4.5 abs(lat)  0.02 <0.01 50.53 <0.01  s(abs(lat)) 6.59 7.73 15.56 <0.01 0.29 -2365.08 311 
GAM 31 WR6.0 abs(lat)  0.02 <0.01 60.06 <0.01  s(abs(lat)) 7.69 8.56 14.74 <0.01 0.29 -2307.54 311 
GAM 32 WR8.5 abs(lat)  0.03 <0.01 66.65 <0.01  s(abs(lat)) 7.08 8.14 23.34 <0.01 0.38 -2020.13 311 
GAM 33 V2.6 abs(lat)  2.89 0.02 127.00 <0.01  s(abs(lat)) 7.22 8.19 4.87 <0.01 0.20 43.28 143 
GAM 34 V4.5 abs(lat)  2.64 0.02 121.60 <0.01  s(abs(lat)) 6.30 7.41 7.51 <0.01 0.27 30.17 144 
GAM 35 V6.0 abs(lat)  2.51 0.02 116.80 <0.01  s(abs(lat)) 6.46 7.56 5.97 <0.01 0.23 27.83 144 
GAM 36 V8.5 abs(lat)  2.28 0.02 105.90 <0.01  s(abs(lat)) 6.64 7.73 5.35 <0.01 0.21 28.94 144 
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Supplementary Table 3.4. Summary of the generalised linear models (GLM) for testing the main and interactive effects of thermal affinity (TA) and thermal 
specialisation (TS) on the difference between physiology- and occurrence-based thermal traits (TTp – TTo) (i.e. difference in optimal temperature (DOT), cold 
tolerance limit (DCL), heat tolerance limit (DHL), and thermal range (DTR); see Supplementary Information SI1 for description).  Highlighted in grey are 
reported in the main text. (Notes: SE = standard error; t = t value; df =  degrees of freedom; AIC = Akaike information criteria; Adj. R2 = coefficient of 
determination). 

Model ID Dependent Coefficients   Null   Residual AIC Adj. R2 
Variables Terms Estimate SE t p   df Deviance   df Deviance     

GLM 17 DOT1 Intercept 3.10 0.42 7.31 <0.01     90 2305.04 502.35 0.48 
  TA -8.75 1.04 -8.38 <0.01  1 1097.86  89 1207.18     TS -0.46 0.65 -0.72 0.48  1 11.04  88 1196.13     TA:TS -0.49 0.91 -0.54 0.59  1 4.04  87 1192.09   

GLM 18 DCL1 Intercept -4.19 0.36 -11.69 <0.01     90 1315.66 471.80 0.35 
  TA -3.73 0.88 -4.22 <0.01  1 71.01  89 1244.65     TS 3.45 0.55 6.31 <0.01  1 377.85  88 866.79     TA:TS -0.94 0.77 -1.22 0.22  1 14.68  87 852.12   

GLM 19 DHL1 Intercept 2.35 0.36 6.50 <0.01     90 2701.35 473.14 0.68 
  TA -7.82 0.89 -8.79 <0.01  1 1239.46  89 1461.89     TS -3.43 0.55 -6.23 <0.01  1 522.31  88 939.58     TA:TS -2.13 0.77 -2.74 0.01  1 74.82  87 864.76   

GLM 20 DTR1 Intercept 6.54 0.42 15.45 <0.01     90 3719.62 501.99 0.68 
  TA -4.10 1.04 -3.93 <0.01  1 718.47  89 3001.15     TS -6.89 0.65 -10.68 <0.01  1 1791.39  88 1209.76     TA:TS -1.16 0.91 -1.28 0.20  1 22.39  87 1187.37   

GLM 21 DOT2 Intercept 4.49 0.42 10.67 <0.01     90 2555.14 500.89 0.54 
  TA -9.76 1.04 -9.42 <0.01  1 1361.57  89 1193.56     TS -0.45 0.64 -0.70 0.48  1 12.22  88 1181.35     TA:TS -0.71 0.90 -0.79 0.43  1 8.33  87 1173.02   

GLM 22 DCL2 Intercept 1.41 0.32 4.38 <0.01     90 1227.46 452.83 0.44 
  TA -5.32 0.80 -6.69 <0.01  1 225.92  89 1001.54     TS 3.07 0.49 6.24 <0.01  1 282.76  88 718.78     TA:TS -1.28 0.69 -1.84 0.07  1 27.00  87 691.78   

GLM 23 DHL2 Intercept -0.47 0.42 -1.12 0.26     90 2974.18 499.91 0.61 
  TA -8.25 1.03 -8.01 <0.01  1 1307.85  89 1666.33     TS -3.03 0.64 -4.76 <0.01  1 424.34  88 1241.99     TA:TS -2.22 0.90 -2.47 0.02  1 81.44  87 1160.55   

GLM 24 DTR2 Intercept -1.88 0.48 -3.91 <0.01     90 3401.70 525.50 0.55 
  TA -2.94 1.19 -2.48 0.01  1 449.31  89 2952.39   
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  TS -6.12 0.73 -8.33 <0.01  1 1401.20  88 1551.18     TA:TS -0.92 1.03 -0.89 0.38  1 13.91  87 1537.27   
GLM 25 DOT3 Intercept 4.54 0.32 14.30 <0.01     47 1064.80 207.85 0.84 

  TA -14.34 1.14 -12.60 <0.01  1 842.59  46 222.21   
  TS -2.09 0.59 -3.52 <0.01  1 17.63  45 204.58   
  TA:TS 3.57 1.27 2.82 0.01  1 31.25  44 173.34   
GLM 26 DCL3 Intercept -1.70 0.55 -3.09 <0.01     47 1295.05 260.49 0.60 

  TA -3.27 1.97 -1.66 0.10  1 176.99  46 1118.06   
  TS 5.73 1.03 5.58 <0.01  1 568.46  45 549.60   
  TA:TS -3.54 2.19 -1.61 0.11  1 30.64  44 518.96   
GLM 27 DHL3 Intercept 3.57 0.41 8.75 <0.01     47 1261.23 231.93 0.77 

  TA -8.27 1.46 -5.66 <0.01  1 572.42  46 688.81   
  TS -2.54 0.76 -3.33 <0.01  1 381.17  45 307.64   
  TA:TS -2.96 1.63 -1.81 0.08  1 21.41  44 286.23   
GLM 28 DTR3 Intercept 5.27 0.43 12.13 <0.01     47 2317.28 237.91 0.86 

  TA -4.99 1.56 -3.21 <0.01  1 112.87  46 2204.41   
  TS -8.26 0.81 -10.17 <0.01  1 1879.38  45 325.03   
  TA:TS 0.57 1.73 0.33 0.75  1 0.79  44 324.24   
GLM 29 DOT4 Intercept 5.67 0.26 21.68 <0.01     47 1144.59 189.12 0.90 

  TA -15.26 0.94 -16.31 <0.01  1 918.99  46 225.60   
  TS -3.03 0.49 -6.21 <0.01  1 65.66  45 159.94   
  TA:TS 4.17 1.04 4.00 <0.01  1 42.60  44 117.34   
GLM 30 DCL4 Intercept 2.85 0.50 5.64 <0.01     47 1045.78 252.27 0.58 

  TA -5.97 1.81 -3.31 <0.01  1 317.83  46 727.95   
  TS 3.93 0.94 4.17 <0.01  1 278.05  45 449.90   
  TA:TS -2.27 2.01 -1.13 0.27  1 12.62  44 437.28   
GLM 31 DHL4 Intercept 1.29 0.39 3.34 <0.01     47 1168.16 226.35 0.78 

  TA -7.42 1.38 -5.38 <0.01  1 483.68  46 684.48   
  TS -2.64 0.72 -3.66 <0.01  1 407.14  45 277.34   
  TA:TS -3.03 1.54 -1.97 0.05  1 22.54  44 254.81   
GLM 32 DTR4 Intercept -1.56 0.45 -3.44 <0.01     47 1727.09 241.83 0.80 

  TA -1.46 1.62 -0.90 0.37  1 17.51  46 1709.57   
  TS -6.56 0.85 -7.76 <0.01  1 1356.33  45 353.24   
  TA:TS -0.75 1.81 -0.42 0.68  1 1.39  44 351.85   
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Supplementary Table 3.5. Summary of the generalised linear models (GLM) for testing the main and interactive effects of thermal affinity (TA) and thermal 
specialisation (TS) on the sensitivity to cold temperature (Smin), sensitivity to warm temperature (Smax), warming exposure (WR) and vulnerability (V) based on 
different climate scenarios (i.e. RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5) (Supplementary Information SI1 for description).  GLM 33 – 42 shows the fits of the 
data in CTMI-derived datasets. GLM 43 – 52 shows the fits of the data in published dataset. Highlighted in grey are reported in the main text. (Notes: SE = 
standard error; t = t value; df =  degrees of freedom; AIC = Akaike information criteria; Adj. R2 = coefficient of determination). 

Model ID Dependent Coefficients   Null   Residual AIC Adj. R2 
Variables Terms Estimate SE t p   df Deviance   df Deviance     

GLM 33 Smin * Intercept -4.41 0.71 -6.14 <0.01     85 3315.74 560.14 0.09 
  TA 1.21 1.77 0.69 0.49  1 61.64  84 3254.10     TS 2.74 1.10 2.49 0.01  1 224.18  83 3029.92   

    TA:TS -0.75 1.57 -0.48 0.63  1 8.48  82 3021.44   
GLM 34 Smax* Intercept 4.33 0.73 5.94 <0.01     85 3373.47 562.82 0.08 

  TA -4.61 1.79 -2.57 0.01  1 252.17  84 3121.30     TS 0.18 1.12 0.16 0.87  1 2.38  83 3118.91   
    TA:TS 0.36 1.59 0.23 0.82  1 1.96  82 3116.95   
GLM 35 WR2.6* Intercept 0.01 <0.01 23.54 <0.01     85 <0.01 -714.61 0.06 

  TA 1.17 x 10-04 <0.01 0.11 0.91  1 <0.01  84 <0.01     TS 7.11 x 10-04 <0.01 1.07 0.29  1 <0.01  83 <0.01   
    TA:TS -2.21 x 10-03 <0.01 -2.33 0.02  1 <0.01  82 <0.01   
GLM 36 WR4.5* Intercept 0.02 <0.01 36.06 <0.01     85 <0.01 -685.48 0.04 

  TA -1.83 x 10-04 <0.01 -0.14 0.89  1 <0.01  84 <0.01     TS 1.16 x 10-03 <0.01 1.48 0.14  1 <0.01  83 <0.01   
    TA:TS -1.89 x 10-03 <0.01 -1.68 0.10  1 <0.01  82 <0.01   
GLM 37 WR6.0* Intercept 0.02 <0.01 44.32 <0.01     85 <0.01 -692.17 0.06 

  TA 5.27 x 10-04 <0.01 0.43 0.67  1 <0.01  84 <0.01     TS 6.05 x 10-04 <0.01 0.80 0.43  1 <0.01  83 <0.01   
    TA:TS -2.38 x 10-03 <0.01 -2.20 0.03  1 <0.01  82 <0.01   
GLM 38 WR8.5* Intercept 0.04 <0.01 44.94 <0.01     85 <0.01 -601.26 0.02 

  TA 9.08 x 10-04 <0.01 0.44 0.66  1 <0.01  84 <0.01     TS 1.23 x 10-03 <0.01 0.96 0.34  1 <0.01  83 <0.01   
    TA:TS -2.12 x 10-03 <0.01 -1.16 0.25  1 <0.01  82 <0.01   
GLM 39 V2.6* Intercept 2.70 0.04 64.97 <0.01     63 7.59 38.74 0.23 

  TA -0.55 0.15 -3.67 <0.01  1 0.67  62 6.92     TS -0.08 0.06 -1.36 0.18  1 0.32  61 6.61   
    TA:TS -0.39 0.14 -2.74 <0.01  1 0.74  60 5.87   
GLM 40 V4.5* Intercept 2.44 0.05 51.39 <0.01     64 8.08 57.27 0.03 
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  TA -0.06 0.12 -0.49 0.63  1 0.04  63 8.04     TS -0.06 0.07 -0.98 0.33  1 0.07  62 7.97   
    TA:TS 0.08 0.09 0.84 0.40  1 0.09  61 7.87   
GLM 41 V6.0* Intercept 2.38 0.05 44.55 <0.01     65 10.70 75.38 0.03 

  TA -0.15 0.14 -1.11 0.27  1 0.22  64 10.49   
  TS -0.03 0.08 -0.44 0.66  1 0.01  63 10.48   

    TA:TS 0.07 0.11 0.65 0.52  1 0.07  62 10.41   
GLM 42 V8.5* Intercept 2.15 0.05 42.74 <0.01     65 9.47 67.11 0.03 

  TA -0.16 0.13 -1.20 0.24  1 0.25  64 9.23   
  TS -0.04 0.07 -0.56 0.58  1 0.04  63 9.19   

    TA:TS 0.03 0.10 0.25 0.80  1 0.01  62 9.18   
GLM 43 Smin Intercept -5.57 0.82 -6.78 <0.01     46 1263.17 292.37 0.11 

  TA 6.38 2.94 2.17 0.04  1 94.51  45 1168.65   
  TS 2.11 1.53 1.38 0.17  1 15.95  44 1152.70   

    TA:TS -3.71 3.27 -1.14 0.26  1 33.57  43 1119.13   
GLM 44 Smax Intercept 7.52 0.65 11.55 <0.01     46 818.36 270.48 0.14 

  TA -6.10 2.33 -2.62 0.01  1 74.75  45 743.61   
  TS -1.75 1.21 -1.44 0.16  1 2.18  44 741.43   

    TA:TS 4.01 2.59 1.55 0.13  1 39.11  43 702.31   
GLM 45 WR2.6 Intercept 0.01 <0.01 19.16 <0.01     46 <0.01 -416.15 0.25 

  TA 2.09 x 10-03 <0.01 1.34 0.19  1 <0.01  45 <0.01   
  TS 1.81 x 10-03 <0.01 2.22 0.03  1 <0.01  44 <0.01   

    TA:TS -0.01 <0.01 -3.45 <0.01  1 <0.01  43 <0.01   
GLM 46 WR4.5 Intercept 0.02 <0.01 32.78 <0.01     46 <0.01 -410.38 0.20 

  TA 7.03 x 10-04 <0.01 0.42 0.67  1 <0.01  45 <0.01   
  TS 9.68 x 10-04 <0.01 1.12 0.27  1 <0.01  44 <0.01   

    TA:TS -4.54 x 10-03 <0.01 -2.45 0.02  1 <0.01  43 <0.01   
GLM 47 WR6.0 Intercept 0.02 <0.01 40.46 <0.01     46 <0.01 -404.58 0.29 

  TA 1.08 x 10-03 <0.01 0.61 0.54  1 <0.01  45 <0.01   
  TS 1.50 x 10-03 <0.01 1.63 0.11  1 <0.01  44 <0.01   

    TA:TS -0.01 <0.01 -3.24 <0.01  1 <0.01  43 <0.01   
GLM 48 WR8.5 Intercept 0.03 <0.01 44.33 <0.01     46 <0.01 -364.70 0.16 

  TA 2.27 x 10-03 <0.01 0.84 0.41  1 <0.01  45 <0.01   
  TS 1.68 x 10-03 <0.01 1.19 0.24  1 <0.01  44 <0.01   

    TA:TS -0.01 <0.01 -2.38 0.02  1 <0.01  43 <0.01   
GLM 49 V2.6 Intercept 2.90 0.04 69.30 <0.01     43 2.67 6.33 0.11 
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  TA -0.29 0.15 -1.93 0.06  1 0.09  42 2.58   
  TS -0.17 0.09 -1.82 0.08  1 0.13  41 2.46   
   TA:TS 0.41 0.34 1.22 0.23  1 0.09  40 2.37   

GLM 50 V4.5 Intercept 2.63 0.04 65.62 <0.01     44 2.85 7.59 0.12 
  TA -0.20 0.15 -1.30 0.20  1 0.02  43 2.83   
  TS -0.14 0.08 -1.85 0.07  1 <0.01  42 2.83   
   TA:TS 0.38 0.16 2.35 0.02  1 0.34  41 2.50   

GLM 51 V6.0 Intercept 2.51 0.04 61.75 <0.01     44 2.96 8.77 0.13 
  TA -0.23 0.16 -1.48 0.15  1 0.01  43 2.95   
  TS -0.16 0.08 -2.03 0.05  1 <0.01  42 2.95   
   TA:TS 0.41 0.17 2.48 0.02  1 0.38  41 2.56   

GLM 52 V8.5 Intercept 2.28 0.04 55.09 <0.01     44 2.90 10.54 0.08 
  TA -0.23 0.16 -1.45 0.15  1 <0.01  43 2.90   
  TS -0.14 0.08 -1.71 0.09  1 0.01  42 2.89   
  TA:TS 0.31 0.17 1.85 0.07  1 0.22  41 2.67   
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Supplementary Table 3.6. Phylogenetic signal of the thermal traits estimated from physiology data (TTp) and occurrence data (TTo), their difference (TTp – 
TTo), thermal sensitivity (Smin and Smax), warming exposure (WR), and warming vulnerability (V) in marine phytoplankton measured using three approaches: 
(1) variance component analysis, (2), autocorrelation (i.e. Moran’s I index and  Abouheif’s Cmean index), and (3) Brownian motion model of evolution (i.e. 
Blomberg’s K and K* and Pagel’s l). Highlighted in grey are reported in the main text. Indices in bold face indicates significance at 95% confidence interval.  

Thermal traits and 
their descriptions Symbols 

Phylogenetic signal indices  
Variance component analysis (% variation 

explained) 
 

Autocorrelation 
 

Brownian motion model of evolution 

Species Genus Family Order Class Phylum  Moran’s 
I  

Abouheif’s 
Cmean  

Blomberg’s 
K  

Blomberg’s 
K*  

Pagel’s 
λ  

Physiology-based 
thermal traits (TTp) 
obtained from CTMI * 
model and published 
literature 

Topt* 31.21 48.48 2.89 <0.01 17.42 <0.01  0.05 0.21  0.05 0.08 0.14 
CTmin* 28.01 7.54 7.38 <0.01 <0.01 57.08  0.06 0.36  0.12 0.12 0.59 
CTmax* 46.81 40.28 <0.01 <0.01 12.90 <0.01  0.00 0.06  0.05 0.07 <0.01 
FTN* 53.05 27.38 <0.01 <0.01 19.57 <0.01  0.01 0.12  0.06 0.07 0.25 
Topt 63.19 24.17 <0.01 <0.01 12.64 <0.01  0.04 0.12  0.02 0.03 <0.01 
CTmin 24.12 22.54 12.71 <0.01 2.51 38.12  0.19 0.34  0.11 0.15 0.45 
CTmax 30.29 37.34 19.95 <0.01 12.42 <0.01  0.11 0.25  0.06 0.10 <0.01 
FTN 34.58 <0.01 10.47 9.15 33.56 12.23  0.27 0.46  0.16 0.21 0.81 

Occurrence-based 
thermal traits (TTo) 
derived from annual 
average and seasonal 
extreme* SST  

TM 76.07 6.91 <0.01 <0.01 10.29 6.72  0.14 0.27  0.03 0.05 0.27 
LTL 75.88 9.58 1.87 1.43 1.38 9.86  0.11 0.26  0.03 0.06 0.34 
UTL 78.11 3.53 <0.01 <0.01 17.25 1.12  0.10 0.19  0.02 0.04 0.20 
RTN 88.48 6.41 0.42 4.69 <0.01 <0.01  0.00 0.07  0.02 0.04 <0.01 
TM* 75.87 8.31 <0.01 <0.01 4.08 11.73  0.14 0.28  0.03 0.05 0.27 
LTL* 67.82 11.86 5.21 0.42 2.46 12.24  0.11 0.27  0.04 0.08 0.69 
UTL* 82.74 3.65 <0.01 <0.01 7.46 6.16  0.09 0.18  0.02 0.04 0.15 
RTN* 80.04 9.81 3.28 <0.01 6.00 0.87  0.01 0.11  0.03 0.05 0.24 

Difference in 
physiology and 
occurrence-based 
thermal traits (TTp – 
TTo) estimated from 
four sets of datasets: 
(1) TTp *  and TTo, (2) 
TTp *  and TTo*, (3) 
TTp   and TTo, and (4)  
TTp  and TTo *, 
specifically to compute 
for the difference in 

DOT1 37.10 29.01 8.32 25.57 <0.01 <0.01  0.00 0.10  0.06 0.10 <0.01 
DCL1 56.54 40.37 <0.01 <0.01 3.09 <0.01  -0.05 -0.04  0.04 0.07 <0.01 
DHL1 31.40 <0.01 30.10 15.36 23.14 <0.01  -0.03 0.04  0.07 0.13 <0.01 
DTR1 39.86 15.55 8.04 21.14 15.40 <0.01  -0.03 0.05  0.06 0.10 <0.01 
DOT2 44.35 19.69 26.71 2.33 6.92 <0.01  0.01 0.11  0.06 0.10 <0.01 
DCL2 61.49 33.13 <0.01 <0.01 5.38 <0.01  -0.04 -0.03  0.04 0.07 <0.01 
DHL2 52.03 0.38 41.21 <0.01 1.54 4.84  -0.03 0.04  0.06 0.09 <0.01 
DTR2 62.64 19.27 18.09 <0.01 <0.01 <0.01  -0.05 -0.01  0.04 0.07 <0.01 
DOT3 70.13 3.26 <0.01 26.61 <0.01 <0.01  0.04 0.15  0.03 0.06 <0.01 
DCL3 46.09 5.81 <0.01 2.92 45.18 <0.01  0.07 0.28  0.07 0.13 <0.01 
DHL3 28.30 <0.01 16.09 55.62 <0.01 <0.01  0.04 0.08  0.05 0.10 <0.01 
DTR3 25.15 <0.01 6.95 31.62 36.28 <0.01  0.14 0.26  0.10 0.16 0.57 
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optimal temperature 
(DOT), cold tolerance 
limit (DCL), heat 
tolerance limit (DHL), 
and thermal range 
(DTR) 

DOT4 65.61 4.83 <0.01 29.56 <0.01 <0.01  0.04 0.15  0.04 0.07 <0.01 
DCL4 49.11 <0.01 <0.01 6.78 44.11 <0.01  0.01 0.17  0.07 0.12 <0.01 
DHL4 32.60 <0.01 25.43 41.97 <0.01 <0.01  0.02 0.05  0.05 0.09 <0.01 

DTR4 31.62 6.91 2.86 38.29 20.31 <0.01 

 

0.06 0.16 

 

0.08 0.12 

<0.01 

Sensitivity to cold and 
warm temperature 
estimated from CTMI-
derived* and 
published datasets 

Smin* 46.25 29.52 <0.01 24.23 <0.01 <0.01  -0.03 -0.01  0.05 0.08 <0.01 
Smin 53.80 41.35 4.85 <0.01 <0.01 <0.01  0.12 0.28  0.08 0.13 0.55 
Smax* 56.07 0.49 <0.01 2.56 0.80 40.08  -0.05 -0.05  0.03 0.04 <0.01 

Smax 53.10 29.64 2.84 <0.01 <0.01 14.43 
 

0.00 0.10 
 

0.04 0.08 
<0.01 

Warming exposure 
based on different 
climate scenarios (i.e. 
RCP 2.6, RCP 4.5, 
RCP 6.0, and RCP 
8.5) estimated from 
CTMI-derived* and 
published datasets 

WR2.6* 54.27 7.30 <0.01 38.43 <0.01 <0.01  -0.02 -0.04  0.12 0.17 <0.01 
WR4.5* 53.52 <0.01 13.70 32.78 <0.01 <0.01  -0.04 0.00  0.05 0.08 <0.01 
WR6.0* 74.07 19.23 6.70 <0.01 <0.01 <0.01  -0.05 -0.10  0.04 0.07 <0.01 
WR8.5* 75.00 25.00 <0.01 <0.01 <0.01 <0.01  -0.08 -0.13  0.02 0.04 <0.01 
WR2.6 94.84 <0.01 <0.01 0.16 4.99 <0.01  0.01 0.05  0.02 0.04 <0.01 
WR4.5 93.48 5.39 <0.01 1.13 <0.01 <0.01  0.00 -0.07  0.02 0.03 <0.01 
WR6.0 89.55 10.45 <0.01 <0.01 <0.01 <0.01  0.00 0.00  0.01 0.03 <0.01 
WR8.5 94.79 5.21 <0.01 <0.01 <0.01 <0.01  0.00 -0.01  0.01 0.02 <0.01 

Warming vulnerability 
based on different 
climate scenarios (i.e. 
RCP 2.6, RCP 4.5, 
RCP 6.0, and RCP 
8.5) estimated from 
CTMI-derived* and 
published datasets 

V2.6* 7.91 15.67 <0.01 69.37 <0.01 7.05  -0.02 -0.01  0.12 0.19 0.94 
V4.5* 67.56 32.44 <0.01 <0.01 <0.01 <0.01  -0.03 -0.05  0.08 0.14 <0.01 
V6.0* 76.15 14.40 2.22 <0.01 <0.01 7.23  -0.01 0.00  0.07 0.11 <0.01 
V8.5* 62.29 32.93 4.78 <0.01 <0.01 <0.01  -0.04 -0.05  0.03 0.05 <0.01 
V2.6 34.46 <0.01 0.39 12.45 52.71 <0.01  0.00 -0.06  0.13 0.23 0.97 
V4.5 11.35 8.28 1.54 0.17 76.35 2.30  -0.01 -0.03  0.06 0.12 0.79 
V6.0 4.78 2.64 0.77 <0.01 91.82 <0.01  -0.01 -0.06  0.11 0.20 0.96 
V8.5 0.06 0.04 0.01 <0.01 99.90 NA  -0.01 -0.02  0.51 0.90 1.00 
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Supplementary Table 5.1. Cellular content of okadaic acid (OA), dinophysistoxins (DTX1 and DTX2) in Prorocentrum lima found in various studies. 
Highlighted in grey are the cellular toxin content for Prorocentrum lima CCAP 1136/11 strain observed in this present study. Asterisk (*) indicate that the 
information is not available/acquired.  

 
Isolation location  

 
Strain (Notes) 

 
Temperature 

Cellular toxin content (pg cell-1)  
Reference  OA DTX1 DTX2 

Adriatic Sea 
Goro, Italy  

* * 6.69 - 15.8 0.12 - 0.39 * (Vanucci et al., 2010)  

Bizerte Bay 
Tunisia  

PLBZT14 25 7.13 - 28.33 2.23 - 7.4 * (Ben-Gharbia et al., 2016) 

Dry Tortugas 
Florida, USA  

* 26 7.5 - 14.2 * * (Tomas and Baden, 1993) 

Fleet Lagoon 
Dorset, UK  

* * 2.05 - 10.99 0.82 - 5.32 * (Aquino-Cruz, 2012) 

Fleet Lagoon 
Dorset, UK  

* * 0.1 - 1.8 0.2 - 6.3 * (Foden et al., 2005) 

Fleet Lagoon 
Dorset, UK  

(20 strains) 15,17 0.42 - 17.13 0.41 - 11.29 * (Nascimento et al., 2005) 

Marseille 
France  

MARS1 20 1.9 0.8 * (Barbier et al., 1999) 

Heron Island 
Australia  

* * 1.31 - 5.88 4 - 12 * (Morton and Tindall, 1995) 

Lagoon of Goro 
Adriatic Sea, Italy  

* 20 6.69 - 15.8 0.12 - 0.39 * (Vanucci et al., 2010)  

Lisbon Bay 
Portugal  

IO66-01 19 8.8 - 41 2.5 - 12 * (Vale et al., 2009) 

Mahone Bay  
Nova Scotia, Canada  

* 18 0.37 - 6.6 0.04 - 2.6 * (Pan et al., 1999) 

NW Havana City 
Cuba  

(cultured cells) 22 * 7.15 * (Delgado et al., 2005) 

NW Havana City 
Cuba  

(natural cells) 22 * 4.2 * (Delgado et al., 2005) 

Okinawa 
Japan  

* * 26 13 * (Lee et al., 1989) 

Pontevedra and 
Ria de Vigo, Spain  

(19 strains) 19 0.19 - 12.87 0 - 12.45 0 - 1.14 (Bravo et al., 2001) 

Rangaunu Harbour * * 90 - 108 * * (MacKenzie et al., 2011) 
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New Zealand  
Ria de Vigo 

Spain  
CCAP1136/11 
(Day 1 - 15) 

20 0.1 - 1.25 * * (Varkitzi et al., 2010) 

Ria de Vigo 
Spain  

CCAP1136/11 
(Day 34) 

20 11.27 * * (Varkitzi et al., 2010) 

Ria de Vigo 
Spain  

PL2V 20 14.3 2.1 * (Barbier et al., 1999) 

Ria de Vigo 
Spain  

(5 strains) * 5 - 24.5 6 - 14.3 * (Lee et al., 1989) 

Ria de Vigo 
Spain 

CCAP1136/11 
(TB1) 

5 89.9 ± 21.5 
(61.05 - 
131.93) 

7.26 ± 2.08 
(4.25 - 11.26) 

0.066 ± 0.0084 
(0.055 - 0.082) 

This study 

Ria de Vigo 
Spain  

CCAP1136/11 
(TB1) 

10 26.78 ± 8.51 
(10.63 - 39.49) 

2 ± 0.4 
(1.21 - 2.56) 

0.017 ± 0.0016 
(0.014 - 0.019) 

This study 

Ria de Vigo 
Spain  

CCAP1136/11 
(TB1) 

15 9.14 ± 2.48 
(2.46 - 17.39) 

0.83 ± 0.25 
(0.32 - 1.63) 

0.0053 ± 0.0009 
(0.0031 -0.0092) 

This study 

Ria de Vigo 
Spain  

CCAP1136/11 
(TB1) 

20 4.96 ± 1.81 
(1.86 - 8.11) 

0.49 ± 0.17 
(0.25 - 0.8) 

0.0052 ± 0.0016 
(0.0024 - 0.008) 

This study 

Ria de Vigo 
Spain  

CCAP1136/11 
(TB1) 

25 17.81 ± 0.93 
(16.14 - 19.34) 

1.79 ± 0.09 
(1.66 - 1.97) 

0.0068 ± 0.0007 
(0.0057 -0.0082) 

This study 

Ria de Vigo 
Spain  

CCAP1136/11 
(TB2) 

10 7.07 ± 1.4 
(5.18 - 9.8) 

1.06 ± 0.2 
(0.84 - 1.45) 

0.16 ± 0.15 
(0.0071 -0.4532) 

This study 

Ria de Vigo 
Spain  

CCAP1136/11 
(TB2) 

15 6.25 ± 1.56 
(3.2 - 8.34) 

0.78 ± 0.17 
(0.43 - 0.97) 

0.0058 ± 0.0014 
(0.0029 -0.0073) 

This study 

Ria de Vigo 
Spain  

CCAP1136/11 
(TB2) 

20 9.71 ± 0.87 
(8.07 - 11.02) 

1.28 ± 0.07 
(1.19 - 1.41) 

0.0053 ± 0.001 
(0.0035 -0.0071) 

This study 

Ria de Vigo 
Spain  

CCAP1136/11 
(TB2) 

25 3.95 ± 0.24 
(3.48 - 4.28) 

0.57 ± 0.04 
(0.5 - 0.65) 

0.0031 ± 0.0005 
(0.0023 -0.0039) 

This study 

Sanriku 
Japan  

* * 0.3 - 1.3 * * (Koike et al., 1998) 

Virgin Islands 
US  

* * 2.33 - 7.06 4.47 - 12.47 * (Morton and Tindall, 1995) 
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Supplementary Table 6.1. Accuracy of the deep learning models used to classify species in pairwise mixed-species cultures. This metrics was used as 
inclusion criteria for the succeeding data analysis. Pairs with average model accuracy of <0.80 (highlighted in grey) were included in the dataset used to 
determine the effect of warming on growth and competition in non-toxic and potentially toxic dinoflagellates.  

Pairs  Pairwise combinations  Model Accuracy  
Species 1 Species 2  15 °C 20 °C 25 °C Mean SE 

P1 Prorocentrum sp. Prorocentrum micans  0.5095 0.5246 0.5625 0.5322 0.0158 
P2 Prorocentrum sp. Alexandrium tamutum  0.9498 0.9437 0.8082 0.9005 0.0462 
P3 Prorocentrum micans Alexandrium tamutum  0.9485 0.9382 0.7821 0.8896 0.0538 
P4 Prorocentrum sp. Prorocentrum minimum  0.8647 0.8562 0.7775 0.8328 0.0278 
P5 Prorocentrum sp. Prorocentrum lima  1.0000 1.0000 1.0000 1.0000 0.0000 
P6 Prorocentrum sp. Alexandrium minutum  0.9872 0.9811 0.9759 0.9814 0.0033 
P7 Prorocentrum micans Prorocentrum minimum  0.8701 0.8445 0.7401 0.8182 0.0398 
P8 Prorocentrum micans Prorocentrum lima  0.9969 0.9987 0.9977 0.9978 0.0005 
P9 Prorocentrum micans Alexandrium minutum  0.9847 0.9787 0.9576 0.9737 0.0082 
P10 Alexandrium tamutum Prorocentrum minimum  0.6929 0.6680 0.6164 0.6591 0.0225 
P11 Alexandrium tamutum Prorocentrum lima  0.9897 0.9944 0.9947 0.9929 0.0016 
P12 Alexandrium tamutum Alexandrium minutum  0.5255 0.5784 0.7362 0.6134 0.0633 
P13 Prorocentrum minimum Prorocentrum lima  0.9941 0.9947 0.9953 0.9947 0.0004 
P14 Prorocentrum minimum Alexandrium minutum  0.7598 0.7295 0.8090 0.7661 0.0232 
P15 Prorocentrum lima Alexandrium minutum  0.9908 0.9951 0.9915 0.9925 0.0013 
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Supplementary Table 6.2. Description of analysis of variance (ANOVA) implemented in this present study. Results of the ANOVA and post hoc Tukey tests 
are tabulated and plotted, respectively. Asterisk (*) indicates the results of analysis using the filtered datasets.       

ANOVA Description Model Data 
separation 

ANOVA  
summary 

Post hoc  
Tukey test 

1 Effect of temperature on growth rate of six 
different species of dinoflagellates  
 

Growth rate in monocultures ~ 
Temperature 

Focal species Supplementary 
Table 5.3 

Supplementary 
Figure 5.8 

2 Effect of temperature on growth rate of two 
different genera of dinoflagellates 
 

Growth rate in monocultures ~ 
Temperature 

Focal genus Supplementary 
Table 5.3 

Supplementary 
Figure 5.8 

3 Effect of temperature on growth rate of non-
toxic and potentially toxic dinoflagellates 
 

Growth rate in monocultures ~ 
Temperature 

Focal toxicity Supplementary 
Table 5.3 

Supplementary 
Figure 5.8 

4 Species specificity of growth in different 
temperature treatments 
 

Growth rate in monocultures ~ Focal 
species 

Temperature Supplementary 
Table 5.3 

Supplementary 
Figure 5.8 

5 Variation in growth between two different 
genera of dinoflagellates in different 
temperature treatments 

Growth rate in monocultures ~ Focal 
genus 

Temperature Supplementary 
Table 5.3 

Supplementary 
Figure 5.8 

6 Variation in growth between non-toxic and 
potentially toxic dinoflagellates in different 
temperature treatments 

Growth rate in monocultures ~ Focal 
toxicity 

Temperature Supplementary 
Table 5.3 

Supplementary 
Figure 5.8 

7 Effect of temperature and competitors on 
growth rate of six different species of 
dinoflagellates  

Growth rate in co-cultures ~ 
Temperature x Competitor species 

Focal species Supplementary 
Table 5.4* 
Supplementary 
Table 5.6 

Supplementary 
Figure 5.9* 
Supplementary 
Figure 5.11  

8 Effect of temperature and competitors on 
growth rate of two different genera of 
dinoflagellates 

Growth rate in co-cultures ~ 
Temperature x Competitor species 

Focal genus Supplementary 
Table 5.4* 
Supplementary 
Table 5.6 

Supplementary 
Figure 5.9* 
Supplementary 
Figure 5.11  

9 Effect of temperature and competitors on 
growth rate of non-toxic and potentially 
toxic dinoflagellates 

Growth rate in co-cultures ~ 
Temperature x Competitor species 

Focal toxicity Supplementary 
Table 5.4* 
Supplementary 
Table 5.6 

Supplementary 
Figure 5.9* 
Supplementary 
Figure 5.11  

10 Focal and competitor species specificity of 
growth in different temperature treatments 
 

Growth rate in co-cultures ~ Focal 
species x Competitor species 

Temperature Supplementary 
Table 5.4* 

Supplementary 
Figure 5.9* 
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Supplementary 
Table 5.6 

Supplementary 
Figure 5.11  

11 Dependence of growth on focal and 
competitor genera in different temperature 
treatments 

Growth rate in co-cultures ~ Focal genus 
x Competitor genus 

Temperature Supplementary 
Table 5.4* 
Supplementary 
Table 5.6 

Supplementary 
Figure 5.9* 
Supplementary 
Figure 5.11  

12 Dependence of growth on toxicity of focal 
and competitor species in different 
temperature treatments 

Growth rate in co-cultures ~ Focal 
toxicity x Competitor toxicity 

Temperature Supplementary 
Table 5.4* 
Supplementary 
Table 5.6 

Supplementary 
Figure 5.9* 
Supplementary 
Figure 5.11  

13 Effect of temperature and competitors on 
relative growth of six different species of 
dinoflagellates  

Relative growth ~ Temperature x 
Competitor species 

Focal species Supplementary 
Table 5.5* 
Supplementary 
Table 5.7  

Supplementary 
Figure 5.10* 
Supplementary 
Figure 5.12   

14 Effect of temperature and competitors on 
relative growth of two different genera of 
dinoflagellates 

Relative growth ~ Temperature x 
Competitor species 

Focal genus Supplementary 
Table 5.5* 
Supplementary 
Table 5.7  

Supplementary 
Figure 5.10* 
Supplementary 
Figure 5.12   

15 Effect of temperature and competitors on 
relative growth of non-toxic and potentially 
toxic dinoflagellates 

Relative growth ~ Temperature x 
Competitor species 

Focal toxicity Supplementary 
Table 5.5* 
Supplementary 
Table 5.7  

Supplementary 
Figure 5.10* 
Supplementary 
Figure 5.12   

16 Focal and competitor species specificity of 
relative growth in different temperature 
treatments 

Relative growth ~ Focal species x 
Competitor species 

Temperature Supplementary 
Table 5.5* 
Supplementary 
Table 5.7  

Supplementary 
Figure 5.10* 
Supplementary 
Figure 5.12   

17 Dependence of relative growth on focal and 
competitor genera in different temperature 
treatments 

Relative growth ~ Focal genus x 
Competitor genus 

Temperature Supplementary 
Table 5.5* 
Supplementary 
Table 5.7  

Supplementary 
Figure 5.10* 
Supplementary 
Figure 5.12   

18 Dependence of relative growth on toxicity of 
focal and competitor species in different 
temperature treatments 

Relative growth ~ Focal toxiciy x 
Competitor toxicity 

Temperature Supplementary 
Table 5.5* 
Supplementary 
Table 5.7  

Supplementary 
Figure 5.10* 
Supplementary 
Figure 5.12  
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Supplementary Table 6.3. Summary statistics of the analysis of variance (ANOVA) conducted to determine the effect of temperature, taxonomic identity, and 
toxicity on growth of dinoflagellates in monocultures. Asterisk indicates significance at 95% confidence interval. 

ANOVA Model Data separation  Terms df Sum Sq. Mean Sq. F value p-value  

1 Growth rate ~ 
Temperature  

Focal species  

Prorocentrum sp.  Temperature 2 0.22 0.11 627.66 <0.05 * 
  Residuals 42 0.01 0       
Prorocentrum micans  Temperature 2 0.07 0.03 266.04 <0.05 * 
  Residuals 42 0.01 0       
Alexandrium tamutum  Temperature 2 0.61 0.3 918.7 <0.05 * 
  Residuals 42 0.01 0       
Prorocentrum minimum Temperature 2 0.16 0.08 235.11 <0.05 * 
  Residuals 42 0.01 0       
Prorocentrum lima  Temperature 2 0 0 6.98 <0.05 * 
  Residuals 42 0.01 0       
Alexandrium minutum  Temperature 2 0.56 0.28 10401.75 <0.05 * 
  Residuals 42 0 0       

2 
Growth rate ~ 
Temperature 

  

Focal genus 
  

Prorocentrum Temperature 2 0.17 0.09 10.28 <0.05 * 
  Residuals 177 1.49 0.01       
Alexandrium Temperature 2 1.17 0.58 2230.16 <0.05 * 
  Residuals 87 0.02 0       

3 Growth rate ~ 
Temperature  

Focal toxicity 
  

non-toxic Temperature 2 0.52 0.26 36.51 <0.05 * 
  Residuals 132 0.94 0.01       
potentially toxic Temperature 2 0.47 0.23 15.37 <0.05 * 
  Residuals 132 2 0.02       

4 Growth rate ~ 
Focal species Temperature 

15 °C Focal species 5 0.23 0.05 205.52 <0.05 * 
  Residuals 84 0.02 0       
20 °C Focal species 5 0.85 0.17 782.01 <0.05 * 
  Residuals 84 0.02 0       
25 °C Focal species 5 1.97 0.39 2933.6 <0.05 * 

   Residuals 84 0.01 0       

5 Growth rate ~  
Focal genus Temperature 

15 °C Focal genus 1 0.01 0.01 3.61 0.06   
  Residuals 88 0.24 0       
20 °C Focal genus 1 0.37 0.37 66.07 <0.05 * 
  Residuals 88 0.49 0.01       
25 °C Focal genus 1 1.2 1.2 135.19 <0.05 * 
  Residuals 88 0.78 0.01       

6 Growth rate ~  
Focal toxicity Temperature 

15 °C Focal toxicity 1 0.01 0.01 3.87 0.05   
  Residuals 88 0.24 0       
20 °C Focal toxicity 1 0.06 0.06 6.19 <0.05 * 
  Residuals 88 0.81 0.01       
25 °C Focal toxicity 1 0.09 0.09 4 <0.05 * 
  Residuals 88 1.9 0.02       
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Supplementary Table 6.4. Summary statistics of the analysis of variance (ANOVA) conducted to determine the effect of temperature, taxonomic identity, and 
toxicity on growth of dinoflagellates in co-cultures using the filtered datasets. Notes: asterisk * indicates significance at 95% confidence interval; superscript a 

indicates different statistical result from the analysis using the full datasets; and, superscript b indicates statistical computation is not possible.  
 
ANOVA Model Data separation  Terms df Sum Sq. Mean Sq. F value p-value  

7 
Growth rate ~ 
Temperature x 

Competitor species 
Focal species 

Prorocentrum sp.  Temperature 2 0.08 0.04 89.28 <0.05 * 
 Competitor species 3 0.04 0.01 31.30 <0.05 * 

 

Temperature: 
Competitor 6 0.02 0.00 6.01 <0.05 * 

  Residuals 24 0.01 0.00    
Prorocentrum micans  Temperature 2 0.09 0.04 124.43 <0.05 * 
 Competitor 3 0.05 0.02 44.30 <0.05 * 

 

Temperature: 
Competitor 6 0.04 0.01 18.50 <0.05 * 

  Residuals 24 0.01 0.00    
Alexandrium tamutum  Temperature 2 0.43 0.21 459.96 <0.05 * 
 Competitor 3 0.03 0.01 24.94 <0.05 * 

 

Temperature: 
Competitor 6 0.02 0.00 6.12 <0.05 * 

  Residuals 24 0.01 0.00    
Prorocentrum minimum Temperature 2 0.23 0.12 412.91 <0.05 * 
 Competitor 3 0.04 0.01 52.79 <0.05 * 

 

Temperature: 
Competitor 6 0.08 0.01 44.15 <0.05 * 

  Residuals 24 0.01 0.00    
Prorocentrum lima  Temperature 2 0.06 0.03 37.27 <0.05 * 
 Competitor 4 0.01 0.00 3.26 <0.05 * 

 

Temperature: 
Competitor 8 0.01 0.00 0.78 0.62   

  Residuals 30 0.02 0.00    
Alexandrium minutum  Temperature 2 0.39 0.19 1092.45 <0.05 * 
 Competitor 2 0.00 0.00 12.55 <0.05 * 

 
Temperature: 
Competitor 4 0.00 0.00 4.94 <0.05 * 

  Residuals 18 0.00 0.00    
8 Growth rate ~ 

Temperature x Focal genus Prorocentrum Temperature 2 0.39 0.20 26.78 <0.05 * 
 Competitor 5 0.11 0.02 3.08 <0.05 *a 



 
 

Supplementary Tables 

 258 

Competitor species 
 

Temperature: 
Competitor 10 0.06 0.01 0.78 0.65   

  Residuals 135 0.99 0.01    
Alexandrium Temperature 2 0.81 0.41 664.01 <0.05 * 
 Competitor 3 0.05 0.02 26.83 <0.05 * 

 
Temperature: 
Competitor 6 0.01 0.00 3.93 <0.05 * 

  Residuals 51 0.03 0.00    

9 
Growth rate ~ 
Temperature x 

Competitor species 
Focal toxicity 

non-toxic Temperature 2 0.49 0.24 83.33 <0.05 * 
 Competitor 5 0.42 0.08 28.76 <0.05 * 

 
Temperature: 
Competitor 10 0.08 0.01 2.63 <0.05 *a 

  Residuals 90 0.26 0.00    
potentially toxic Temperature 2 0.55 0.28 21.52 <0.05 * 
 Competitor 5 0.54 0.11 8.40 <0.05 * 

 
Temperature: 
Competitor 10 0.05 0.00 0.37 0.96   

  Residuals 90 1.16 0.01    

10 
Growth rate ~ 

Focal species x 
Competitor species 

Temperature 

15 °C Focal 5 0.19 0.04 193.66 <0.05 * 
 Competitor 5 0.03 0.01 34.36 <0.05 * 

 
Focal: 
Competitor 13 0.04 0.00 16.23 <0.05 * 

  Residuals 48 0.01 0.00    
20 °C Focal 5 0.85 0.17 381.75 <0.05 * 
 Competitor 5 0.01 0.00 6.51 <0.05 * 

 
Focal: 
Competitor 13 0.07 0.01 12.11 <0.05 * 

  Residuals 48 0.02 0.00    
25 °C Focal 5 1.09 0.22 311.17 <0.05 * 
 Competitor 5 0.05 0.01 13.91 <0.05 * 

 
Focal: 
Competitor 13 0.13 0.01 14.14 <0.05 * 

  Residuals 48 0.03 0.00    
 
 
 
 

 
 
 
 

 
 

Temperature 

15 °C Focal genus 1 0.07 0.07 30.67 <0.05 * 
 Competitor genus 1 0.04 0.04 15.65 <0.05 * 

 
Focal genus: 
Competitor genus      b 



 
 

Supplementary Tables 

 259 

11 
  

 
 

Growth rate ~ 
Focal genus x 

Competitor genus 
 
  

  Residuals 69 0.17 0.00    
20 °C Focal genus 1 0.49 0.49 73.79 <0.05 * 
 Competitor genus 1 0.00 0.00 0.75 0.39   

 
Focal genus: 
Competitor genus      b 

  Residuals 69 0.46 0.01    
25 °C Focal genus 1 0.71 0.71 82.44 <0.05 * 
 Competitor genus 1 0.00 0.00 0.01 0.94   

 
Focal genus: 
Competitor genus      b 

    Residuals 69 0.59 0.01    

12 
  

Growth rate ~ 
Focal toxicity x 

Competitor toxicity 
  

Temperature 
  

15 °C Focal toxicity 1 0.00 0.00 0.90 0.35   
 Competitor toxicity 1 0.00 0.00 0.39 0.54   

 
Focal toxicity: 
Competitor toxicity 1 0.00 0.00 0.00 0.98   

  Residuals 68 0.27 0.00    
20 °C Focal toxicity 1 0.02 0.02 1.38 0.24   
 Competitor toxicity 1 0.02 0.02 1.65 0.20   

 
Focal toxicity: 
Competitor toxicity 1 0.00 0.00 0.32 0.58   

  Residuals 68 0.91 0.01    
25 °C Focal toxicity 1 0.00 0.00 0.03 0.86   
 Competitor toxicity 1 0.01 0.01 0.27 0.60   

 
Focal toxicity: 
Competitor toxicity 1 0.01 0.01 0.29 0.59   

  Residuals 68 1.29 0.02    
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Supplementary Table 6.5. Summary statistics of the analysis of variance (ANOVA) conducted to determine the effect of temperature, taxonomic identity, and 
toxicity on relative growth of dinoflagellates using the filtered datasets. Notes: asterisk * indicates significance at 95% confidence interval; superscript a 

indicates different statistical result from the analysis using the full datasets; and, superscript b indicates statistical computation is not possible. 
 
ANOVA Model Data separation  Terms df Sum Sq. Mean Sq. F value p-value  

13 
Relative growth ~ 

Temperature x 
Competitor species 

Focal species 

Prorocentrum sp.  Temperature 2 0.87 0.43 23.31 <0.05 * 
 Competitor species 3 1.08 0.36 19.32 <0.05 * 

 

Temperature: 
Competitor 6 0.59 0.10 5.25 <0.05 * 

  Residuals 24 0.45 0.02    
Prorocentrum micans  Temperature 2 4.03 2.01 148.32 <0.05 * 
 Competitor 3 1.41 0.47 34.60 <0.05 * 

 

Temperature: 
Competitor 6 1.30 0.22 15.90 <0.05 * 

  Residuals 24 0.33 0.01    
Alexandrium tamutum  Temperature 2 0.06 0.03 2.87 0.08 a 

 Competitor 3 0.34 0.11 10.93 <0.05 * 

 

Temperature: 
Competitor 6 0.13 0.02 2.05 0.10   

  Residuals 24 0.25 0.01    
Prorocentrum minimum Temperature 2 0.51 0.25 28.67 <0.05 * 
 Competitor 3 0.29 0.10 10.94 <0.05 * 

 

Temperature: 
Competitor 6 0.58 0.10 10.98 <0.05 * 

  Residuals 24 0.21 0.01    
Prorocentrum lima  Temperature 2 3.20 1.60 24.07 <0.05 * 
 Competitor 4 0.92 0.23 3.45 <0.05 * 

 

Temperature: 
Competitor 8 0.43 0.05 0.82 0.60   

  Residuals 30 1.99 0.07    
Alexandrium minutum  Temperature 2 0.01 0.01 2.65 0.10 a 

 Competitor 2 0.03 0.01 5.17 <0.05 * 

 
Temperature: 
Competitor 4 0.02 0.00 1.67 0.20 a 

  Residuals 18 0.05 0.00    
14 Relative growth ~ 

Temperature x Focal genus Prorocentrum Temperature 2 5.66 2.83 48.17 <0.05 * 
 Competitor 5 2.46 0.49 8.39 <0.05 * 
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Competitor species 
 

Temperature: 
Competitor 10 3.28 0.33 5.59 <0.05 * 

  Residuals 135 7.93 0.06    
Alexandrium Temperature 2 0.04 0.02 2.45 0.10  a 

 Competitor 3 0.34 0.11 13.92 <0.05 * 

 
Temperature: 
Competitor 6 0.11 0.02 2.18 0.06  a 

  Residuals 51 0.42 0.01    

15 
Relative growth ~ 

Temperature x 
Competitor species 

Focal toxicity 

non-toxic Temperature 2 2.38 1.19 22.43 <0.05 * 
 Competitor 5 1.25 0.25 4.71 <0.05 * 

 
Temperature: 
Competitor 10 3.02 0.30 5.70 <0.05 * 

  Residuals 90 4.77 0.05    
potentially toxic Temperature 2 2.20 1.10 24.32 <0.05 * 
 Competitor 5 0.88 0.18 3.91 <0.05 * 

 
Temperature: 
Competitor 10 1.62 0.16 3.59 <0.05 * 

  Residuals 90 4.07 0.05    

16 
Relative growth ~ 
Focal species x 

Competitor species 
Temperature 

15 °C Focal 5 1.43 0.29 16.33 <0.05 * 
 Competitor 5 0.95 0.19 10.87 <0.05 * 

 
Focal: 
Competitor 13 1.52 0.12 6.69 <0.05 * 

  Residuals 48 0.84 0.02    
20 °C Focal 5 0.79 0.16 9.13 <0.05 * 
 Competitor 5 0.22 0.04 2.58 <0.05 *a 

 
Focal: 
Competitor 13 1.12 0.09 5.02 <0.05 * 

  Residuals 48 0.83 0.02    
25 °C Focal 5 4.08 0.82 24.39 <0.05 * 
 Competitor 5 1.57 0.31 9.39 <0.05 * 

 
Focal: 
Competitor 13 1.71 0.13 3.94 <0.05 * 

  Residuals 48 1.61 0.03    
 
 
 
 

 
 
 
 

 
 

Temperature  

15 °C Focal genus 1 0.97 0.97 20.77 <0.05 * 
 Competitor genus 1 0.57 0.57 12.23 <0.05 * 

 
Focal genus: 
Competitor genus      b 
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17 
  

 
Relative growth ~ 

Focal genus x 
Competitor genus 

 
  

  Residuals 69 3.21 0.05    
20 °C Focal genus 1 0.10 0.10 2.47 0.12   
 Competitor genus 1 0.00 0.00 0.05 0.83   

 
Focal genus: 
Competitor genus      b 

  Residuals 69 2.86 0.04    
25 °C Focal genus 1 1.07 1.07 9.64 <0.05 * 
 Competitor genus 1 0.26 0.26 2.37 0.13   

 
Focal genus: 
Competitor genus      b 

  Residuals 69 7.64 0.11    

18 
  

Relative growth ~ 
Focal toxicity x 

Competitor toxicity 
  

Temperature 
  

15 °C Focal toxicity 1 0.43 0.43 7.20 <0.05 * 
 Competitor toxicity 1 0.24 0.24 3.97 0.05 a 

 
Focal toxicity: 
Competitor toxicity 1 0.00 0.00 0.08 0.78   

  Residuals 68 4.07 0.06    
20 °C Focal toxicity 1 0.42 0.42 11.36 <0.05 * 
 Competitor toxicity 1 0.01 0.01 0.32 0.57   

 
Focal toxicity: 
Competitor toxicity 1 0.02 0.02 0.59 0.45   

  Residuals 68 2.51 0.04    
25 °C Focal toxicity 1 0.21 0.21 1.81 0.18   
 Competitor toxicity 1 0.71 0.71 6.02 <0.05 *a 

 
Focal toxicity: 
Competitor toxicity 1 0.00 0.00 0.01 0.93   

  Residuals 68 8.04 0.12    
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Supplementary Table 6.6. Summary statistics of the analysis of variance (ANOVA) conducted to determine the effect of temperature, taxonomic identity, and 
toxicity on growth of dinoflagellates in co-cultures using the full datasets. Notes: asterisk * indicates significance at 95% confidence interval.  
 
ANOVA Model Data separation  Terms df Sum Sq. Mean Sq. F value p-value  

7 
Growth rate ~ 
Temperature x 

Competitor species 
Focal species 

Prorocentrum sp.  Temperature 2 0.1 0.05 120.88 <0.05 * 
 Competitor species 4 0.04 0.01 26.83 <0.05 * 

 

Temperature: 
Competitor 8 0.03 0 8.23 <0.05 * 

  Residuals 30 0.01 0       
Prorocentrum micans  Temperature 2 0.14 0.07 175.67 <0.05 * 
 Competitor 4 0.05 0.01 28.89 <0.05 * 

 

Temperature: 
Competitor 8 0.06 0.01 18.38 <0.05 * 

  Residuals 30 0.01 0       
Alexandrium tamutum  Temperature 2 0.49 0.25 546.62 <0.05 * 
 Competitor 4 0.05 0.01 27.25 <0.05 * 

 

Temperature: 
Competitor 8 0.02 0 5.95 <0.05 * 

  Residuals 30 0.01 0       
Prorocentrum minimum Temperature 2 0.29 0.15 462.72 <0.05 * 
 Competitor 4 0.06 0.01 43.79 <0.05 * 

 

Temperature: 
Competitor 8 0.08 0.01 30.02 <0.05 * 

  Residuals 30 0.01 0       
Prorocentrum lima  Temperature 2 0.06 0.03 37.27 <0.05 * 
 Competitor 4 0.01 0 3.26 <0.05 * 

 

Temperature: 
Competitor 8 0.01 0 0.78 0.62   

  Residuals 30 0.02 0       
Alexandrium minutum  Temperature 2 0.81 0.4 1670.68 <0.05 * 
 Competitor 4 0.03 0.01 34.33 <0.05 * 

 
Temperature: 
Competitor 8 0.02 0 12.44 <0.05 * 

  Residuals 30 0.01 0       

8 
Growth rate ~ 
Temperature x 

Competitor species 
Focal genus 

Prorocentrum Temperature 2 0.50 0.25 32.28 <0.05 * 
 Competitor 5 0.07 0.01 1.79 0.12   
 Temperature: 10 0.08 0.01 1.08 0.38   
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Competitor 
  Residuals 162 1.25 0.01    
Alexandrium Temperature 2 1.28 0.64 308.14 <0.05 * 
 Competitor       

 
Temperature: 
Competitor       

  Residuals 87 0.18 0       

9 
Growth rate ~ 
Temperature x 

Competitor species 
Focal toxicity 

non-toxic Temperature 2 0.62 0.31 58.32 <0.05 * 
 Competitor 5 0.18 0.04 6.88 <0.05 * 

 
Temperature: 
Competitor 10 0.07 0.01 1.34 0.22   

  Residuals 117 0.62 0.01       
potentially toxic Temperature 2 0.93 0.47 30.66 <0.05 * 
 Competitor 5 0.22 0.04 2.92 <0.05 * 

 
Temperature: 
Competitor 10 0.06 0.01 0.39 0.95   

  Residuals 117 1.78 0.02       

10 
Growth rate ~ 

Focal species x 
Competitor species 

Temperature 

15 °C Focal 5 0.19 0.04 175.68 <0.05 * 
 Competitor 5 0.05 0.01 51.19 <0.05 * 

 
Focal: 
Competitor 19 0.09 0 21.31 <0.05 * 

  Residuals 60 0.01 0       
20 °C Focal 5 0.95 0.19 400.06 <0.05 * 
 Competitor 5 0.02 0 6.77 <0.05 * 

 
Focal: 
Competitor 19 0.09 0 9.88 <0.05 * 

  Residuals 60 0.03 0       
25 °C Focal 5 1.31 0.26 419.71 <0.05 * 
 Competitor 5 0.03 0.01 9.3 <0.05 * 

 
Focal: 
Competitor 19 0.18 0.01 14.82 <0.05 * 

  Residuals 60 0.04 0       
 
 
 
 

11 

 
 
 
 
 

 
 

Temperature 

15 °C Focal genus 1 0.04 0.04 13.78 <0.05 * 
 Competitor genus 1 0.03 0.03 10.81 <0.05 * 

 
Focal genus: 
Competitor genus 1 0 0 1.34 0.25   

  Residuals 86 0.26 0       
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Growth rate ~ 
Focal genus x 

Competitor genus 
 
  

20 °C Focal genus 1 0.53 0.53 84.09 <0.05 * 
 Competitor genus 1 0.01 0.01 0.93 0.34   

 
Focal genus: 
Competitor genus 1 0 0 0.24 0.63   

  Residuals 86 0.54 0.01       
25 °C Focal genus 1 0.82 0.82 100.02 <0.05 * 
 Competitor genus 1 0 0 0.27 0.6   

 
Focal genus: 
Competitor genus 1 0.02 0.02 2.65 0.11   

    Residuals 86 0.71 0.01       

12 
  

Growth rate ~ 
Focal toxicity x 

Competitor toxicity 
  

Temperature 
  

15 °C Focal toxicity 1 0 0 0.45 0.5   
 Competitor toxicity 1 0.01 0.01 3.67 0.06   

 
Focal toxicity: 
Competitor toxicity 1 0 0 0.07 0.8   

  Residuals 86 0.32 0       
20 °C Focal toxicity 1 0 0 0.19 0.66   
 Competitor toxicity 1 0 0 0.18 0.67   

 
Focal toxicity: 
Competitor toxicity 1 0.01 0.01 0.95 0.33   

  Residuals 86 1.07 0.01       
25 °C Focal toxicity 1 0.04 0.04 2.34 0.13   
 Competitor toxicity 1 0.01 0.01 0.46 0.5   

 
Focal toxicity: 
Competitor toxicity 1 0 0 0.07 0.8   

  Residuals 86 1.5 0.02       
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Supplementary Table 6.7. Summary statistics of the analysis of variance (ANOVA) conducted to determine the effect of temperature, taxonomic identity, and 
toxicity on relative growth of dinoflagellates using the full datasets. Notes: asterisk * indicates significance at 95% confidence interval. 
 
ANOVA Model Data separation  Terms df Sum Sq. Mean Sq. F value p-value  

13 
Relative growth ~ 

Temperature x 
Competitor species 

Focal species 

Prorocentrum sp.  Temperature 2 0.73 0.36 21.13 <0.05 * 
 Competitor species 4 1.09 0.27 15.88 <0.05 * 

 

Temperature: 
Competitor 8 0.8 0.1 5.84 <0.05 * 

  Residuals 30 0.52 0.02       
Prorocentrum micans  Temperature 2 5.2 2.6 164.27 <0.05 * 
 Competitor 4 1.47 0.37 23.2 <0.05 * 

 

Temperature: 
Competitor 8 1.79 0.22 14.11 <0.05 * 

  Residuals 30 0.48 0.02       
Alexandrium tamutum  Temperature 2 0.1 0.05 4.89 <0.05 * 
 Competitor 4 0.44 0.11 11.26 <0.05 * 

 

Temperature: 
Competitor 8 0.13 0.02 1.72 0.13   

  Residuals 30 0.29 0.01       
Prorocentrum minimum Temperature 2 0.57 0.28 36.73 <0.05 * 
 Competitor 4 0.38 0.1 12.3 <0.05 * 

 

Temperature: 
Competitor 8 0.59 0.07 9.52 <0.05 * 

  Residuals 30 0.23 0.01       
Prorocentrum lima  Temperature 2 3.2 1.6 24.07 <0.05 * 
 Competitor 4 0.92 0.23 3.45 <0.05 * 

 

Temperature: 
Competitor 8 0.43 0.05 0.82 0.6   

  Residuals 30 1.99 0.07       
Alexandrium minutum  Temperature 2 0.41 0.21 61.94 <0.05 * 
 Competitor 4 0.5 0.12 37.32 <0.05 * 

 
Temperature: 
Competitor 8 0.57 0.07 21.28 <0.05 * 

  Residuals 30 0.1 0       

14 
Relative growth ~ 

Temperature x 
Competitor species 

Focal genus 
Prorocentrum Temperature 2 6.00 3.00 50.09 <0.05 * 
 Competitor 5 2.13 0.43 7.11 <0.05 * 
 Temperature: 10 3.54 0.35 5.91 <0.05 * 
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Competitor 
  Residuals 162 9.71 0.06    
Alexandrium Temperature 2 0.11 0.05 1.91 0.15   
 Competitor       

 
Temperature: 
Competitor       

  Residuals 87 2.43 0.03       

15 
Relative growth ~ 

Temperature x 
Competitor species 

Focal toxicity 

non-toxic Temperature 2 2.35 1.18 18.46 <0.05 * 
 Competitor 5 1.34 0.27 4.2 <0.05 * 

 
Temperature: 
Competitor 10 2.49 0.25 3.9 <0.05 * 

  Residuals 117 7.46 0.06       
potentially toxic Temperature 2 2.92 1.46 31.12 <0.05 * 
 Competitor 5 0.64 0.13 2.74 <0.05 * 

 
Temperature: 
Competitor 10 1.15 0.12 2.45 <0.05 * 

  Residuals 117 5.49 0.05       

16 
Relative growth ~ 
Focal species x 

Competitor species 
Temperature 

15 °C Focal 5 1.34 0.27 17.19 <0.05 * 
 Competitor 5 1.36 0.27 17.48 <0.05 * 

 
Focal: 
Competitor 19 2.64 0.14 8.92 <0.05 * 

  Residuals 60 0.94 0.02       
20 °C Focal 5 0.77 0.15 9.88 <0.05 * 
 Competitor 5 0.17 0.03 2.19 0.07   

 
Focal: 
Competitor 19 1.42 0.07 4.77 <0.05 * 

  Residuals 60 0.94 0.02       
25 °C Focal 5 4.98 1 34.39 <0.05 * 
 Competitor 5 1.13 0.23 7.77 <0.05 * 

 
Focal: 
Competitor 19 2.4 0.13 4.35 <0.05 * 

  Residuals 60 1.74 0.03       
 
 
 
 

17 

 
 
 
 
 

 
 

Temperature  

15 °C Focal genus 1 0.4 0.4 7.01 <0.05 * 
 Competitor genus 1 0.84 0.84 14.52 <0.05 * 

 
Focal genus: 
Competitor genus 1 0.08 0.08 1.39 0.24   

  Residuals 86 4.96 0.06       
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  Relative growth ~ 
Focal genus x 

Competitor genus 
 
  

20 °C Focal genus 1 0.06 0.06 1.74 0.19   
 Competitor genus 1 0 0 0.06 0.81   

 
Focal genus: 
Competitor genus 1 0.03 0.03 0.93 0.34   

  Residuals 86 3.19 0.04       
25 °C Focal genus 1 1.53 1.53 15.47 <0.05 * 
 Competitor genus 1 0.05 0.05 0.54 0.46   

 
Focal genus: 
Competitor genus 1 0.15 0.15 1.55 0.22   

  Residuals 86 8.5 0.1       

18 
  

Relative growth ~ 
Focal toxicity x 

Competitor toxicity 
  

Temperature 
  

15 °C Focal toxicity 1 0.58 0.58 9.52 <0.05 * 
 Competitor toxicity 1 0.42 0.42 6.77 <0.05 * 

 
Focal toxicity: 
Competitor toxicity 1 0 0 0.01 0.91   

  Residuals 86 5.28 0.06       
20 °C Focal toxicity 1 0.42 0.42 13 <0.05 * 
 Competitor toxicity 1 0.03 0.03 0.83 0.37   

 
Focal toxicity: 
Competitor toxicity 1 0.08 0.08 2.41 0.12   

  Residuals 86 2.77 0.03       
25 °C Focal toxicity 1 0.25 0.25 2.18 0.14   
 Competitor toxicity 1 0.32 0.32 2.86 0.09   

 
Focal toxicity: 
Competitor toxicity 1 0 0 0.03 0.86   

  Residuals 86 9.67 0.11       
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Supplementary Figure 2.1. Geographic locations of the occurrence records of phytoplankton species 
retrieved from the four data sources used in this study (A). The compiled dataset is comprised of 771,286 
observations representing 1,681 species recorded between 2000 and 2014, which were retrieved from 
OBIS, GBIF, MAREDAT, and Estrada et. al. Contribution of sources to the phytoplankton dataset is 
illustrated in Venn diagrams, showing the number of distinct and common observations (B) and species 
(C).  
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Supplementary Figure 2.2. Occurrence locations of marine phytoplankton. Colour-coded points 
represent occurrence records of marine phytoplankton species representing 13 taxonomic classes across 
43 ocean regions (see Supplementary Information SI2 for abbreviation). 
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Supplementary Figure 2.3. Global sea surface temperature (SST, �C) data at 5 arcmin between 2000 
and 2014 retrieved from Bio-ORACLE. The colour gradients indicate the long-term annual average SST 
(A) and seasonal extreme SST, i.e. average SST of the coolest months (B) and average SST of the 
warmest months (C).  The points represent occurrence records of marine phytoplankton species 
representing 13 taxonomic classes across 43 ocean regions (see Supplementary Figure 2.2). 
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Supplementary Figure 2.4.  Estimates of uncertainty in thermal limits, midpoints, and niche breadth 
derived from annual average SST (A – D) and extreme seasonal SST (E – H), geographic range size (I), 
and latitudinal range midpoint (J), obtained through bootstrapping. Uncorrected estimates are shown as 
black points and the 95% confidence intervals for the uncorrected estimates are shown by the grey error 
bars. Bias-corrected estimates, i.e. the difference between uncorrected estimate and bootstrap estimate of 
bias, are shown as red points. Geographic variants are ranked in ascending order of the traits. 
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Supplementary Figure 2.5. Sample regression diagnostics plots used to evaluate the residuals of the 
mixed models. These diagnostics are for GLMM with linear term only (A), GLMM with both the linear and 
quadratic terms (B), and GAMM with cubic regression splines (C). 
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Supplementary Figure 2.6. Latitudinal trend in lower and upper thermal limits, and niche breadth of 
marine phytoplankton derived from annual average SST (A – C) and seasonal extreme SST (D – F). The 
points correspond to estimated thermal traits of geographic variant in phytoplankton fitted against the 
absolute latitudinal range midpoint, and the regression lines represent the fit from generalised linear 
mixed model with linear term only (GLMM1) and with both the linear and quadratic terms (GLMM2), and 
generalised additive model with cubic regression splines  (GAMM). The 95% confidence intervals are 
represented as error of the regression in grey shading. 
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Supplementary Figure 2.7. Thermal trend in lower and upper thermal limits, and niche breadth in marine 
phytoplankton derived from annual average SST (A – C) and seasonal extreme SST (D – F). The points 
correspond to estimated thermal traits of geographic variant in phytoplankton fitted against the thermal 
midpoint, and the regression lines represent the fit from generalised linear mixed model with linear term 
only (GLMM1) and with both the linear and quadratic terms (GLMM2), and generalised additive model 
with cubic regression splines (GAMM). The 95% confidence intervals are represented as error of the 
regression in grey shading. 
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Supplementary Figure 2.8.  Trend in geographical range size of marine phytoplankton across the 
gradient of latitude (A) and temperature (B and C). The points correspond to estimated thermal traits of 
geographic variant in phytoplankton fitted against the latitudinal and thermal midpoints, and the 
regression lines represent the fit from generalised linear mixed model with linear term only (GLMM1) and 
with both the linear and quadratic terms (GLMM2), and generalised additive model with cubic regression 
splines (GAMM). The 95% confidence intervals are represented as error of the regression in grey 
shading. 
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Supplementary Figure 2.9. Relationship between on geographic range size and thermal traits, i.e. lower 
and upper thermal limits, and geographic range size in marine phytoplankton derived from annual 
average SST (A – C) and seasonal extreme SST (D – F). The points correspond to estimated range size 
of geographic variant in phytoplankton fitted against the estimates of thermal traits, and the regression 
lines represent the fit from generalised linear mixed model with linear term only (GLMM1) and with both 
the linear and quadratic terms (GLMM2), and generalised additive model with cubic regression splines 
(GAMM). The 95% confidence intervals are represented as error of the regression in grey shading. 
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Supplementary Figure 2.10. Correlogram showing the correlation between the environmental variables, 
including sea surface temperature (SST), climate variability (CV), habitat availability (HA) habitat 
availability variability (HAV), diversity (D), and diversity variability (DV). Values with an asterisk (*) indicate 
significance of the correlation 95% confidence level.  
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Supplementary Figure 2.11. Partial response plots of explanatory variables for thermal niche breadth 
such as sea surface temperature (SST), climate variability (CV), habitat availability (HA) habitat 
availability variability (HAV), diversity (D), and diversity variability (DV).  The plots are arranged according 
to the relative importance of variables as predictors for niche breadth in a random forest model.  
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Supplementary Figure 2.12. Partial response plots of explanatory variables for geographic range size 
such as sea surface temperature (SST), climate variability (CV), habitat availability (HA) habitat 
availability variability (HAV), diversity (D), and diversity variability (DV).  The plots are arranged according 
to the relative importance of variables as predictors for the range size in a random forest model. 
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Supplementary Figure 2.13. Relative importance of explanatory variables for thermal niche (A) 
geographic range size (A) such as sea surface temperature (SST), climate variability (CV), 
habitat availability (HA) habitat availability variability (HAV), diversity (D), and diversity variability 
(DV). CV and and SST are the relatively most important predictors for thermal niche breadth. 
On the hand, D and HA are the relatively most important predictors for geographic range size. 
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Supplementary Figure 3.1. Akaike Information Criteria (AIC), Bayesian Information Criterion (BIC), and 
coefficient of determination (pseudo R2) of the non-linear models (i.e. equ04 – equ15 in Low-Décarie et 
al. 2017, and equ16 (i.e. CTMI in (Rosso et al., 1993); see Supplementary Information SI2 for description 
of the models) used to fit growth rates across against temperature. The red point indicates the mean of 
the statistical estimate. The colour bar indicates the number of successful fits. Both equ10 and equ16 
were initially selected as the best models since they had relatively lower AIC and BIC values and had 
relatively higher pseudo R2.  
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Supplementary Figure 3.2. Critical thermal minimum (CTmin) and critical thermal maximum (CTmax) 
predicted from equ10 and equ16. The solid lines indicate the minimum and maximum sea surface 
temperature ever recorded in 2002 – 2009 (https://earthobservatory.nasa.gov/global-maps/MYD28M).  
CTMI model (i.e. equ16) had produced more realistic estimates of the cardinal temperatures, and hence 
was preferably used in the succeeding analysis.  
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Supplementary Figure 3.3. Thermal performance curves fitted using Cardinal Temperature Model with 
Inflexion (CTMI), which were used to derive the thermal physiology traits.  
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Supplementary Figure 3.4. Density plots illustrating the relative distribution of thermal traits in the CTMI-
derived and published datasets (A – D) and in species occurrence dataset (E – H). Occurrence-based 
thermal traits were derived from annual average (AA) and seasonal extreme (SE) sea surface 
temperature (SST).  
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Supplementary Figure 3.5. Density plots illustrating the relative distribution of the difference between  
physiology- and occurrence-based estimates of thermal traits (TTp – TTo). Published and CTMI-derived 
TTp were subtracted by TTo derived from annual average (A – D) and seasonal extreme (E – H) sea 
surface temperature (SST). 
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Supplementary Figure 3.6. Density plots illustrating the relative distribution of sensitivity to cold 
temperature (A) and warm temperature (B), warming exposure (C – F), and vulnerability to warming (G – 
J). Warming vulnerability are computed based on different climate scenarios (i.e. RCP 2.6, RCP 4.5, RCP 
6.0, and RCP 8.5).  
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Supplementary Figure 3.7. Relationship between physiology- and occurrence-based estimates of 
thermal traits (TTp and TTo, respectively) in marine phytoplankton. TTp were fitted against TTo using 
generalised linear models (GLM; see Supplementary Table 3.1 for the summary statistics). The 
regression lines are indicated in color solid lines with 95% confidence interval in grey shading. The black 
solid lines represent equality between TTp and TTo.  
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Supplementary Figure 3.8. Latitudinal trends in the difference between physiology- and occurrence-
based thermal traits (TTp – TTo) in marine phytoplankton. The estimates of TTp – TTo were fitted against 
latitude using generalised additive models (GAM; see Supplementary Table 3.2 for the summary 
statistics). The regression lines are indicated in blue solid lines with 95% confidence interval in grey 
shading. The horizontal broken line indicates the difference is zero.  
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Supplementary Figure 3.9. Contour plots of the difference between physiology- and occurrence-based 
thermal traits (TTp – TTo) in marine phytoplankton across thermal affinity and thermal specialisation. The 
estimates of TTp –  TTo were fitted against thermal affinity and thermal specialisation using generalised 
linear models (GLM; see Supplementary Table 3.4 for the summary statistics). The GLMs were used to 
construct the contour plots. The colour bars indicate the estimates of TTp –  TTo.  
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Supplementary Figure 3.10. Latitudinal trends in thermal sensitivity (Smin and Smax), warming exposure 
(WR), and vulnerability to warming (V) in marine phytoplankton. The estimates were obtained from CTMI-
derived dataset (indicated by an asterisk) and published dataset. The warming rate and vulnerability were 
computed based on different climate scenarios (i.e. RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5). The 
estimates were fitted against latitude using generalised additive models (GAM; see Supplementary Table 
3.3 for the summary statistics). The regression lines are indicated in solid lines with 95% confidence 
interval in grey shading.  
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Supplementary Figure 3.11. Contour plots of thermal sensitivity (Smin and Smax), warming exposure 
(WR), and vulnerability to warming (V) in marine phytoplankton across and across thermal affinity and 
thermal specialisation. The estimates were obtained from CTMI-derived dataset (indicated by an asterisk) 
and published dataset. The warming rate and vulnerability were computed based on different climate 
scenarios (i.e. RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5). The estimates were fitted against thermal 
affinity and thermal specialisation using generalised linear models (GLM; see Supplementary Table 3.5 
for the summary statistics). The GLMs were used to construct the contour plots.  
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Supplementary Figure 3.12. Phylogenetic distribution of the thermal traits estimated from physiology 
data (TTp) and occurrence data (TTo) in marine phytoplankton. Estimates of TTp were obtained from 
CTMI fitting (A – D) and published literature (E – H). Estimates of TTo were derived from annual average 
SST (I – L) and seasonal extreme SST (M – P). Colours indicate trait value, as shown by the colour bar 
below each tree. 
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Supplementary Figure 3.13. Phylogenetic distribution of the difference between the thermal traits 
estimated from physiology data (TTp) and occurrence data (TTo) in marine phytoplankton. Estimates of 
TTp were obtained from CTMI fitting (indicated by an asterisk) and published literature, whilst estimates of 
TTo were derived from annual average SST and seasonal extreme SST (indicated by an asterisk). These 
were merged and matched up by species, resulting to four sets of datasets: (1) TTp *  and TTo  (A – D), (2) 
TTp *  and TTo* (E – H), (3) TTp   and TTo (I – L), and (4)  TTp  and TTo * (M – P). These datasets were used 
to compute for the difference in optimal temperature (DOT), cold tolerance limit (DCL), heat tolerance limit 
(DHL), and thermal range (DTR). Colours indicate trait value, as shown by the colour bar below each 
tree. 
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Supplementary Figure 3.14. Phylogenetic distribution of the sensitivity to cold temperature (Smin; A and 
C), sensitivity to warm temperature (Smax; B and D), warming exposure (WR; E – L), and warming 
vulnerability (V; M – T) in marine phytoplankton. The estimates were obtained from CTMI-derived dataset 
(indicated by an asterisk) and published dataset. The warming rate and vulnerability were computed 
based on different climate scenarios (i.e. RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5). Colours indicate 
trait value, as shown by the colour bar below each tree. 
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Supplementary Figure 3.15. Percentage of variation in thermal traits estimated from physiology data 
(TTp) and occurrence data (TTo) in marine phytoplankton explained by different taxonomic levels 
according to a variance partitioning analysis. Estimates of TTp were obtained from CTMI fitting (A – D) 
and published literature (E – H). Estimates of TTo were derived from annual average SST (I – L) and 
seasonal extreme SST (M – P). Solid points represent the observed values, whilst the boxplots represent 
the distribution of values generated by the tip randomisation null model. All observed values are 
significant different from the null model at 95% confidence interval. The red and blue points indicate that 
observed values are lower and higher than the null model, respectively.   
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Supplementary Figure 3.16. Percentage of variation in the difference between the thermal traits 
estimated from physiology data (TTp) and occurrence data (TTo) in marine phytoplankton explained by 
different taxonomic levels according to a variance partitioning analysis. Estimates of TTp were obtained 
from CTMI fitting (indicated by an asterisk) and published literature, whilst estimates of TTo were derived 
from annual average SST and seasonal extreme SST (indicated by an asterisk). These were merged and 
matched up by species, resulting to four sets of datasets: (1) TTp *  and TTo  (A – D), (2) TTp *  and TTo* (E 
– H), (3) TTp   and TTo (I – L), and (4)  TTp  and TTo * (M – P). These datasets were used to compute for 
the difference in optimal temperature (DOT), cold tolerance limit (DCL), heat tolerance limit (DHL), and 
thermal range (DTR). Solid points represent the observed values, whilst the boxplots represent the 
distribution of values generated by the tip randomisation null model. All observed values are significant 
different from the null model at 95% confidence interval. The red and blue points indicate that observed 
values are lower and higher than the null model, respectively.   
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Supplementary Figure 3.17. Percentage of variation in the sensitivity to cold temperature (Smin; A and 
C), sensitivity to warm temperature (Smax; B and D), warming exposure (WR; E – L), and warming 
vulnerability (V; M – T) in marine phytoplankton explained by different taxonomic levels according to a 
variance partitioning analysis. The estimates were obtained from CTMI-derived dataset (indicated by an 
asterisk) and published dataset. The warming rate and vulnerability were computed based on different 
climate scenarios (i.e. RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5). Solid points represent the observed 
values, whilst the boxplots represent the distribution of values generated by the tip randomisation null 
model. All observed values are significant different from the null model at 95% confidence interval. The 
red and blue points indicate that observed values are lower and higher than the null model, respectively.   
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Supplementary Figure 3.18. Phylogenetic correlograms for the thermal traits estimated from physiology 
data (TTp) and occurrence data (TTo) in marine phytoplankton. Estimates of TTp were obtained from 
CTMI fitting (A – D) and published literature (E – H). Estimates of TTo were derived from annual average 
SST (I – L) and seasonal extreme SST (M – P). The solid black lines indicate the Moran’s I index 
autocorrelation, and the dashed black lines indicate the 95% confidence interval. The horizontal black 
lines represent the estimated value of Moran’s I under the null hypothesis of no phylogenetic 
autocorrelation. The red and blue colored bars indicate significant positive and negative autocorrelation, 
respectively; whilst, the black colored bars indicate a non-significant autocorrelation.  



Supplementary Figures 
 

 302 

 
Supplementary Figure 3.19. Phylogenetic correlograms for the difference between the thermal traits 
estimated from physiology data (TTp) and occurrence data (TTo) in marine phytoplankton. Estimates of 
TTp were obtained from CTMI fitting (indicated by an asterisk) and published literature, whilst estimates of 
TTo were derived from annual average SST and seasonal extreme SST (indicated by an asterisk). These 
were merged and matched up by species, resulting to four sets of datasets: (1) TTp *  and TTo  (A – D), (2) 
TTp *  and TTo* (E – H), (3) TTp   and TTo (I – L), and (4)  TTp  and TTo * (M – P). These datasets were used 
to compute for the difference in optimal temperature (DOT), cold tolerance limit (DCL), heat tolerance limit 
(DHL), and thermal range (DTR). The solid black lines indicate the Moran’s I index autocorrelation, and 
the dashed black lines indicate the 95% confidence interval. The horizontal black lines represent the 
estimated value of Moran’s I under the null hypothesis of no phylogenetic autocorrelation. The red and 
blue colored bars indicate significant positive and negative autocorrelation, respectively; whilst, the black 
colored bars indicate a non-significant autocorrelation.   
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Supplementary Figure 3.20. Phylogenetic correlograms for sensitivity to cold temperature (Smin; A and 
C), sensitivity to warm temperature (Smax; B and D), warming exposure (WR; E – L), and warming 
vulnerability (V; M – T) in marine phytoplankton. The estimates were obtained from CTMI-derived dataset 
(indicated by an asterisk) and published dataset. The warming rate and vulnerability were computed 
based on different climate scenarios (i.e. RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5). The solid black 
lines indicate the Moran’s I index autocorrelation, and the dashed black lines indicate the 95% confidence 
interval. The horizontal black lines represent the estimated value of Moran’s I under the null hypothesis of 
no phylogenetic autocorrelation. The red and blue colored bars indicate significant positive and negative 
autocorrelation, respectively; whilst, the black colored bars indicate a non-significant autocorrelation.   
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Supplementary Figure 3.21. Temperature limits and ranges in marine phytoplankton species estimated 
from     physiology (blue) and occurrence (red) data (TTp and TTo, respectively). Estimates of TTp were 
obtained from CTMI fitting (indicated by an asterisk) and published literature, whilst estimates of TTo were 
derived from annual average SST and seasonal extreme SST (indicated by an asterisk). These data were 
merged and matched up by species, resulting to four sets of datasets: (1) TTp *  and TTo  (A), (2) TTp *  
and TTo* (B), (3) TTp   and TTo (C), and (4)  TTp  and TTo * (D). The point represents the optimal 
temperature. The bars indicate the range between cold and heat tolerance limits. Species are ranked in 
ascending order of optimal temperature.  
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Supplementary Figure 4.1. Growth of non-toxic (A – C) and potentially toxic (D – F) strains of marine 
phytoplankton over time (in days) across all assay temperatures in the plate-based experiments. The 
points represent the phytoplankton biomass that were indirectly measured using optical density (OD660), 
which were quality controlled. The red points represent the omitted data points and the black points 
represent the data points that were in the subsequent analysis. Natural logarithm of OD660 estimates 
were fitted against time (in days) using linear regression to estimate the growth rate. The regression lines 
are indicated in black solid lines with 95% confidence interval in grey shading. 
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Supplementary Figure 4.2. Growth of non-toxic (A – C) and potentially toxic (D – F) strains of marine 
phytoplankton over time (in days) across all assay temperatures in the first tube-based experiments. The 
points represent the estimates of phytoplankton biomass that were indirectly measured using in vivo 
fluorescence. Natural logarithm of fluorescence estimates were fitted against time (in days) using linear 
regression to estimate the growth rate. The regression lines are indicated in black solid lines with 95% 
confidence interval in grey shading.  
 
  



Supplementary Figures 
 

 307 

 
Supplementary Figure 4.3. Growth of non-toxic (A – C) and potentially toxic (D – F) strains of marine 
phytoplankton over time (in days) across all assay temperatures in the second tube-based experiments 
during the acclimatisation. The points represent the estimates of phytoplankton biomass that were 
indirectly measured using in vivo fluorescence. Natural logarithm of fluorescence estimates were fitted 
against time (in days) using linear regression to estimate the growth rate. The regression lines are 
indicated in black solid lines with 95% confidence interval in grey shading.  
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Supplementary Figure 4.4. Growth of non-toxic (A – C) and potentially toxic (D – F) strains of marine 
phytoplankton over time (in days) across all assay temperatures in the second tube-based experiments 
after the acclimatisation. The points represent the estimates of phytoplankton biomass that were indirectly 
measured using in vivo fluorescence. Natural logarithm of fluorescence estimates were fitted against time 
(in days) using linear regression to estimate the growth rate. The regression lines are indicated in black 
solid lines with 95% confidence interval in grey shading.  
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Supplementary Figure 4.5. Variation in thermal traits estimated from the different non-linear functions 
(equ04 – equ16; refer to Table 4.3 for description) used to fit growth rates against temperature obtained 
in plate- and tube-based growth experiments. The circles indicate the mean estimates of the thermal 
traits and the error bars indicate the standard error of the mean. The horizontal lines indicate the average 
trait values weighted by BIC rank.  
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Supplementary Figure 6.1. Model performance of deep learning models used to classify species in 
pairwise mixed cultures incubated at 15 °C. The line plots showing the cross-entropy loss and 
classification accuracy over epochs for the training (blue) and validation (red) datasets.  
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Supplementary Figure 6.2. Model performance of deep learning models used to classify species in 
pairwise mixed cultures incubated at 20 °C. The line plots showing the cross-entropy loss and 
classification accuracy over epochs for the training (blue) and validation (red) datasets.  
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Supplementary Figure 6.3. Model performance of deep learning models used to classify species in 
pairwise mixed cultures incubated at 25 °C. The line plots showing the cross-entropy loss and 
classification accuracy over epochs for the training (blue) and validation (red) datasets.  
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Supplementary Figure 6.4. Confusion matrix heat map showing the frequency of correct and incorrect 
classification of species in pairwise mixed-species cultures incubated at 15 °C.   
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Supplementary Figure 6.5. Confusion matrix heat map showing the frequency of correct and incorrect 
classification of species in pairwise mixed-species cultures incubated at 20 °C.   
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Supplementary Figure 6.6. Confusion matrix heat map showing the frequency of correct and incorrect 
classification of species in pairwise mixed-species cultures incubated at 25 °C.   
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Supplementary Figure 6.7. Growth of non-toxic and potentially toxic dinoflagellates over time in 
monocultures and co-cultures across three assay temperatures. The points represent the total biomass 
(pg C). Natural logarithm of the total biomass estimates were fitted against time (in days) using linear 
regression to estimate the growth rate in monocultures and co-cultures (A and B, respectively). The 
regression lines are indicated in black solid lines with 95% confidence interval in grey shading. 
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Supplementary Figure 6.8. Significant difference in mean estimates of growth rates of non-toxic and 
potentially toxic dinoflagellates in monocultures between paired groups based on post hoc Tukey tests for 
different analyses (see Table 1 for description). Variation in the mean estimates between paired groups of 
temperature treatments (15, 20, 25 °C), species (1 = Prorocentrum sp., 2 = Prorocentrum micans, 3 =  
Alexandrium tamutum, 4 = Prorocentrum minimum, 5 = Prorocentrum lima, and 6 =  Alexandrium 
minutum), genus (1 = Prorocentrum and 2 = Alexandrium), and toxicity (1 = non-toxic and 2 = potentially 
toxic) are presented. Each point indicates a mean estimate difference with error bar represents the lower 
and upper limits, colored red indicates significant difference at 95% confidence interval whilst colored 
blue indicate non-significance. Paired groups with significant difference are labelled.  
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Supplementary Figure 6.9. Significant difference in mean estimates of growth rates of non-toxic and 
potentially toxic dinoflagellates in co-cultures between paired groups based on post hoc Tukey tests for 
different analyses (see Supplementary Table 5.2 for description) using the filtered datasets.  Variation in 
the mean estimates between paired groups of temperature treatments (15, 20, 25 °C), species (1 = 
Prorocentrum sp., 2 = Prorocentrum micans, 3 =  Alexandrium tamutum, 4 = Prorocentrum minimum, 5 = 
Prorocentrum lima, and 6 =  Alexandrium minutum), genus (1 = Prorocentrum and 2 = Alexandrium), and 
toxicity (1 = non-toxic and 2 = potentially toxic) are presented. Each point indicates a mean estimate 
difference with error bar represents the lower and upper limits, colored red indicates significant difference 
at 95% confidence interval whilst colored blue indicate non-significance. Paired groups with significant 
difference are labelled.  
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Supplementary Figure 6.10. Significant difference in mean estimates of relative growth rates of non-
toxic and potentially toxic dinoflagellates between paired groups based on post hoc Tukey tests for 
different analyses (see Supplementary Table 5.2 for description) using the filtered datasets.  Variation in 
the mean estimates between paired groups of temperature treatments (15, 20, 25 °C), species (1 = 
Prorocentrum sp., 2 = Prorocentrum micans, 3 =  Alexandrium tamutum, 4 = Prorocentrum minimum, 5 = 
Prorocentrum lima, and 6 =  Alexandrium minutum), genus (1 = Prorocentrum and 2 = Alexandrium), and 
toxicity (1 = non-toxic and 2 = potentially toxic) are presented. Each point indicates a mean estimate 
difference with error bar represents the lower and upper limits, colored red indicates significant difference 
at 95% confidence interval whilst colored blue indicate non-significance. Paired groups with significant 
difference are labelled.  
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Supplementary Figure 6.11. Significant difference in mean estimates of growth rates of non-toxic and 
potentially toxic dinoflagellates in co-cultures between paired groups based on post hoc Tukey tests for 
different analyses (see Supplementary Table 5.2 for description) using the full datasets.  Variation in the 
mean estimates between paired groups of temperature treatments (15, 20, 25 °C), species (1 = 
Prorocentrum sp., 2 = Prorocentrum micans, 3 =  Alexandrium tamutum, 4 = Prorocentrum minimum, 5 = 
Prorocentrum lima, and 6 =  Alexandrium minutum), genus (1 = Prorocentrum and 2 = Alexandrium), and 
toxicity (1 = non-toxic and 2 = potentially toxic) are presented. Each point indicates a mean estimate 
difference with error bar represents the lower and upper limits, colored red indicates significant difference 
at 95% confidence interval whilst colored blue indicate non-significance. Paired groups with significant 
difference are labelled.  
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Supplementary Figure 6.12. Significant difference in mean estimates of relative growth rates of non-
toxic and potentially toxic dinoflagellates between paired groups based on post hoc Tukey tests for 
different analyses (see Supplementary Table 5.2 for description) using the full datasets.  Variation in the 
mean estimates between paired groups of temperature treatments (15, 20, 25 °C), species (1 = 
Prorocentrum sp., 2 = Prorocentrum micans, 3 =  Alexandrium tamutum, 4 = Prorocentrum minimum, 5 = 
Prorocentrum lima, and 6 =  Alexandrium minutum), genus (1 = Prorocentrum and 2 = Alexandrium), and 
toxicity (1 = non-toxic and 2 = potentially toxic) are presented. Each point indicates a mean estimate 
difference with error bar represents the lower and upper limits, colored red indicates significant difference 
at 95% confidence interval whilst colored blue indicate non-significance. Paired groups with significant 
difference are labelled.  
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Supplementary Information 1.1. Review of the evolution and ecology of toxin production 
by phytoplankton 
 

ABSTRACT 
 
The effects of toxic algal blooms to humans and to other organisms and the potential impacts of 
climate change on toxic blooms in the future have generated ongoing interests in understanding 
the evolution and ecophysiology of toxin production. This trait is only known to a few 
phytoplankton species despite its advantage as anti-predation. Despite the rarity, phycotoxins 
are diverse in terms of chemical structure and property. In this review, we examined how the 
diversity of phycotoxins is associated with a wide diversity of toxic phytoplankton and infer 
patterns in phylogenetic distribution that may shed light to the origin and evolution of toxin 
production. We argued that the rarity and ubiquity of toxin production in the phytoplankton 
lineage may indicate non-essentiality of this trait for survival and the diversification may have 
rendered adaptive advantage to the producers. We also argued that the toxin production may 
have originated from a toxic ancestor that have evolved under selective pressure. We evaluated 
the existing evolutionary theories to supplement our arguments. Regardless of their evolutionary 
history, toxic species must have taken the advantage of keeping the complex and costly 
biosynthesis of toxins. We argued that toxins have multiple roles and have evolved in response 
to abiotic and biotic pressures to improve efficiency in cellular and ecological functions beyond 
defense against predators. Finally, we discussed how the multiplicity of roles of toxins may 
provide an ecophysiological advantage to toxic species in the changing environment. 
 
  
INTRODUCTION  
 
Phytoplankton are ecologically important as primary producers and biological carbon pump 
regulators (e.g. Behrenfeld et al., 2006; Falkowski, 2012; Falkowski and Oliver, 2007). However, 
some phytoplankton species may form harmful algal blooms (HAB) that are often produce 
toxins, posing a risk to public health, environment, and economy (Berdalet et al., 2015; 
Hallegraeff et al., 2004). Toxic blooms are already a global problem and their current distribution 
is alarming (Figure 1). Climate change may contribute to this trend by providing favourable 
conditions for toxic algae to occur  (Hallegraeff, 2010). It is likely that toxic blooms and their 
impacts may be exacerbated in the future where their duration, intensity, and frequency may 
increase in response to changes in the climate (Moore et al., 2008; Tatters et al., 2013). The 
well-documented effects of toxins to humans and to other organisms (Berdalet et al., 2016; 
Hallegrae, 2014; Lee et al., 2016) and the potential effect of climate change on toxic blooms in 
the future (Fu et al., 2012) have generated ongoing interests in the ecophysiology of toxic 
phytoplankton (e.g. Kellmann et al., 2010a; Perini et al., 2014; Ramsey et al., 1998; Stüken et 
al., 2011). However, research has focused on individual toxins and taxa, and we know relatively 
little about the overall evolutionary history and ecological role of toxicity, a surprisingly rare trait 
among phytoplankton taxa. 
 
The advantages of toxin production would lead to the expectation of the ubiquity of toxicity in 
phytoplankton. Surprisingly toxin production is only known for few phytoplankton species (150 
species in 50 genera listed in Moestrup et al. (2009)). Despite the rarity of toxicity in 
phytoplankton lineage, the toxins are diverse with distinct chemical structure, biosynthetic 
pathways and mode of actions (Rossini and Hess, 2010). The toxin diversity may be attributed 
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to its widespread distribution in phytoplankton lineage and may reveal putative physiological 
and ecological roles beyond their assumed primary role as a defense mechanism. However, 
there is no clear evidence to explain why some phytoplankton species are toxic while others are 
not. There are theories that attempt to explain the evolutionary history of toxins in phytoplankton 
(Kellmann et al., 2010; Murray et al., 2015), but are often challenged by lack of evidence. 
Despite recent progress in biosynthesis and molecular genetics of toxins in phytoplankton 
(Kellmann et al., 2010; Murray et al., 2011; Orr et al., 2013; Stüken et al., 2011), our knowledge 
of their origin and eco-evolutionary roles is limited (Hallegrae, 2014), and the link between the 
ecophysiological and evolutionary aspects of toxin production remain unclear despite its 
widespread implications.  
 
In this review, we summarised our current knowledge on the evolution and ecology of toxin 
production by phytoplankton, and provided ecophysiological insights into the expected change 
in toxic bloom formation with climate change, which brings issues to the debate whether toxin 
production may provide a competitive advantage in phytoplankton in the future climate 
scenarios. 
 

 
 
Figure 1. Global distribution of toxins detected during harmful algal events in the last 35 years (A –H). As 
shown, some toxins are reported frequently in the tropics and/or temperate, which entails different threats 
to the regions. This also presents diversity of toxins (I) and the total frequency of toxic blooms (J) reported 
in each site. It is alarming that toxic blooms appear to be more frequent globally (K), which may be 
attributed to anthropogenic activities (e.g. increased number of observations, cultural eutrophication, 
transport toxic species via ships’ ballast water, and translocation of shellfish stocks, and climate change 
(Anderson et al., 2012)). This figure is drawn from the data obtained from Harmful Algal Information 
System (HAIS), http://haedat.iode.org/. 
 

●●●●●●●●
●●

●
●
●

●●

●●●

●
●

A. Azaspiracid (AZA)

●●●●●●●●
●●●●●●●●●●●
●
●●●●●
●●●●●
●●●

●

●

●
●

●

●

●

●

●●
●●

●

C. Ciguatoxin (CGTX)

● ●
●●

●●●●●
●●●
●●
●
●●●●● ●●●●

●

●

●
●●

●
●●●●●●●●●●●●●●

●
●●●●●●●●

●

●

●

●●●

●●●●●●●●
●●

●
●
●

●

●
●●●●●●
●
●●

●
●

●

●
●●
●●●
●

●

●●●
●

●

●

●

●

●●●

●

●
●●
●

●

●

E. Domoic Acid (DA)

●
●
●●●●●
●
●●●

●●●●●●
●

●●
●●●●
●●●●●●●●●●●●●●●●●●

●

●

●●●

●

●

●●

●

●

●●●
●●●●●●●

●●●●●
●●●
●●
●●
●●
●●
●

●●●●●●●●●●●
●

●●●●
●
●●

●

●●●
●●●
●●
●
●●
●●●●●
●
●
●●
●●●
●
●
●●●
●
●

●●
●●
●
●
●●●

●

●●
●●

●

●
●

●
●●●

●

●●
●

●●
●●
●

●
●●●
●
●

●●●
●

●●●
●●●●
●

●

●

●

●

●

●

●

●

●●●
●●●●●●●●●●●●●●●●
●●●

●

G. Okadaic Acid/Dinophysotoxin (OA/DTX)

●●●●●●
●●●●●●●●●●●●●●●

●
●●
●●●●●●●●

●

●

B. Brevetoxin (BTX)

●
●

●

●
●●

●●●●●
●
●
●●

●

●

●

● ●●

●

●

D. Cyanotoxin (CYTX)

● ●●
●●●

●

●
●●●●●●●

●

●●●●●
●
●●
●●●●
●●●●
●●●●●●●●●●●●

●

●

●

●

●
●
●
●
●●
●
●

●

●

●

●

●●

●

●

●●

●
●●●●
●●●●
●

●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●●●
●●●●●●

●
●

●

●

F. Ichthyotoxin (ITX)  

●●●●●
●●●●●●●

●
● ●●●●

●●
●
●
●

●●
●
●

●●●●●●●●●
●●●●●●
●
●

●
●●●
●●

●●
●●●●●●●●

●
●

●

●●

●

●

●●●●●

●

●

●●

●●●●●●●●●●●●
●

●

●●●●●●●●●●●
●

●

●●●

●

●

●●●●●●●●

●

●

●

●

●

●

●●●

●

●

●

●●●●●●●
●

●●●
●
●
●

●●
●

●

●●●●

●

●●
●●●●

●
●●●
●●●

●
●●
●●●
●●
●●
●●
●

●

●

●
●

●

●●
●

●

●●●
●
●●●
●

●
●●●
●●●

●

●●●●
●

●

●●

●

●

●

●●
●●●●
●

●●●
●●●
●

●

●

●●●●
●
●

●

●

●
●

●●

●

●

●

●●
●●●●
●●●
●

●●●●●●●●●●●●●●●●

●

●
●●●●●

●

●●

●●
●
●

●

●
●

H. Saxitoxin (STX)

Frequency ● ● ● ●15 30 45 60

I. Toxin Diversity

1 2 3 4 5 6 7

J. Total Frequency

50 100 150 200

K. Time Series

0

50

100

150

200

1982 1987 1992 1997 2002 2007 2012 2017
Year

Fr
eq

ue
nc

y

Toxins
AZA

BTX

CGTX

CYTX

DA

ITX

OA/DTX

STX



Supplementary Information 

 327 

 
DIVERSITY OF PHYCOTOXINS 
 
Phycotoxins are complex compounds that are synthesized through the secondary metabolic 
pathways in microalgae and cyanobacteria. They are structurally diverse compounds, which 
have different biosynthetic pathways and distinct mode of actions (Table 1). Phycotoxins range 
from small to medium-sized compounds and weigh from ~300 to over 3000 Da (Rossini and 
Hess, 2010). They belong to diverse groups of chemical compounds (e.g. kainoid, 
perhydropurine, polyethers). Each group has numerous compounds that shared similar 
backbone and typically has several derivatives (Rasmussen et al., 2016; Rossini and Hess, 
2010). Homology in chemical structure among toxins may indicate shared elements of 
biosynthetic pathways (Wright and Cembella, 1998). Phycotoxins are not primary gene products 
(Wright and Cembella, 1998), but there are genes that are known to be involved in their 
biosynthesis. These genes code for the enzymes necessary for the biosynthesis of toxins that is 
assumed to be costly as the pathways utilise precursors derived from primary metabolic 
processes. Furthermore, phycotoxins have distinctive mode of actions that are linked to their 
toxicity (Hallegraeff, 2014). The better known molecular activities of phycotoxins are (1) 
alteration of ion channels (Cusick and Sayler, 2013; Ramsdell, 2007), (2) inhibition of 
phosphoprotein phosphatases (Garibo et al., 2013), and (3) modification of cytoskeletal 
elements (Allingham et al., 2007).  
 
Table 1. Chemical classification and mode of action of toxins produced by toxic phytoplankton. 
Information of this table is obtained from  Shimizu (1996), Cembella (2003), Moestrup et al. 
(2009) and Rossini and Hess (2010).  
Classification Toxins Mode of action Producers 
Kanoid  Domoic acid glutamate 

receptor agonist 
  

Pseudo-nitzschia spp. 
Nitzschia spp.  
Halamphora coffeiformis? 

Perhydropurine Saxitoxin  and  
derivatives 

Na+-channel blocker  Alexandrium spp. 
Pyrodinium bahamense 
Gymnodinium catenatum 
Anabaena spp. 
Aphanizomenon spp.  
Cylindrospermopsis spp. 
Lyngbya spp. 
Planktothrix spp. 
Oscillatoria spp. 

Linear 
polyethers 

Okadaic acid and 
derivatives  

Protein 
phosphatase inhibitor 

Dinophysis spp. 
Prorocentrum spp. 

Azaspracid hERG voltage-gated 
potassium channels 
inhibitor 

Azadinium spp.  
Amphidoma spp.   

Prymnesin Ca2+-channel effector Prymnesium parvum 
Ostreocin Na+/K+ ATPase disruptor Ostreopsis siamensis 
Palytoxin  ? Ostreopsis lenticularis 

Ostreopsis ovata 
Ostreopsis siamensis 
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Karlotoxin  ? Karlodinium australe 
Karlodinium conicum 
Karlodinium veneficum 

Scytophycin ? Scytonema spp. 
Tolytoxin Microfilament-

depolymerizing agent 
Tolypothrix conglutinata 

Debromoaplysiatoxin Protein kinase C activator Lyngbya majuscula 
Macrocyclic 
polyethers 

Pectenotoxin Actin depolymerizing 
agent 

Dinophysis fortii 
Dinophysis acuta 

Spirolide Muscarinic receptor  
or cholinesterase inhibitor 

Alexandrium ostenfeldii 

Amphidinolide ? Amphidinium spp. 
Caribenolide ? Amphidinium spp. 
Goniodomin ? Alexandrium spp. 
Prorocentrolide ? Prorocentrium lima 

Ladder-frame 
polyethers 
 

Ciguatoxin Na+-channel activator  Gambierdiscus toxicus 
Gambieric acid ? Gambierdiscus toxicus 
Maitotoxin Ca2+-channel effector Gambierdiscus toxicus 
Ostreotoxin Na+-channel activator? Ostreopsis lenticularis 
Cooliatoxin ? Coolia monotis 
Brevetoxin 
  

Na+-channel activator Karenia brevis,  
Karenia brevi-sulcata 
Chatonella marina,  
Chatonella antiqua 
Chatonella cf. verruculosa 

Yessotoxin Affects cyclic AMP Protoceratium reticulatum 
Lingulodinium polyedrum 

Brevisulcenal  ? Karenia brevisulcata 
Brevisulcatic acid  Karenia brevisulcata 
Gymnocin ? Karenia mikimotoi 

Open-chain 
polyketides 

Majusculamide Microtubulin assembly 
inhibitor 

Lyngbya majuscula 

Curacin Microtubulin assembly 
inhibitor 

Lyngbya majuscula 

Amphidinol ? Amphidinium spp. 
Amphiketide ? Amphidinium spp. 

Cyclic imine Gymnodimine ? Karenia selliformis 
Pinnatoxin  ? Vulcanodinium rugosum 

Prenylated 
amino acid 

Lyngbyatoxin Protein kinase C activator Lyngbya majuscula 

Oxylipins Bacillariolide Phospholipase 
A2 inhibitor 

Pseudo-nitzschia 
multiseries 

 
 
Understanding the structural and functional homology and biosynthesis of phycotoxins is a key 
in elucidating the phylogenetic origin of toxin production in phytoplankton. Here, we briefly 
describe the chemical structure, biosynthesis, and mode of the main groups of phycotoxins. 
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Domoic acid (DA) belong to kainoid, a class of non-proteigenous amino acids (Wood and Fryer, 
1998), which are produced exclusively by diatoms. Three DA derivative (i.e. isodomoic acids A, 
B, and C) have been identified in toxic diatoms (Holland et al., 2005; Kotaki et al., 2005), and 
most species do not produce all of them (Bajarias et al., 2006). Whilst it has been suggested 
that DA is synthesized from the fusion of two precursors derived from the citric acid cycle (i.e. 
glutamate) and isoprenoid pathways (i.e. geranyl diphosphate), later stage of its biosynthesis is 
still unclear.  A most recent study isolated six novel DA intermediates that could elucidate the 
biosynthesis of DA and possibly contribute to the identification of biosynthetic genes that have 
not yet been discovered in diatoms (Maeno et al., 2018). Its structure is homologous to 
glutamate (Ohfune and Tomita, 1982), and hence it can bind to glutamate receptors and 
activate the influx of calcium. This action results in nerve damage in humans, causing amnestic 
shellfish poisoning (Ramsdell, 2007).  
 
Saxitoxin (STX) is comprised of a tri-cyclic perhydropurine, a nitrogen-rich alkaloid (Gupta et al., 
1989). Despite its similarity to purines of primary metabolism, STX and its derivatives appears 
to be synthesized by a totally different pathway (Shimizu et al., 1984). It has been suggested 
that arginine, acetate, and methionine serve as the building blocks of this compound (Gupta et 
al., 1989; Shimizu et al., 1984). The biosynthesis of saxitoxin is catalysed by an enzyme coded 
from sxt genes which were found in toxigenic cyanobacteria and dinoflagellates (Moustafa et al., 
2009; Orr et al., 2013).  Similar to DA, STX also modifies ion channels specifically by binding to 
voltage-gated sodium channels. It blocks the opening and prevents the sodium ion flux across 
the membrane. This neurotoxin alters the propagation of action potential generated across the 
nerve membrane and thus prevents normal nerve function. STX is the causative agent for 
paralytic shellfish poisoning (PSP) (Cusick and Sayler, 2013).  
 
The majority of the toxic compounds in dinoflagellate and other ichthyotoxic phytoplankton are 
either linear, macrocyclic or ladder-frame polyethers. These polyether compounds are derived 
from the successive addition of acetate units to a growing polyketide chain, which is catalysed 
by the polyketide synthase (PKS) (Staunton and Weissman, 2001). It has been suggested that 
the polyketides in dinoflagellates are produced by modular type I PKS enzymes in certain cases 
with involvement of non-ribosomal peptide synthase (NRPS) (Kellmann et al., 2010).  
 
Azaspiracid (AZA) is a linear polyether toxin that inhibits hERG voltage-gated potassium 
channels by blocking the cytoplasmic mouth of the open pore in the cell (Twiner et al., 2012). 
This toxin is the cause of azaspiracid shellfish poisoning (AZP) (Rossini and Hess, 2010). 
 
Okadaic acid (OA) and dinophysistoxin (DTX) are also linear polyethers that are linked to 
diarrhetic shellfish poisoning (DSP) (Hackett et al., 2009; Quilliam et al., 1996).  These toxins 
are known to bind to the phosphatase proteins, specifically serine/threonine phosphatases, and 
inhibit the activity of the protein by hyperphosphorylation. The inhibition eventually modifies 
secretion of sodium ions and cell permeability of solutes (Garibo et al., 2013). Pectenotoxin 
(PTX) is a macrocyclic polyether and also associated with DSP (Amzil et al., 2007). Unlike OA 
and DTX, PTX binds to actin filaments and modify cytoskeletal elements in the cell (Allingham 
et al., 2007).  
 
Brevetoxins (BTX) and ciguatoxin (CGTX) are both known neurotoxins that belong to ladder-
frame polyether class. These neurotoxins are sodium channel activator. They bind to voltage-
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sensitive sodium channels and opening it that cause depolarization (Rossini and Hess, 2010). 
BTX cause neurotoxic shellfish poisoning (NSP) (Watkins et al., 2008), whilst CGTX is 
responsible for ciguatera fish poisoning (CFP) (Crump et al., 1999). 
 
Cyanotoxins (CYTX) are group of toxins produced exclusively by freshwater cyanobacteria. 
Unlike marine phycotoxins, freshwater toxins are more structurally diverse that distinctively 
include peptides, phosphate esters, and chlorinated diaryllactones. Also, they are more 
functionally diverse and widely known as either dermatotoxic, hepatotoxic, or neurotoxic.  
 
The diversity of phycotoxins in terms of structure, biosynthesis, and mode of actions may reveal 
interesting pattern in the phylogeny of toxin production in phytoplankton. First, this trait is rare, 
but ubiquitous in their lineage. Second, most toxins are exclusively found in specific groups (e.g. 
DA production by diatom), and few are produced by phytoplankton that are phylogenetically 
distant (e.g. STX production by cyanobacteria and dinoflagellates). These patterns provide 
insights to the heritability of this trait and its diversification to provide an adaptive advantage to 
the producers.  
 
 
ORIGIN AND EVOLUTION OF TOXINS IN PHYTOPLANKTON   
 
The diversity of phycotoxins is associated with a wide diversity of toxic phytoplankton lineage 
(Figure 2). Oddly, toxicity is a rare trait among phytoplankton taxa.  Toxicity may have arisen 
multiple independent times, however, there is some evidence that part of the diversity in toxins 
arise through subsequent diversification.  In some cases, the algae toxicity may not even be 
attributed to the algae itself, but to bacteria in its associated microbiome. Here, we summarised 
our current knowledge on the phylogenetic distribution and origin of toxins in phytoplankton, and 
explore the different theories that may suggest putative alternate roles of phycotoxins. 
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Figure 2. A phylogenetic tree of the phytoplankton within the major taxonomic group. The points 
represents toxic phytoplankton listed in IOC-UNESCO Taxonomic Reference List of Harmful 
Micro Algae (Moestrup et al., 2009). The colors represent the different toxins that are produced 
by the toxic phytoplankton at general. This phylogenetic relationship of phytoplankton is based 
on the molecular National Center for Biotechnology Information  (NCBI) databases constructed 
using iTOL v.3 developed by Letunic & Bork (2016).  
 
 
Rarity and ubiquity of toxin production     
 
Toxin production is only found for few phytoplankton species (currently, 150 species in 50 
genera listed in Moestrup et al. (2009)) but are present in most major phytoplankton groups. All 
major groups of phytoplankton, except for cholorphytes, contain at least one species that 
produces a toxin. Phycotoxins are mainly produced by dinoflagellates (82 species in 24 genera 
mostly from the genera Alexandrium, Gambierdiscus, Prorocentrum, Dinophysis, Karenia and 
Azadinium), diatoms (26 species in 3 genera, mostly from the genus Pseudo-nitzschia) and 
cyanobacteria (25 species in 13 genera, mostly from the genera Microcystis and 
Dolichospermum), and few representatives (≤ 8 species in ≤ 3 genera) of haptophytes, 
raphidophytes, dictyochophytes, and pelagophytes. Approximation of the species richness of  
toxic phytoplankton is undoubtedly underestimated as (1) many phytoplankton that belong to 
toxic taxa remain to be examined and (2) novel compounds that may have putative toxic effects 
are also continuously being discovered in phytoplankton, for example, derivatives of maitotoxin, 
pectenotoxin, and spirolides (e.g. Ajani et al., 2017; Amzil et al., 2007; Pisapia et al., 2017). It is 
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plausible that many more toxins will be discovered and more toxic phytoplankton will be 
identified as our scientific awareness and monitoring effort increases.  
 
 
Exclusivity and cross-taxa distribution of toxin production     
 
Toxin type appears to be a phylogenetically conserved trait among toxic phytoplankton. For 
instance, DA production is exclusively found in toxic diatoms. Whilst, production of STX is found 
in the cyanobacteria and dinoflagellate lineage. In cyanobacteria, it is found in Cylindrospermum 
and Phormidium, whilst in dinoflagellates, this trait is shared by Alexandrium, Pyrodinium, and 
Gymnodinium within the orders Gonyaulacales and Gymnodiniales. On the other hand, most 
polyether toxins producers exclusively belong to dinoflagellates. Among the dinoflagellates 
toxins, AZA and BTX are exclusively found in the order Gonyaulacales and Gymnodiniales, 
respectively. OA/DTX production is shared by Prorocentrum, Dinophysis, Phalacroma, and 
Coolia within the order Prorocentrales, Dinophysiales, Peridiniales. CGTX production is known 
in Gambierdiscus and Fukuyoa within the order of Gonyaulacales and Peridiniales, respectively.  
 
There is no clear evidence to explain why some phytoplankton species or even strains of the 
same species are toxic while others are not. The pattern in the distribution of toxin production in 
phytoplankton lineage may give insights on the origin and evolution of phycotoxins.  
 
Heritability of toxin production     
 
The rarity of toxin production may suggest that this trait may not be essential for phytoplankton 
survival, and hence only a few species may have evolved to produce toxins. It is also plausible 
that toxin may not be produced by the phytoplankton, but by the co-cultured bacteria. This co-
cultured bacteria theory is supported by the evidence from several studies on saxitoxin 
biosynthesis in dinoflagellates (Kodama et al., 1988; Silva, 1990) but is challenged by some 
(Baker et al., 2003; Hold et al., 2001; Martins et al., 2003). Less support is given to this theory 
since the discovery of the sxt genes in dinoflagellates  (Russell J.S. Orr et al., 2013; Stüken et 
al., 2011). No evidence that DA can be autonomously produced by intracellular or isolated 
extracellular bacteria (Bates, 1998). However, it has been suggested that bacteria may play a 
role in the production of DA by toxic diatoms, but the link between DA production and 
physiology needs further investigations (Lelong et al., 2014).  The discovery of genes that code 
for enzymes which are essential for the biosynthesis of phycotoxin (Kimura et al., 2015; Russell 
J.S. Orr et al., 2013; Perini et al., 2014) may give us the certainty that toxin production is a 
heritable trait in phytoplankton.  
 
Diversification of toxin production     
 
The widespread distribution of toxicity in phytoplankton lineage may indicate that toxin may 
have diversified to provide an adaptive advantage to the producers, which lead to expectations 
of the perpetuity of toxicity and similarity of toxin profiles in all toxic strains of the same species. 
The conservatism and cross-taxa distribution of this trait may suggest that the recent toxic 
species may have acquired this trait from a toxic ancestor that may have undergone a 
convergent or divergent evolution. The convergent evolution theory postulates that production of 
toxin has a polyphyletic origin. For instance, STX biosynthesis occurred independently in the 
lineages of cyanobacteria and dinoflagellate, converging on the same toxic compound 
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(Cembella, 1998). However, this theory is challenged by the confirmation of 
multiple sxt homologues with a high sequence which suggest that convergent evolution of STX 
biosynthesis is unlikely (Orr et al., 2013). Also, the lack of evidence of their eco-evolutionary 
roles and selective pressure implies that convergence is unlikely to have happened (Orr et al., 
2013).  
 
The most established theory is the horizontal gene transfer (De la Cruz and Davies, 2000). It 
suggests that genes for biosynthesis of toxin originate from ancestral bacteria and introduce to 
toxic phytoplankton genome via horizontal gene transfer (HGT) event. For example, 
cyanobacteria and dinoflagellates obtained the STX biosynthetic genes from an ancestral 
bacteria via HGT event (Plumey, 2001), which is supported by the evidence that most of the sxt 
homologues in cyanobacteria have an origin in other bacterial genomes (Moustafa et al., 2009). 
It postulated that sxt genes identified in dinoflagellates have been introduced via HGT from a 
STX-producing cyanobacterial origin, which probably happened before the divergence of 
Alexandrium and Pyrodinium within the order Gonyaulacales, and some descendant species 
may have lost these genes (Russell J.S. Orr et al., 2013). Moreover, structural alignment of 28S 
rDNA sequences from diatoms, including toxic species, provides insights into the phylogeny of 
DA synthesis (Lundholm et al., 2002), which suggests that production of DA has either evolved 
independently many times, or the necessary genes have been laterally transferred, and that 
multiple losses have happened (Janson and Hayes, 2006). Furthermore, it has been observed 
that polyketide biosynthesis by type I PKS are found in a few bacteria (Broadhurst et al., 2003; 
Chen and Du, 2016; Moss et al., 2004), which implies that the biosynthetic genes in eukaryotes 
may have come from prokaryotes (Kellmann et al., 2010; Kroken et al., 2003). This bacterial 
origin theory suggests that genes for biosynthesis of polyethers toxins have been introduced to 
dinoflagellates genome via HGT, with the successive alteration that results to diverse 
polyketide-derived polyether compounds (Kellmann et al., 2010; Wright and Cembella, 1998).  
 
 
ROLES OF TOXIN PRODUCTION IN PHYTOPLANKTON 
 
Regardless of the origin of toxin production in phytoplankton, toxic species must have benefitted 
from keeping the complex and costly biosynthesis of toxins. Algal toxins have generally been 
considered as secondary metabolites that do not directly involved in the primary metabolism of 
the organism (Bates, 1998; Cembella, 1998; Wright and Cembella, 1998). They were once 
thought as waste products but were later given putative roles as they have costly biosynthesis 
and regulatory mechanism that may indicate that they have evolved to benefit the cell (Vining, 
1990). They were several hypotheses that have based their assumptions on the chemical 
properties, structural homology, and mode of action of toxins, which may suggest their putative 
ecophysiological functions. However, the functional significance of toxins remained ambiguous 
due to weak or lack of evidence. 
 
The toxic property of toxin may give us the intuition to attribute reduction of predation as 
its primary role. However, this hypothesis is challenged by the contrasting results of the 
effects of the toxin on many predators/grazers (Breier and Buskey, 2007; Koski et al., 
1999; Prince et al., 2006). Many toxic algae have other ecophysiological adaptations 
that are highly effective at reducing predation, such as the production of less costly 
metabolites (i.e. ROS and PUFA)  (Ianora et al., 2011) and chain formation (Selander et 
al., 2011). Some toxins are not harmful to the direct grazers that may have evolved to 
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ingest toxin-producing species. For instance, grazers may have mutated their voltage-
gated ion channels allowing them to ingest STX producers (Finiguerra et al., 2015) and 
to integrate the acquired toxins as their defense mechanism against their natural 
predators.  Furthermore, it is likely that toxicity is not related to the main function/s of the 
toxin. It is possible that toxins have physiological and ecological roles beyond defense 
against predators/grazers given that their production has been kept over long 
evolutionary periods despite their biosynthetic costs. Physiological roles of toxins may 
have evolved in response to stressful abiotic conditions to improve efficiency in nutrient 
acquisition and storage, excretion, osmoregulation, scavenging mechanisms, 
biosynthesis, structural organisation, and cell signaling.  Ecological roles of toxins may 
have evolved from the need for communication chemicals (semiochemicals) for biotic 
interaction to improve efficiency in mating, alarm signals, defense/offense mechanism, 
and symbiosis.  

 

Putative physiological roles  

Nutrient acquisition. Toxins may provide assistance in nutrient uptake during nutrient 
limitation. Recent evidence has shown that the presence of cyanobacterial toxins 
triggers other phytoplankton to secrete alkaline phosphatase that can be used by the 
toxic producers to maximise the uptake of inorganic phosphate (Bar-Yosef et al., 2010).  

Nutrient storage. Toxins may serve as a nutrient reserve for remobilization during nutrient 
limitation (Loeblich & Loeblich, 1984). It has been suggested that STX may perform as nitrogen 
storage since it known to have a N-rich structure (Cembella, 1998).  
 
Excretion. Toxin synthesis may provide an alternative pathway to dispense excess 
resources (Bates, 1998; Cembella, 1998). For instance, the structural feature of STX 
leads to a hypothesis that their biosynthesis may serve as a shunt to prevent NH4

+ 

toxicity in a high nutrient condition  (Cembella, 1998) and a mechanism to deposit 
excess N to the sediments (Wyatt and Jenkinson, 1997). Furthermore, DA production is 
postulated to dispense with excess photosynthetic energy when growth is no longer 
optimal (Bates, 1998), which is supported by the hypothesis that phosphorylation-
derived ATP is not used for primary production during biosynthesis of DA  (Pan et al., 
1996).  

Osmoregulation. Toxins may regulate the osmotic pressure to maintain homeostasis in 
toxic species. DA may serve as an osmolyte in response to increasing salinity (Bates, 
1998) as suggested by its chemical structure that is derived from amino acids (Savage 
et al., 2012). Furthermore, STX may block sodium channels to maintain sodium 
homeostasis and reduce salt stress in toxic phytoplankton (Soto-Liebe et al., 2012).  

Scavenging mechanism. Toxins may serve as an iron-scavenging molecule and 
deactivator of free intracellular iron in response to iron stress. This function has been 
suggested on the evidence that toxic cyanobacterial species have more iron uptake 
systems and the production of toxin appear to be regulated by the free intracellular iron 
(Utkilen and Gjølme, 1995). Also, toxins may also act as reactive oxygen species (ROS) 
scavengers in response to oxidative stress. Several studies have shown that toxin 
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production may protect the cell from oxidative damage due to excessive production of 
ROS (Alexova et al., 2011; Zilliges et al., 2011).   

Other intracellular processes.  Toxins may participate in other cellular processes. For 
example, polyether toxins may serve as signaling factors or cell regulators (Wright and 
Cembella, 1998). STX may play a role in the ancestral pathway of nucleic acid 
biosynthesis as suggested by their structural affinity with purine  (Cembella, 1998). STX 
may also have a functional role in chromosome structural organization as implied by 
their proximity to chromosomes (Anderson and Cheng, 1988). 

 
Putative ecological roles  
 
Mating.  Toxins may facilitate sexual reproduction in toxic phytoplankton species. For instance, 
STX is postulated to serve as sex pheromones, which is released in senescence via leakage, 
excretion, or cell lysis plausibly during the bloom decline (Wyatt and Jenkinson, 1997), as 
supported by experimental findings that toxin content per cell is maximal at exponential growth 
phase and declines at stationary phase (Prakash, 1967; White and Maranda, 1978). These 
toxins may have evolved to facilitate the success of mating by improving the ability of gametes 
to find each other and by allowing recognition of the correcting mating types (Wyatt and 
Jenkinson, 1997). Furthermore, the quanidium groups of STX may function as a surface 
recognition site for cell mating (Cembella, 1998).  

Defense/offense. Toxins, especially those that are known to be effective Na+ channel blockers, 
may serve as allomones that can be used for chemical defense by toxic phytoplankton species 
against predators (i.e. copepods, ciliates, and heterotrophic dinoflagellates) by deterring grazing 
and reducing grazer’s reproductive viability (Cembella, 1998).  
 
Chemical cues. Toxins may be used by toxic species as alarm pheromones. This is in response 
to the threat of grazing pressure and/or resource competition in order to warn conspecifics of 
the presence of danger and cooperatively reduce the risk of predation and competition.  
Moreover, STX may also have similar function to a compound linked to bioluminescence as 
suggested by their structural resemblance (Cembella, 1998). This may attract potential mate, 
lure prey, or scare predators. However, there is no evidence to support these hypotheses.   
 
Symbiosis. It is also plausible that toxins may act as synmones, where toxins benefit 
both the producers and recipients. For instance, toxic algal epiphytes may use their 
toxins to compete on the limited macro algal space more effectively with other epiphytes, 
and in return the toxins may provide the macroalgae a mechanism to deter herbivory. 

 
 
ECOPHYSIOLOGICAL ADVANTAGE OF TOXIN PRODUCTION IN THE CHANGING OCEAN 
 
Toxin production may be a plastic trait and is influenced by a number of abiotic factors such as 
temperature, pH, light, nutrients and biotic factors such as competition and grazing. It is likely 
that toxin production may arise from the interaction between abiotic and biotic pressures, and 
hence may serve multiple functions acting at intracellular and intercellular levels. This multi-
functionality of toxins may provide toxic species an ecophysiological advantage over non-toxic 
species, and have an overall positive feedback on their fitness in the changing environment. 
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For instance, the temperature is one of the most fundamental abiotic factors that may have a 
direct effect, or an indirect effect if growth and toxin production is uncoupled (Cembella, 1998). 
Temperature-dependent effect of toxin production is associated with species-specific growth 
rate, and hence production of toxins is dependent on the thermal tolerance of the species. 
Growth at the sub-optimal thermal range was observed to favor a high cell PSP toxin quota in 
Alexandrium  spp. (Usup et al., 1994), which may suggest that cellular nitrogen is more 
allocated to toxin synthesis than protein biosynthesis at this condition (Anderson et al., 1990). 
The same observation was found in Pseudo-nitzchia seriata where growth at lower temperature 
produce higher levels of cellular DA, but it is still unclear whether this is due to physiological 
stress at this condition (Bates, 1998). It is also observed that cellular OA/DTX content is 
increased in Prorocentrum lima at lower temperature which may be also attributed to a division 
rate rather an increase in production (Wright and Cembella, 1998). Furthermore, cell growth in 
Pseudo-nitzchia multiseries at higher temperature and light did increase the cellular DA content, 
which may suggest increase supply of photosynthetic energy to enhance DA production (Bates, 
1998). Some species produce toxin in response to stressful thermal conditions when growth is 
strongly inhibited (Aquino-Cruz, 2012). Long-term starvation allows toxic species to accumulate 
toxins (Lee et al., 2016), which can be induced when increased temperature limits their capacity 
to uptake nutrients (Sterner and Grover, 1998). Thermal plasticity of toxin production may have 
a positive (benefit) and negative (cost) outcomes to the producers at the intracellular level, and 
at the same time may place a benefit (positive externality) or a cost (negative externality) to 
other organisms at the intercellular level. Two ecological scenarios can be postulated to arise 
under non-optimal condition. First is that toxic species might reduce their production of the 
toxins to redirect their energy for cell growth. However, this could increase their vulnerability to 
grazing and competition; hence, could provide more resources to their enemies (i.e. 
grazers/predators or competitors). Second is that they might enhance their toxin production to 
influence their external environment. In this scenario, toxic species could exploit more resource 
and could better defend themselves against their enemies, however at the expense of high 
metabolic cost. Both scenarios have a potential implication on how toxin production could 
influence the structure and function of marine ecosystems in the future climate scenario.  
 
 
CONCLUSION 
 
 
Further work is needed to address the following questions: (1) How does toxigenicity spread in 
phytoplankton lineage? (2) How toxin production responds to individual and combined effects of 
biotic and abiotic pressures? (3) How toxin production influences the structure and function of 
the aquatic ecosystem? The “omics” technology (i.e. genomics, transcriptomics, proteomics, 
metabolomics, metagenomics) is a promising tool to elucidate the biosynthesis and regulation of 
toxins in phytoplankton and may shed light on the origin and evolutionary history of toxin 
production. This technology can also be applied to study the ecophysiological dynamics of toxin 
production which may lead to a new understanding in the evolution and ecology of toxic 
phytoplankton species.   
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Supplementary information 2.1. R packages used in the data processing and 
analyses.  
 

1. Provoost P, S Bosch. 2019 robis: R Client to access data from the OBIS 
API.  

2. Chamberlain S, Barve V, Mcglinn D, Oldoni D. 2019 rgbif: Interface to the 
Global Biodiversity Information Facility API. See https://cran.r-
project.org/package=rgbif. 

3. Chamberlain S et al. 2018 taxize: Taxonomic information from around the 
web. R Packag. version 0.9.3.  

4. Broennimann O, Di Cola V, Guisan A. 2018 ecospat: Spatial Ecology 
Miscellaneous Methods.  

5. Samuel Bosch. 2018 sdmpredictors: Species Distribution Modelling 
Predictor Datasets.  

6. Harrell Jr FE, with contributions from Charles Dupont, many others. 2019 
Hmisc: Harrell Miscellaneous.  

7. Hijmans RJ. 2017 geosphere: Spherical Trigonometry.  
8. Canty A, Ripley BD. 2019 boot: Bootstrap R (S-Plus) Functions.  
9. Bates D, Mächler M, Bolker B, Walker S. 2015 Fitting Linear Mixed-Effects 

Models Using lme4. J. Stat. Softw. 67, 1–48. (doi:10.18637/jss.v067.i01) 
10. Wood S. 2019  Mixed GAM Computation Vehicle with Automatic 

Smoothness Estimation. 
11. Bartoń K. 2019 MuMIn: Multi-Model Inference.  
12. Hartig F. 2019 DHARMa: Residual Diagnostics for Hierarchical (Multi-

Level / Mixed) Regression Models.  
13. Wickham H. 2017 tidyverse: Easily Install and Load the ‘Tidyverse’.  
14. Hijmans RJ. 2019 raster: Geographic Data Analysis and Modeling.  
15. Bivand R, Lewin-Koh N. 2019 maptools: Tools for Handling Spatial 

Objects.  
16. Lüdecke D. 2018 ggeffects: Tidy Data Frames of Marginal Effects from 

Regression Models. J. Open Source Softw. 3, 772. 
(doi:10.21105/joss.00772) 

17. Wickham H. 2016 ggplot2: Elegant Graphics for Data Analysis. Springer-
Verlag New York. See https://ggplot2.tidyverse.org. 

18. Arnold JB. 2019 ggthemes: Extra Themes, Scales and Geoms for 
‘ggplot2’.  

19. Robinson D, Hayes A. 2019 broom: Convert Statistical Analysis Objects 
into Tidy Tibbles.  

20. Wilke CO. 2019 cowplot: Streamlined Plot Theme and Plot Annotations for 
‘ggplot2’. 
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Supplementary information 2.2. Longhurst provinces code and description.   
 
Code 
  

Description 
  

BPLR Polar - Boreal Polar Province (POLR) 
ARCT Polar - Atlantic Arctic Province 
SARC Polar - Atlantic Subarctic Province 
NADR Westerlies - N. Atlantic Drift Province (WWDR) 
GFST Westerlies - Gulf Stream Province 
NASW Westerlies - N. Atlantic Subtropical Gyral Province (West) (STGW) 
NATR Trades - N. Atlantic Tropical Gyral Province (TRPG) 
WTRA Trades - Western Tropical Atlantic Province 
ETRA Trades - Eastern Tropical Atlantic Province 
SATL Trades - South Atlantic Gyral Province (SATG) 
NECS Coastal - NE Atlantic Shelves Province 
CNRY Coastal - Canary Coastal Province (EACB) 
GUIN Coastal - Guinea Current Coastal Province 
GUIA Coastal - Guianas Coastal Province 
NWCS Coastal - NW Atlantic Shelves Province 
MEDI Westerlies - Mediterranean Sea, Black Sea Province 
CARB Trades - Caribbean Province 
NASE Westerlies - N. Atlantic Subtropical Gyral Province (East) (STGE) 
BRAZ Coastal - Brazil Current Coastal Province 
FKLD Coastal - SW Atlantic Shelves Province 
BENG Coastal - Benguela Current Coastal Province 
MONS Trades - Indian Monsoon Gyres Province 
ISSG Trades - Indian S. Subtropical Gyre Province 
EAFR Coastal - E. Africa Coastal Province 
REDS Coastal - Red Sea, Persian Gulf Province 
ARAB Coastal - NW Arabian Upwelling Province 
INDE Coastal - E. India Coastal Province 
INDW Coastal - W. India Coastal Province 
AUSW Coastal - Australia-Indonesia Coastal Province 
BERS Polar - N. Pacific Epicontinental Province 
PSAE Westerlies - Pacific Subarctic Gyres Province (East) 
PSAW Westerlies - Pacific Subarctic Gyres Province (West) 
KURO Westerlies - Kuroshio Current Province 
NPPF Westerlies - N. Pacific Polar Front Province 
NPSW Westerlies - N. Pacific Subtropical Gyre Province (West) 
TASM Westerlies - Tasman Sea Province 
SPSG Westerlies - S. Pacific Subtropical Gyre Province 
NPTG Trades - N. Pacific Tropical Gyre Province 
PNEC Trades - N. Pacific Equatorial Countercurrent Province 
PEQD Trades - Pacific Equatorial Divergence Province 
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WARM Trades - W. Pacific Warm Pool Province 
ARCH Trades - Archipelagic Deep Basins Province 
ALSK Coastal - Alaska Downwelling Coastal Province 
CCAL Coastal - California Upwelling Coastal Province 
CAMR Coastal - Central American Coastal Province 
CHIL Coastal - Chile-Peru Current Coastal Province 
CHIN Coastal - China Sea Coastal Province 
SUND Coastal - Sunda-Arafura Shelves Province 
AUSE Coastal - East Australian Coastal Province 
NEWZ Coastal - New Zealand Coastal Province 
SSTC Westerlies - S. Subtropical Convergence Province 
SANT Westerlies - Subantarctic Province 
ANTA Polar - Antarctic Province 
APLR Polar - Austral Polar Province 
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Supplementary Information 3.1. Description of physiology- and occurrence based 
thermal traits, their differences, thermal sensitivity, vulnerability to warming, thermal 
affinity, and thermal specialisation.  

Parameters Symbol
s Unit Description 

Physiology- 
based 
thermal 
traits (TTp) 

Optimal 
temperature 

Topt(*) 

 
° C temperature that corresponds to maximum growth 

rate (rmax, d-1); obtained from published literature or 
derived from Cardinal Temperature Model with 
Inflexion (CTMI; indicated by asterisk *), 
respectively 

Critical 
thermal 
minimum 

CTmin(*) ° C lowest temperature at which growth rate = 0; 
obtained from published literature or CTMI-derived 
(indicated by asterisk *), respectively 

Critical 
thermal 
maximum 

CTmax(*) ° C highest temperature at which growth rate = 0; 
obtained from published literature or CTMI-derived 
(indicated by asterisk *), respectively 

Fundamenta
l thermal 
niche 

FTN (*) ° C physiological range of tolerance to temperature in 
the absence of biotic interactions and is derived by 
the difference between CTmax(*) and CTmin(*) ; 
obtained from published literature or CTMI-derived 
(indicated by asterisk *), respectively 

Occurrence- 
based 
thermal 
traits (TTo) 

Lower 
thermal limit 

LTL(*) ° C the lowest temperature experienced by a species 
across its geographic range, and is derived from 
the 5th percentiles of average annual SST and long-
term minimum SST (indicated by asterisk *), 
respectively 

Upper 
thermal limit 

UTL(*) ° C the highest temperature experienced by a species 
across its geographic range, and is derived from 
the 95th percentiles of average annual SST and 
long-term maximum SST (indicated by asterisk *), 
respectively 

Thermal 
midpoint 

TM(*) ° C midpoint between the lower and upper thermal 
limits derived from annual average and seasonal 
extreme SST (indicated by asterisk *), respectively; 
central tendency of the realised thermal distribution 
of the species and is considered a proxy for optimal 
temperature for the ecological success of the 
species 

Realised 
thermal 
niche 

RTN(*) ° C physiological range of tolerance to temperature in 
the presence of biotic interactions 
RTN = UTL – LTL 
RTN* = UTL* – LTL* 

Difference 
between 
physiology- 
and 
occurrence- 
based 
thermal 
traits  

Difference in 
optimal 
temperature 

DOT 

 
° C a measure of the ability of species to thrive in 

optimal thermal conditions than estimated by 
physiology 
DOT1 = Topt – TM  
DOT2 = Topt – TM* 
DOT3 = Topt* – TM  
DOT4 = Topt* – TM* 

Difference in 
cold 
tolerance 
limit 

DCL 
 

° C a measure of the ability of species to thrive in 
colder conditions than estimated by physiology 
DCL1 = CTmin – LTL  
DCL2= CTmin – LTL* 
DCL3 = CTmin* – LTL  
DCL4= CTmin*– LTL* 

Difference in 
heat 
tolerance 
limit 

DHL 
 

° C a measure of the ability of species to thrive in hotter 
conditions than estimated by physiology 
DHL1 = CTmax – UTL  
DHL2 = CTmax – UTL* 
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DHL3 = CTmax*– UTL  
DHL4= CTmax* – UTL* 

Difference in 
thermal 
range 

DTR 
 

° C a measure of the congruence in the thermal 
tolerances obtained from the two approaches 
DTR1 = FTN – RTN 
DTR2 = FTN – RTN* 
DTR3 = FTN* – RTN 
DTR4 = FTN*– RTN* 

Thermal 
sensitivity 
and 
warming 
vulnerability 

Sensitivity to 
cold 
temperature  

Smin(*) ° C proximity between the species critical thermal 
minimum (CTmin) and the minimum ambient sea 
surface temperature extremes it experiences in its 
local habitat (Hmin). 
Smin = CTmin – Hmin  
Smin* = CTmin* – Hmin 

Sensitivity to 
warm 
temperature  

Smax(*) ° C proximity between the species critical thermal 
maximum (CTmax) and the maximum ambient sea 
surface temperature extremes it experiences in its 
local habitat (Hmax). 
Smax = CTmax – Hmax  
Smax* = CTmax* – Hmax 

 Vulnerability 
to warming 

V (*) yea
r 

a function of inherent sensitivity to warm 
temperature (Smax(*)) and warming exposure (WR) 
in a given location; this describes the number of 
years prior the local temperatures are expected to 
exceed CTmax in a given location; warming 
vulnerability (Vi,j) of a species in location i based on 
climate scenario j (i.e. RCP 2.6, RCP 4.5, RCP 6.0, 
and RCP 8.5) is expressed as: 
 
𝑉!,# =	𝑆$%&! 𝑊𝑅!,#⁄  
 
where WRi,j is the warming exposure in a location i 
based on the RCP climate scenario j, which is 
expressed as: 
 
𝑊𝑅!,#

=	

𝐻$%&"#$#!,& −	𝐻$%&!
2050 −	[(2014 − 2000)/2] +

𝐻$%&"'##!,& −	𝐻$%&"#$#!,&
2100 − 	2050

2  
 
where 𝐻$%&! 	is the average SST of the warmest 
month recorded in 2000 – 2014 in location i, and 
𝐻$%&"#$#!,&  and 𝐻$%&"'##!,&  are the SST of the 
warmest month predicted in the year 2050 and 
2010 based on the RCP climate scenario j 

Thermal 
affinity and 
specialisatio
n 

Thermal 
affinity 

TA(*) au degree of affinity of species to warm or cold 
temperatures relative to the average affinity of all 
species in the pool; thermal affinity of species s is 
expressed as:  
 

𝑇𝐴' = 	𝑙𝑜𝑔 :
(𝑇𝑀∗	

')* 𝑇+,-(<
(𝑇𝑀∗	

&̅)* 𝑇+,-)*⁄ = 

 
where 𝑇𝑀∗	

' and 𝑇+,-( are the extreme thermal 
midpoint (TM*) and thermal optimum (Topt(*))  of 
species s, respectively, whereas  𝑇𝑀∗	

&̅ and 𝑇+,-)*  
are the average TM* and Topt(*) of all species in the 
pool  
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Thermal 
specialisatio
n 

TS(*) au degree of species thermal tolerance relative to the 
average tolerance of all species in the pool; thermal 
specialisation of species s is expressed as: 	 
 

𝑇𝑆' = 	𝑙𝑜𝑔 :
(𝑅𝑇𝑁∗	

')* 𝐹𝑇𝑁'⁄
(𝑅𝑇𝑁∗	

&̅)* 𝐹𝑇𝑁&̅⁄ = 

 
where 𝑅𝑇𝑁∗	

' and 𝐹𝑇𝑁' are the extreme realised 
and fundamental thermal niche (RTN* and FTN(*)) 
of species s, respectively, whereas  𝑅𝑇𝑁∗	

&̅ and 
𝐹𝑇𝑁&̅ are the RTN* and FTN(*) of all species in the 
pool 

Note: au is arbitrary unit       
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Supplementary Information 3.2. List of equations used to fit growth or metabolic 
rates (r) against temperature (T). Abbreviations:  a – f are the model coefficients; R is 
the universal gas (Boltzmann) constant; Tref is reference temperature; CTmin is the 
critical thermal minimum; CTmax is the critical thermal maximum; Topt is the thermal 
optimum; rmax is the maximum growth rate.  
ID Formula References 

equ04 
𝑟 = 𝑎 ∙ 𝑒𝑥𝑝 (

−𝑏
𝑅 ∙ 𝑇- − 𝑐 ∙ 𝑒𝑥𝑝 (

−𝑑
𝑅 ∙ 𝑇- 

 
[1] citing [2,3] 

equ05 
𝑟 =

𝑎 ∙ 𝑇 ∙ 𝑒𝑥𝑝 0 −𝑏𝑅 ∙ 𝑇1

1 + 𝑒𝑥𝑝 0−𝑐𝑅 1 ∙ 𝑒𝑥𝑝 0
−𝑑
𝑅 ∙ 𝑇1

 

 

[1] citing [2,4] 

equ06 𝑟 = 	
𝑎 ∙ 0 𝑇

298.151 ∙ 𝑒𝑥𝑝 :
𝑏
𝑅 ∙ 0

1
298.15 −

1
𝑇1;

1 + 𝑒𝑥𝑝 <𝑐𝑅 ∙ 0
1
𝑑 −

1
𝑇1= + 𝑒𝑥𝑝 >

𝑒
𝑅 (

1
𝑓 −

1
𝑇-@

 

 

[1] citing [5] 

equ07 𝑟 = 	
𝑎 ∙ 0 𝑇

293.151 ∙ 𝑒𝑥𝑝 :
𝑏
𝑅 ∙ 0

1
293.15 −

1
𝑇1;

1 + 𝑒𝑥𝑝 <𝑐𝑅 ∙ 0
1
𝑑 −

1
𝑇1=

 

 

[1] citing [6,7] 

equ08 𝑟 = 𝑎 ∙ 𝑒𝑥𝑝 B−0.5 ∙ :
D𝑇 − 𝑇!"#E

𝑏 ;
$

F [1] citing [2,8] 

equ09 
𝑟 = 	𝑎 ∙ 𝑒𝑥𝑝 B−0.5 ∙ :

𝑎𝑏𝑠H𝑇 − 𝑇!"#I
𝑏 ;

%

F 

 

[1] citing [6] 

equ10 
𝑟 = 	𝑎 ∙ exp	(𝑐 ∙ 𝑇) O1 − (

𝑇 − 𝑇!"#
𝑏 -

$

P 

 

[1] citing 
[9,10] 

equ11 
𝑟 = 𝑎 + 𝑏 ∙ 𝑇 + 𝑐 ∙ 𝑇$ 

 
[1] citing [6] 

equ12 
𝑟 = 	

1
1 + (𝑎 + 𝑏 ∙ 𝑇 + 𝑐 ∙ 𝑇$) 

 

[1] citing 
[6,11] 

equ13 𝑟 = [𝑎 ∙ (𝑇 − 𝐶𝑇&'()]$ ∙ D1 − 𝑒𝑥𝑝T𝑏 ∙ (𝑇 − 𝐶𝑇&)*)UE
$ 

 
[1] citing [12] 

equ14 
𝑟 = 	𝑎 ∙ {1 − 𝑒𝑥𝑝[−𝑏 ∙ (𝑇 − 𝐶𝑇&'()]} ∙ {1 − 𝑒𝑥𝑝[−𝑐 ∙ (𝐶𝑇&)* − 𝑇)]} 

 
[1] citing [13] 

equ15 
𝑟 = 	 𝑟&)* ∙ X𝑠𝑖𝑛 O𝜋 ∙ (

𝑇 − 𝐶𝑇&'(
𝐶𝑇&)* − 𝐶𝑇&'(

-
)

P\
+

 

 
[1] citing [14] 
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equ16 

]
𝑟 = 0		, 𝑖𝑓	𝑇 < 𝐶𝑇&'(

𝑟 = 	 𝑟&)* ∙ 𝜃, 𝑖𝑓	𝐶𝑇&)* 	≤ 	𝑇 ≤ 𝐶𝑇&)*
𝑟 = 0		, 𝑖𝑓	𝑇 > 𝐶𝑇&)*

 

 

with: 

 

𝜃 = 		
(𝑇 − 𝐶𝑇&)*) ∙ 	 (𝑇 − 𝐶𝑇&'()	$	

T𝑇,-. − 𝐶𝑇&'(U ∙ 	 DT𝑇,-. − 𝐶𝑇&'(U ∙ T𝑇 − 𝑇,-.U −	T𝑇,-. − 𝐶𝑇&)*U ∙ T𝑇,-. + 𝐶𝑇&'( − 2𝑇UE
 

 

under the condition: 

 

𝑇,-. > 	
𝐶𝑇&'( + 𝐶𝑇&)*	

2  

 

[15] 
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Supplementary Information 3.3. Estimated divergence time (in million years ago, 
MYA) of major taxon in marine phytoplankton.  
Taxon name Taxonomic rank Estimated divergence time (MYA) References  
Alexandrium genus 77 [1] 
Aphanothece genus 927 [2] 
Bacillariophyceae class 75 [3] 
Bacillariophyta phylum 139.4 [4] 
Bacillariophyta phylum 183 [3] 
Bacillariophyta phylum 227.9 [5] 
Bacillariophyta phylum 201 [6] 
Bacillariophyta phylum 330 [7] 
Bacillariophyta phylum 380 [7] 
Blennothrix genus 150.3 [2] 
Brasilonema genus 93.1 [2] 
Calciodinellum genus 12 [8] 
Calothrix genus 1280.6 [2] 
Chlamydomonadales order 756.3 [9] 
Chlorophyta phylum 848.1 [5] 
Chlorophyta phylum 613 [10] 
Chlorophyta phylum 1574.7 [6] 
Chlorophyta phylum 1116.6 [9] 
Chlorophyta phylum 1030 [11] 
Chroococcus genus 652.6 [2] 
Cyanobacteria kingdom 931.8 [12] 
Cyanobacteria kingdom 1039 [13] 
Cyanobacteria kingdom 2686 [14] 
Cyanobacteria kingdom 2629.8 [15] 
Cyanobacteria kingdom 1720 [16] 
Cyanobacteria kingdom 2539.8 [6] 
Cyanobacteria kingdom 2594 [17] 
Cyanobacteria kingdom 2104.3 [2] 
Cylindrotheca genus 9 [3] 
Dinophyceae class 669 [18] 
Eukaryota kingdom 1558 [19] 
Eukaryota kingdom 1956 [20] 
Eukaryota kingdom 1545 [21] 
Eukaryota kingdom 1781.1 [5] 
Eukaryota kingdom 2002 [6] 
Eunotia genus 16 [3] 
Gonyaulacaceae family 180 [1] 
Haptophyceae class 800 [22] 
Haptophyceae class 805 [19] 
Haptophyceae class 520.9 [23] 
Haptophyceae class 341.5 [24] 
Haptophyceae class 675 [5] 
Haptophyceae class 870 [25] 
Haptophyceae class 1000 [25] 
Haslea genus 30 [3] 
Isochrysidales order 130 [22] 
Isochrysidales order 119.2 [23] 
Isochrysidales order 94.7 [24] 
Isochrysidales order 226.4 [5] 
Isochrysidales order 130 [25] 
Isochrysidales order 60 [25] 
Lyngbya genus 689 [2] 
Lyngbya genus 616 [2] 
Mamiellaceae family 66.1 [26] 
Mediophyceae class 141 [3] 
Merismopedia genus 792.1 [2] 
Navicula genus 15 [3] 
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Nitzschia genus 24 [3] 
Nitzschia genus 50 [3] 
Nitzschia genus 16 [3] 
Nodularia genus 154 [16] 
Nodularia genus 16 [16] 
Nodularia genus 41.1 [2] 
Nodularia genus 10.9 [2] 
Okeania genus 39.6 [2] 
Oscillatoria genus 892.2 [14] 
Oscillatoria genus 1653.1 [17] 
Oscillatoria genus 927 [2] 
Oscillatoriales order 2508.5 [14] 
Oscillatoriales order 2340.5 [15] 
Oscillatoriales order 1671.5 [6] 
Oscillatoriales order 2352.3 [17] 
Oscillatoriales order 2104.3 [2] 
Peridiniales order 136 [18] 
Phacotaceae family 175.7 [9] 
Phaeocystis genus 120 [22] 
Phormidium genus 689 [2] 
Prymnesiales order 200 [22] 
Pseudanabaena genus 927 [2] 
Pseudo-nitzschia genus 6.6 [27] 
Rivulariaceae family 1037 [14] 
Rivulariaceae family 1720 [16] 
Rivulariaceae family 1385.5 [17] 
Rivulariaceae family 1280.6 [2] 
Schizothrix genus 927 [2] 
Scytonema genus 246.7 [2] 
Scytonemataceae family 927 [2] 
Skeletonema genus 13 [3] 
Skeletonema genus 18.2 [28] 
Symploca genus 131.4 [2] 
Syracosphaeraceae family 195 [22] 
Syracosphaeraceae family 31.7 [23] 
Syracosphaeraceae family 44.1 [24] 
Syracosphaeraceae family 65 [25] 
Syracosphaeraceae family 20 [25] 
Thalassiosira genus 32 [3] 
Thalassiosira genus 29.8 [29] 
Thalassiosira genus 70.3 [28] 
Thalassiosirales order 74 [3] 
Thalassiosirales order 83.3 [28] 
root root 4290 [18] 
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Supplementary information 3.4. R packages used in the data processing and 
analyses.  
 
 

1. Wickham et al., (2019). Welcome to the tidyverse. Journal of Open Source 
Software, 4(43), 1686, https://doi.org/10.21105/joss.01686 

2. Low-Decarie E, Boatman TG, Bennett N, Passfield W, Gavalas-Olea A, Siegel 
P, Geider RJ (2017). “Predictions of response to temperature are contingent 
on model choice and data quality.”  

3. Samuel Bosch (2018). sdmpredictors: Species Distribution Modelling 
Predictor Datasets. R package version 0.2.8. https://CRAN.R-
project.org/package=sdmpredictors 

4. Robert J. Hijmans (2019). raster: Geographic Data Analysis and Modeling. R 
package version 3.0-7. https://CRAN.R-project.org/package=raster 

5. Provoost P, Bosch S (2019). “robis: R Client to access data from the OBIS 
API.” Ocean Biogeographic Information System. Intergovernmental 
Oceanographic Commission of UNESCO. R package version 2.1.8, <URL: 
https://cran.r-project.org/package=robis>. 

6. Chamberlain S, Barve V, Mcglinn D, Oldoni D, Desmet P, Geffert L, Ram K 
(2019). rgbif: Interface to the Global Biodiversity Information Facility API. R 
package version 1.4.0, <URL: https://CRAN.R-project.org/package=rgbif>. 

7. Chamberlain S, Boettiger C (2017). “R Python, and Ruby clients for GBIF 
species occurrence data.” PeerJ PrePrints. <URL: 
https://doi.org/10.7287/peerj.preprints.3304v1>. 
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10. Roger S. Bivand, Edzer Pebesma, Virgilio Gomez-Rubio, 2013. Applied 
spatial data analysis with R, Second edition. Springer, NY. http://www.asdar-
book.org/ 

11. Roger Bivand, Tim Keitt and Barry Rowlingson (2019). rgdal: Bindings for the 
'Geospatial' Data Abstraction Library. R package version 1.4-
7.https://CRAN.R-project.org/package=rgdal 

12. Olivier Broennimann, Valeria Di Cola and Antoine Guisan (2018). ecospat: 
Spatial Ecology Miscellaneous Methods. R package version 3.0. 
https://CRAN.R-project.org/package=ecospat 

13. Angelo Canty and Brian Ripley (2019). boot: Bootstrap R (S-Plus) Functions. 
R package version 1.3-23. 

14. Davison, A. C. & Hinkley, D. V. (1997) Bootstrap Methods and Their 
Applications. Cambridge University Press, Cambridge. ISBN 0-521-57391-2 

15. Frank E Harrell Jr, with contributions from Charles Dupont and many others. 
(2019). Hmisc: Harrell Miscellaneous. R package version 4.3-0. 
https://CRAN.R-project.org/package=Hmisc 

16. Robert J. Hijmans (2019). geosphere: Spherical Trigonometry. R package 
version 1.5-10. https://CRAN.R-project.org/package=geosphere 

17. David Robinson and Alex Hayes (2019). broom: Convert Statistical Analysis 
Objects into Tidy Tibbles. R package version 0.5.2. https://CRAN.R-
project.org/package=broom 
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O'Donnell, Jari Oksanen, Bastian Greshake Tzovaras, Philippe Marchand, 
Vinh Tran, Maëlle Salmon, Gaopeng Li, and Matthias Grenié. (2019) taxize: 
Taxonomic information from around the web. R package version 0.9.9. 
https://github.com/ropensci/taxize 

20. Jeffrey B. Arnold (2019). ggthemes: Extra Themes, Scales and Geoms for 
'ggplot2'. R package version 4.2.0. https://CRAN.R-
project.org/package=ggthemes 

21. Simon Garnier (2018). viridis: Default Color Maps from 'matplotlib'. R package 
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Supplementary information 6.1. ImageJ Macro script used to process the image 
data acquired in this study.  
 
 
 
 
 
 
 
 
 
 

path = "/Volumes/Seagate Backup Plus Drive/Competition_Experiment/Data/Temp15/20190418/” 
 
//setBatchMode(true); 
wells = getFileList(path); 
for (j = 0; j < wells.length; j++) { 
 input = path + "/" + wells[j]; 
 output = input; 
 list = getFileList(input); 
 for (i = 0; i < list.length; i++) { 
  filename = list[i]; 
  if (endsWith(list[i], "bmp")) { 
   action(input, output, filename); 
   } 
 } 
} 
//setBatchMode(false); 
 
function action(input, output, image) { 
    setBatchMode(true); 
    nameOfFile = File.getName(image); 
    dotIndex = indexOf(nameOfFile, "."); 
    nameOfFile = substring(nameOfFile, 0, dotIndex); 
    open(input + image); 
    run("Duplicate...", " "); 
 run("Enhance Contrast", "saturated=0.35"); 
 run("8-bit"); 
 run("Invert LUT"); 
 setAutoThreshold("MaxEntropy dark"); 
 run("Convert to Mask"); 
 run("Open"); 
 run("Fill Holes"); 
 run("Watershed"); 
 run("Set Measurements...", "area mean standard modal min centroid center perimeter 
bounding fit shape feret's integrated median skewness kurtosis area_fraction stack limit display 
redirect=None decimal=4"); 
 run("Analyze Particles...", "size=50-Infinity circularity=0.50-1.00 show=Outlines display 
exclude clear"); 
 selectWindow("Drawing of " + nameOfFile + "-1.bmp"); 
 run("Invert LUT"); 
 selectWindow(image); 
 run("Duplicate...", " "); 
 run("Add Image...", "image=" + "[Drawing of " + nameOfFile + "-1.bmp] x=0 y=0 
opacity=100 zero"); 
 run("Flatten"); 
 saveAs("Tiff", output + "/" + nameOfFile + ".tif"); 
 saveAs("Results", output + "/" + nameOfFile + ".csv"); 
 run("Close All"); 
} 
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