Role of silicon in the development of complex crystal shapes in coccolithophores

TitleRole of silicon in the development of complex crystal shapes in coccolithophores
Publication TypeJournal Article
Year of Publication2021
AuthorsLanger G, Taylor AR, Walker CE, Meyer EM, Ben Joseph O, Gal A, Harper GM, Probert I, Brownlee C, Wheeler GL
JournalNew Phytologist
Volume231
Pagination1845–1857
ISSN1469-8137
Keywordsbiomineralization, Calcification, coccolith, coccolithophore, evolution, rcc, RCC1178, RCC1181, RCC1456, RCC1460, RCC1461, RCC1477, RCC1800, RCC1801, RCC3777, RCC6506, silicon
Abstract

The development of calcification by the coccolithophores had a profound impact on ocean carbon cycling, but the evolutionary steps leading to the formation of these complex biomineralized structures are not clear. Heterococcoliths consisting of intricately shaped calcite crystals are formed intracellularly by the diploid life cycle phase. Holococcoliths consisting of simple rhombic crystals can be produced by the haploid life cycle stage but are thought to be formed extracellularly, representing an independent evolutionary origin of calcification. We use advanced microscopy techniques to determine the nature of coccolith formation and complex crystal formation in coccolithophore life cycle stages. We find that holococcoliths are formed in intracellular compartments in a similar manner to heterococcoliths. However, we show that silicon is not required for holococcolith formation and that the requirement for silicon in certain coccolithophore species relates specifically to the process of crystal morphogenesis in heterococcoliths. We therefore propose an evolutionary scheme in which the lower complexity holococcoliths represent an ancestral form of calcification in coccolithophores. The subsequent recruitment of a silicon-dependent mechanism for crystal morphogenesis in the diploid life cycle stage led to the emergence of the intricately shaped heterococcoliths, enabling the formation of the elaborate coccospheres that underpin the ecological success of coccolithophores.

URLhttps://onlinelibrary.wiley.com/doi/abs/10.1111/nph.17230
DOI10.1111/nph.17230