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SIGNIFICANCE STATEMENT 

One of the major challenges in viral ecology is the detection of viral-host interactions in 

complex communities, with the aim of assessing the impact of viruses in the populations 

of their host. Here we present the proof of concept that Virus fluorescence in situ 

hybridization (VirusFISH) can be used to visualize and monitor viral infection dynamics 

in natural occurring populations of Ostreococcus, a cosmopolitan picoeukaryote that form 

occasional blooms in nature. This technique can be easily implemented for other viral-

host systems, allowing to visualize their interaction at the single-cell level. 

 

 

ABSTRACT  

Ostreococcus is a cosmopolitan marine genus of phytoplankton found in mesotrophic and 

oligotrophic waters, and the smallest free-living eukaryotes known to date, with a cell 

diameter close to 1 µm. Ostreococcus has been extensively studied as a model system to 

investigate viral–host dynamics in culture, yet the impact of viruses in naturally occurring 

populations is largely unknown. Here, we used Virus Fluorescence in situ Hybridization 

(VirusFISH) to visualize and quantify viral-host dynamics in natural populations of 

Ostreococcus during a seasonal cycle in the central Cantabrian Sea (Southern Bay of 

Biscay). Ostreococcus were predominantly found during summer and autumn at surface 

and 50 m depth, in coastal, mid-shelf and shelf waters, representing up to 21% of the 

picoeukaryotic communities. Viral infection was only detected in surface waters, and its 

impact was variable but highest from May to July and November to December, when up 

to half of the population was infected. Metatranscriptomic data available from the mid-

shelf station unveiled that the Ostreococcus population was dominated by the species O. 



 
 

lucimarinus. This work represents a proof of concept that the VirusFISH technique can 

be used to quantify the impact of viruses on targeted populations of key microbes from 

complex natural communities.  
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INTRODUCTION 

Quantifying the in situ impact of viruses on their hosts is one of the major challenges in 

marine viral ecology, and requires the detection of both specific viruses and their hosts 

within complex natural communities. Due to the absence of a universal phylogenetic 

marker for viruses, this has been achieved through PCR amplification of conserved 

marker genes within specific viral families (Chen and Suttle, 1995; Larsen et al., 2008; 

Lehahn et al., 2014; Gran-Stadniczeñko et al., 2019), or through metagenomics (e.g. 

Mizuno et al., 2013; Roux et al., 2017). However, the identity of the viral host from 

metagenomic data can only be inferred based on the known host of cultured relatives, or 

by correlation with the presence of potential host sequences (Lima-Mendez et al., 2015; 

Nishimura et al., 2017). Other recently developed techniques to detect virus–host 

interactions in complex communities are digital droplet PCR (Lim et al., 2017), and 

single-cell genomics (Roux et al., 2014; Castillo et al., 2019). Additionally, 

metatranscriptomics have also been used to follow some infection dynamics (Zeigler 

Allen et al., 2017; Alonso-Sáez et al., 2018). Yet, the impact of viruses on their host 

populations, as the proportion of infected cells, is not directly measured by any of those 

techniques, even though it is crucial information to understand virus–host population 

dynamics.  

Promising alternatives to explore in situ viral-host interactions are phageFISH (Allers et 

al., 2013), and its variants direct-geneFISH (Barrero-Canosa et al., 2017), VirusFISH 

(Castillo et al., 2020), or single-molecule FISH (Vincent et al., 2021). Although their use 

in nature has been limited, phageFISH was recently used to pinpoint the host of an 

archaeal virus previously identified in an environmental metagenomic dataset (Hochstein 

et al., 2016) and to demonstrate viral lysis of an autotrophic key player in the Earth’s 

crust (Rahlff et al., 2020). Likewise, single-molecule FISH was recently used to quantify 



 
 

active viral infection in an induced Emiliania Huxleyi bloom during a mesocosm 

experiment (Vincent et al., 2021). 

Due to the mounting evidence of the role that viruses may play in phytoplankton bloom 

termination, quite a lot of attention has been paid to viruses of bloom forming species, 

like the coccolithophore Emiliania huxleyi (Wilson et al., 2002; Laber et al., 2018; Sheyn 

et al., 2018). Under high host cell abundances, such as those found in E. huxleyi blooms, 

the probability of encountering a virus with its host is high, which may result in a fast 

viral propagation through the host population (Suttle, 2000). By contrast, the impact of 

viruses on picoeukaryotic hosts that may form occasional blooms but are generally 

present at low abundances (Zingone, 1999; O’Kelly et al., 2003; Countway and Caron, 

2006) could be more challenging, and it has been little explored. A few studies have 

focused on the spatial and temporal dynamics of viruses targeting those occasional 

blooming phytoplankton species, particularly Micromonas (Cottrell and Suttle, 1991, 

1995; Zingone, 1999; Baudoux et al., 2015) but also Ostreococcus (Bellec et al., 2010). 

Nevertheless, these studies used either plaque assays or most probable number 

approaches, and therefore they did not provide direct evidence of in situ interactions 

between viruses and hosts.  

Recently, we implemented VirusFISH to detect, visualize and follow viral–host dynamics 

of Ostreococcus tauri– Ostreococcus tauri virus 5 (OtV5) in culture (Castillo et al., 

2020). Ostreococcus (Mamiellaceae) is the world’s smallest free-living eukaryote known, 

with a cell diameter of ~1 µm (Courties et al., 1994; Derelle et al., 2006; Sanchez et al., 

2019). The genus comprises several species that can be ubiquitously found from the coast 

to the open ocean, and from mesotrophic to oligotrophic waters (Demir-Hilton et al., 

2011; Tragin and Vaulot, 2019). The number of sequenced Ostreococcus viruses is 

constantly increasing, and nowadays the complete genomes of many Ostreococcus 



 
 

viruses are available (e.g. Derelle et al., 2008, 2015; Weynberg et al., 2011; Monier et 

al., 2017). Yet, nothing is known about the Ostreococcus virus–host relationships in situ, 

and how they change over a temporal scale. Our VirusFISH approach combines a 

Catalyzed Reporter Deposition Fluorescence in situ Hybridization detection of 

Ostreococcus species with the general OSTREO01 probe (Not et al., 2004) and viral 

probes originally designed for the detection of OtV5, but that target most Ostreococcus 

virus sequenced to date (Castillo et al., 2020). 

Here we used VirusFISH to study the monthly dynamics of viral infection in natural 

populations of Ostreococcus over a full seasonal cycle. We demonstrate that VirusFISH 

is a powerful tool for assessing virus–host interactions in the environment, even when the 

hosts are present at low abundances.  

 

 

MATERIALS AND METHODS 

Environmental sampling 

Samples were collected monthly along a coastal-shelf gradient in the Cantabrian Sea 

(Southern Bay of Biscay, near Xixón, Spain) at three stations: E1, coastal (30 m maximum 

depth (max depth); 43.58° N, 5.61° W), E2, mid-shelf (110 m max depth; 43.67° N, 5.58° 

W) and E3, shelf (160 m max depth; 43.78° N, 5.55° W) (Fig. 1), from January 2011 to 

December 2012, at the surface (5m) and at 50m depth (except for E1 where the maximum 

depth was 30 m). Temperature and salinity were measured by a SeaBird 25 CTD. Samples 

for chlorophyll a (Chl a) concentration were collected by sequentially filtering 200 mL 

seawater onto 20, 2 and 0.2 µm polycarbonate filters. Chl a concentration in the 

picoplankton size fraction (pChl, <2 µm) corresponded to the amount collected onto 0.2 



 
 

µm filters after passing through 20 µm and 2 µm filters. Filters were kept frozen at −20°C 

and processed within two weeks, as explained in Calvo-Díaz and Morán (2006). 

Picoeukaryotic abundances were acquired by flow cytometry using 1.8 mL subsamples 

fixed with paraformaldehyde + glutaraldehyde (1% and 0.5% final concentration, 

respectively) as described in (Calvo-Díaz and Morán, 2006). A total of 120 samples for 

Chl a and picoeukaryotic abundances were analyzed. 

 

VirusFISH: sample preparation, labeling and analysis 

Samples for FISH (4 mL) were collected at surface and at 50 m depths from the 3 different 

stations (except for E1, where the maximum depth was 30m) from January to December 

2012, as described in (Arandia-Gorostidi et al., 2017). Samples were fixed with 3% 

freshly filtered formaldehyde and cells were collected onto 0.2 µm pore-size 

polycarbonate filters. Filters were kept at −80°C until their analysis. These samples were 

originally collected to perform FISH on bacterial groups which explains the low volume 

filtered. For the VirusFISH, cells and viruses were hybridized and analyzed as described 

in (Castillo et al., 2020). Briefly, samples were treated with alcohols to remove pigments, 

then cells were hybridized with the OSTREO01 probe for CARD-FISH, labeled with 

Alexa488, and after, viruses were hybridized with the 11 viral probes designed for 

Ostreococcus viruses labeled with Alexa594 (Castillo et al., 2020). Although the probes 

were originally designed for the Ostreococcus tauri virus 5 (OtV5), the genome region 

targeted by the probes is highly similar for most Ostreococcus virus sequenced to date 

(Fig. S1A, Table S1). Thus, our probes putatively target most Ostreococcus viruses. In 

order to further test this, we applied VirusFISH to a different Ostreococcus-virus system: 

Ostreococcus mediterraneus strain MA3 with the virus OmV2 (Yau et al., 2020), and 

compared the VirusFISH visualization to previous results obtained with the O. tauri - 



 
 

OtV5 system (see supplementary methods and Fig. S1B,C). This confirmed that the 

probes hybridize to other Ostreococcus viruses.  

Ostreococcus cells were observed by epifluorescence microscopy under blue light 

(475/30 nm excitation, 527/54 BP emission, and FT 495 beam splitter) and Ostreococcus 

viruses under orange light (585/35 nm excitation, 615 LP emission, and FT 570 beam 

splitter). All pictures were taken using the same intensities and exposure times (300 ms 

for the blue light and 1 s for the orange light). For each sample, 4 random transects, 

between 6 and 10 mm each, were performed to visualize and count infected and non-

infected Ostreococcus. The number of inspected Ostreococcus cells ranged from non-

detected to 20 cells per sample. A total of 57 samples were evaluated with VirusFISH. 

 

Identification of Ostreococcus spp. and Ostreococcus virus sequences in 

metatranscriptomes 

Metatranscriptomic information from the continental shelf station (E2) during 2011 and 

2012 was retrieved from (Alonso-Sáez et al., 2020). Metatranscriptomic reads, previously 

quality trimmed and cleaned of rRNA sequences, were screened for Ostreococcus spp. 

(OS) and Ostreococcus virus (OV) sequences. First, a BLASTn database was constructed 

of the four Ostreococcus species nuclear genomes (O. tauri RCC4221, O. lucimarinus 

CCE9901, Osterococcus sp. RCC809 and O. mediterraneus RCC2590) and the 13 

complete Ostreococcus spp. virus genomes sequenced to date. The Genbank accession 

numbers of the genomes used were as follows. O. tauri: CAID01000001.2–

CAID01000020.2, O. lucimarinus: CP000581.1–CP000601.1, O. mediterraneus: 

WMKK01000001.1–WMKK01000022.1, OtV1: FN386611.1, OtV2: FN600414.1, 

OtV5: EU304328.2, OtV6: JN225873.1, OlV1: MK514405.1, OlV2: KP874736.1, OlV3: 



 
 

HQ633060.1, OlV4: JF974316.1, OlV5: HQ632827.1, OlV6: HQ633059.1, OlV7: 

MK514406.1 and OmV1: KP874735.1 and OmV2 (MN688676). The Ostreococcus sp. 

RCC809 genome was obtained from the JGI Genome portal 

(https://genome.jgi.doe.gov/portal/ – accessed 28 February 2014). Second, the 

metatranscriptomic reads were queried against OS and OV genomes by BLASTn 

(BLAST 2.2.26+), accepting high scoring pairs with e-value <1e−5, identity >75% and 

query coverage >75%. This nucleotide identity cut-off was chosen as it corresponds to 

the average nucleotide identity between Ostreococcus spp. (O. tauri and O. lucimarinus), 

as well as between representatives of Ostreococcus virus clades (OtV5 and OtV6), and 

thereby avoids retrieving reads that originate from related Mamiellophyceae and 

prasinoviruses. Average nucleotide identities were calculated with the ANI server 

(http://enve-omics.ce.gatech.edu/ani). Third, metatranscriptomic reads matching OS and 

OV genomes from each sample were counted, assigned to the species corresponding to 

the top BLASTn hit. Finally, OS and OV read counts were expressed as counts per 

100,000 reads to adjust for variation in per sample sequencing depth.  

 

Transcriptome coverage of Ostreococcus viruses 

To determine which regions of the viral genomes were expressed, metatranscriptomic 

reads were aligned to available genomes of viruses infecting Ostreococcus using BWA 

version 7.17 (Li and Durbin, 2009) with default parameters. The resulting alignments 

were visualized in IGV version 2.5.3 (Robinson et al., 2011) as a Sashimi Plot. Read 

counts for the predicted coding sequences (CDS) were counted for each genome using 

the HTSeq version 0.9.1 (Anders et al., 2015) package with the function htseq-count 

(default parameters except for -t CDS -i = “locus_tag”) taking the alignment files from 



 
 

BWA and the predicted CDS from the published GenBank genome annotations as input 

files. 

 

Statistical analysis 

Correlation analyses were performed using Pearson correlation. All statistical analyses 

were accomplished with the JMP 9.0.1 (JMP®, Version 9.0.1. SAS Institute Inc., Cary, 

NC, 1989-2019.) or R 3.5.3 (R Development Core Team, 2016) software. 

 

RESULTS 

Environmental setting 

In surface waters, the temperature ranged from ~12.3ºC in winter to ~21.2ºC in summer 

during 2011 and 2012 (Fig. S2). In contrast, salinity was rather constant throughout the 

year at an average of 35.7, with occasionally lower values in winter and autumn, and a 

marked decline in April 2012 at all the three stations (~35, Fig. S2). Chlorophyll a (Chl 

a) concentration at the surface in 2011 and 2012 peaked during spring and autumn 

reaching values of ~1 µg L-1 at the three stations, and also in summer at station E1. At 50 

m depth, there was much less variation than at the surface in temperature (range: 12–18.3 

ºC) and salinity (range: 35.6–35.8). In contrast, Chl a showed three peaks: in June at E2 

in 2011, in May at E3 in 2012, and in late summer at both stations in 2012 (Fig. S2). 

Between June and November, a subsurface chlorophyll maximum (DCM) developed at 

around 40–50 m at the two shelf stations. As expected, nitrate (NO3) and phosphate (PO4) 

concentrations were in general lower at the surface than at the DCM for all stations and 

reached their maximum values during winter at both depths (Table S2).  

Abundance of autotrophic picoeukaryotes (PE) was in general two-fold higher in surface 

waters than at 50 m depth (Fig. 2). At the surface, PE reached maximum abundances in 



 
 

April and November for all three stations, with E1 also showing high values in summer, 

coincident with the peak in Chl a. At 50 m depth, PE were almost absent during winter 

but from late spring to autumn their abundance ranged between 5,000 and 20,000 cells 

mL-1 (Fig. 2). 

 

Dynamics of Ostreococcus and its viral infection during an annual cycle 

Using VirusFISH we tracked the abundance of Ostreococcus and virally infected 

Ostreococcus cells during 2012. Ostreococcus cells were counted as infected when the 

red fluorescence of the VirusFISH probe (see methods section) overlapped with the green 

signal of the Ostreococcus CARD-FISH probe (Fig. 3). The contribution of Ostreococcus 

to the picoeukaryotic assemblages over the seasonal cycle ranged from non-detectable to 

20.8% in surface waters, averaging 2.6% (180 Ostreococcus mL-1), and from non-

detectable to 8.9% at 50 m depth, averaging 1.7% (184 Ostreococcus mL-1) (Table S3). 

In surface waters at station E1, Ostreococcus abundances started to increase in late spring 

and reached the highest values in summer (1,226 Ostreococcus mL-1, Fig. 4). At the mid-

shelf (E2) Ostreococcus cells displayed two relative maxima in July and November–

December (508 – 361 Ostreococcus mL-1, Fig. 4), and at the shelf station (E3) we 

obtained similar results as in E2, with two relative maxima in July and November (578 – 

342 Ostreococcus mL-1, Fig. 4). Remarkably, Ostreococcus cells could not be detected in 

August at the two stations more distant from shore (E2 and E3), whereas they showed 

maximal abundances at the coastal station E1 (Fig. 4A). At 50 m depth, Ostreococcus 

cells were also mainly found in summer and autumn, with the exception of October (Fig. 

4B). Although Ostreococcus abundances reached higher values in surface waters than at 

50 m depth, year-round average values were similar for both depths and among stations 

(i.e. E1 surface: 208.3±105 cells mL-1; E2 surface: 127.9±53.6 cells mL-1, E2 50 m: 



 
 

151.1±38.3 cells mL-1; E3 surface: 121±54.1 cells mL-1, E3 50 m: 133.7±54.8 cells mL-

1). 

In surface waters of E1, viral infection was observed in June, July, September, November 

and December, representing from 11 to 60% of the cells (22 – 78 infected Ostreococcus 

mL-1, Fig. 4). In E2, infected cells were visualized in late spring to early summer, 

representing from 7 to 50% of the cells (25 – 36 infected Ostreococcus mL-1, Fig. 4). In 

E3, we could only detect infected cells in November, which accounted for 25% of the 

Ostreococcus population (86 infected Ostreococcus mL-1, Fig. 4). Thus, the impact of 

viruses on Ostreococcus cells in surface waters along the coastal-shelf gradient analyzed 

here was variable, but infection took place mostly from May to June and from November 

to December (Fig. 4A, Table 1). Contrary to surface samples, at 50 m depth no infected 

cells could be detected at any time (Fig. 4B). 

There was a significant positive relationship between the abundance of Ostreococcus and 

the abundance of autotrophic picoeukaryotes (Pearson correlation analysis. R=0.42, p-

value=0.0016, n=54). The number of infected cells was also positively correlated with 

the abundance of autotrophic picoeukaryotes (Pearson correlation analysis. R=0.43, p-

value=0.0013, n=54), but not with Ostreococcus abundance (Table S4).  

 

Detection of Ostreococcus and Ostreococcus viruses in metatranscriptomes  

Both Ostreococcus species (OS) and their viruses (OV) were detected in 

metatranscriptomic samples collected during 2011 and 2012 at the mid-shelf station (E2), 

except for May and July 2011, when OV were not detected, coincident with very low 

abundances of host transcripts (Fig. 5). The relative abundance of OS transcripts 

displayed a maximum in November, was second highest in April and remained low in the 

spring and summer months of May and July both in 2011 and 2012 (Fig. 5, upper panel). 



 
 

The relative abundance of OV transcripts was more variable between sampling years. The 

highest values of OV transcripts were observed in April and November, being notably 

higher in 2011 than in 2012, and the lowest in May and July. The relative abundance of 

viral transcripts in relation to the abundance of host transcripts was higher in April 2011, 

pointing to a larger infection event at this sampling time (Fig. 5, lower panel).  

Regarding the phylogenetic affiliation of the OS and OV transcripts, we found that the 

Ostreococcus assemblage maintained the same rank species abundance profile in all 

samples, with O. lucimarinus as the most transcriptionally active species (51–91% of 

Ostreococcus reads), followed by O. tauri (6–47% of reads), while Ostreococcus sp. 

RCC809 and O. mediterraneus were minor contributors (both 1–4% of reads). This 

pattern was also reflected in the OV transcript pool, with O. lucimarinus virus transcripts 

dominating, followed by O. tauri viruses. O. mediterraneus viruses represented a minor 

fraction of the transcripts, whereas the only known virus infecting Ostreococcus sp. 

RCC809, OtV2 (Weynberg et al., 2011), was not detected (Fig. 5).  

When the percentage of infected cells detected by VirusFISH was compared to the ratio 

of OV/OS transcripts we obtained consistent results, with samples where the number of 

infected cells was higher having higher OV/OS ratios (Fig. S3).  

Transcriptome coverage of Ostreococcus viruses 

To determine which genomic regions of the Ostreococcus viruses were being transcribed 

in the samples, all metatranscriptomic reads were aligned to the model Ostreococcus virus 

strain, OtV5, which is the virus that has received the most extensive molecular 

characterization (Derelle et al., 2008, 2017; Yau et al., 2016), and other Ostreococcus 

virus. O. lucimarinus viruses showed approximately twice the percentage of CDS 

transcribed compared to O. tauri infecting viruses (~20% compared to ~9%, Table S5). 



 
 

The pattern of transcription between Ostreococcus viruses was comparable (Fig. S4), and 

despite the low read coverage (~100 reads, Table S5) due to the low sequencing depth of 

the metatranscriptomes, transcripts were distributed along the viral genome length. This 

indicates that the entire viral genomes were transcribed in situ. Furthermore, genes likely 

involved in transcription, DNA replication and capsid assembly were expressed, 

suggesting that Ostreococcus viruses were captured during active infection of their host 

cells. The most highly expressed gene was the major capsid protein, further suggesting 

the viruses were sampled during lytic replication. 

 

DISCUSSION 

Our results showed generally low abundances of Ostreococcus over the seasonal cycle, 

although this genus occasionally represented up to ~20% of total picoeukaryotic cells 

(Table S3). This is in agreement with previous results showing that Ostreococcus in 

coastal and shelf sea waters present <5·103 cells mL-1 at the surface and DCM (Zhu et al., 

2005; Countway and Caron, 2006; Cardol et al., 2008), unlike in lagoons such as the Thau 

Lagoon (NW Mediterranean, France), where O. tauri can dominate the phytoplankton 

assemblage based on flow cytometric signatures (Chrétiennot-Dinet et al., 1995; Vaquer 

et al., 1996). Despite Ostreococcus can produce sporadic blooms, increasing two orders 

of magnitude over its basal concentration and accounting for up to 70% of the total 

picoeukaryotic community (O’Kelly et al., 2003; Countway and Caron, 2006), we did not 

observe any of these blooms over our seasonal cycle. With a few exceptions, the highest 

contribution of Ostreococcus to the picoeukaryotic assemblage occurred in summer 

(Table S3). This might indicate that this tiny picoeukaryote is better adapted than other 

members of the picoeukaryotic assemblage to grow under low inorganic nutrient 

conditions that characterize the period from April-May to October in these coastal waters. 



 
 

Indeed, this period is usually characterized by maxima in picophytoplankton biomass 

(Calvo-Díaz and Morán, 2006; Calvo-Díaz et al., 2008). 

Ostreococcus viral infection dynamics was variable throughout the year, with the 

percentage of infected cells ranging from non-detected to 60%. This supports the view 

that viruses may have an impact in controlling the abundance of Ostreoccocus cells, as it 

has been suggested in other field studies where infected Ostreococcus cells were 

visualized with TEM (O’Kelly et al., 2003). Most Ostreococcus viruses isolated to date 

have fast infection cycles in culture, with clearance of the culture observed usually within 

two days (Derelle et al., 2008; Zimmerman et al., 2019; Castillo et al., 2020). However, 

coexistence between the host and the virus for longer periods of time has also been 

observed (Thomas et al., 2011; Yau et al., 2020). In the bloom-forming algae Emiliania 

huxleyi it was recently shown that virulent virus may prevalently display temperate 

infection dynamics in nature, switching only to a lethal infection when the physiology of 

the cells become compromised due to high cell densities (Knowles et al., 2020). 

Nonetheless, this may be different in species that show predominantly low abundances, 

like Ostreococcus. Moreover, our monthly sampling frequency was likely not enough to 

detect episodes of boom and bust in the Ostreococcus populations or to quantify the role 

of viruses in controlling their dynamics. Similarly, Johannessen et al. (2017) reported that 

Haptophyte and virus community composition and diversity varied substantially during 

an annual cycle without any clear pattern of covariance. In a study conducted over three 

years, both Micromonas pusilla and its viruses were shown to fluctuate widely on smaller 

time scales (i.e., weekly sampling, Zingone et al. 1999). Indeed, a tipping point during 

infection dynamics after which the infection rapidly propagates has been reported in both 

lab experiments and in natural populations (Zimmerman et al., 2019; Castillo et al., 2020; 

Vincent et al., 2021), as well as strong diel cycle infection dynamics (Aylward et al., 



 
 

2017; Chen and Zeng, 2020). Altogether, these observations suggest that high frequency 

samplings (i.e. over hourly to daily scales) should be carried out to fully apprehend virus–

eukaryote interactions in nature. In any case, our work is the first approximation that 

directly assessed the impact of viruses on a picoeukaryotic population under non-bloom 

conditions in nature. The fact that Ostreococcus were found in very different abundance 

levels across the spatial and temporal gradient studied here was important to test the 

performance of VirusFISH on this model microorganism. 

The use of a general Ostreococcus CARD-FISH probe does not allow to distinguish 

between species. However, metatranscriptomic data from surface waters unveiled that the 

dominating species was O. lucimarinus. A previous study has shown that this species 

inhabits waters from the surface to the DCM (Rodríguez et al., 2005) and it is the most 

widely distributed, whereas O. tauri and O. mediterraneus are mostly restricted to the 

surface layer of coastal waters and lagoons (Rodríguez et al., 2005; Tragin and Vaulot, 

2019). Thus, it is likely that most Ostreococcus cells found in our samples belonged to 

O. lucimarinus.  

The metatranscriptomic data also indicated that O. lucimarinus coexisted with several 

viruses infecting this species. Ostreococcus viral transcriptional activity was higher in 

2011 than in 2012, when we did the VirusFISH analyses. However, even in 2011 their 

transcriptional activity was low relative to that of the hosts suggesting that the impact of 

viruses on the Ostreoccocus populations was only moderate (Fig. 5). 

High Ostreococcus viral transcriptional activity relative to that of their putative hosts has 

been shown based on metatranscriptomics in the Baltic Sea (Zeigler Allen et al., 2017). 

Therefore, we may have missed large infection events due to our monthly sampling 

frequency. A recent transcriptomic study on an infection of Prasinovirus upon 

Ostreococcus has shown that the viral attack occurs mostly at night (Derelle et al., 2017), 



 
 

which may also explain the low viral transcriptional activity detected in our samples, that 

were taken around noon. Finally, other factors that may contribute to this relatively low 

viral activity are the coexistence of distinct transcriptional states during infection 

dynamics (Vincent et al., 2021), and the co-occurrence of susceptible and resistant host 

phenotypes (Yau et al., 2020) to the array of Ostreococcus viruses present at each 

sampling time-point (Fig. 5). A combination of metatranscriptomics with VirusFISH 

analyses performed with higher sampling frequency should help gain a clearer insight 

into the virus–host dynamics of natural populations of Ostreococcus. 

It is important to note that it is possible that the VirusFISH probes used were not able to 

detect the full diversity of virus infecting the natural populations of Ostreococcus. This 

could be the reason for the lack of detection of infection at 50 m depth. However, 

according to Allers et al. (2013), a single probe is enough to visually detect one virus, 

with the detection efficiency increasing with the number of viral probes used, and most 

of the Ostreococcus virus sequenced to date are highly similar in at least 8 of the probes 

used (Table S1). The fact that the VirusFISH results were consistent with the 

metatranscriptomic data suggests that a broad range of Ostreococcus virus can indeed be 

hybridized by the probes, further supporting the use of these probes to monitor natural 

infection dynamics of this important picoeukaryote. VirusFISH can detect both early and 

late infection stages, as in our experiments with cultures we were able to quantify infected 

Ostreococcus cells when viral production was still negligible (Castillo et al., 2020). Thus, 

we believe that the reason we did not detect any infected cells at 50 m is because the level 

of infection was likely lower than in the surface, and the volume of sample filtered was 

probably too small for the low abundance of Ostreococcus cells. In fact, this may also be 

the reason why we did not detect infection at some of the surface samples over the 

seasonal cycle.  



 
 

 

In conclusion, we show that VirusFISH has strong potential to follow the dynamics of 

hosts and their infecting viruses in nature. It requires the previous knowledge of the viral 

genome, and preferably also the host genome to design the adequate probes (i.e. probes 

that do not target regions of the host genome that are similar to the virus), as well as the 

viral DNA material to use it as template to synthetize the probes. Having both elements, 

this approach can be easily implemented with any genome-sequenced virus–host system 

available in culture. Furthermore, VirusFISH can also be used to unveil unknown 

eukaryotic hosts of abundant viruses detected in metaviromes, by using that 

environmental DNA to synthetize the viral probes. Hence, VirusFISH opens avenues in 

viral ecology to tackle the role of viruses in controlling the abundance of key players in 

marine microbial communities, allowing to visually quantify the impact on specific host 

populations.  
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FIGURES LEGEND 
 
Figure 1. Location of the sampling stations. Abbreviations: E1: coastal station; E2: mid-
shelf station; E3: shelf station. Samples were taken at 0 and 50 m depth, except for E1 
where the maximum depth was 20 m. 
 
Figure 2. Small autotrophic picoeukaryote abundances for coastal (E1), mid-shelf (E2) 
and shelf (E3) waters during a two-year period (2011 and 2012). A. Surface and B. 50 m 
depth. Note the difference in the y-axis between figures A and B. Note: for July and 
December 2012 data were not available at 50 m depth samples. 
 
Figure 3. Micrographs of Ostreococcus cells in natural samples from the Cantabrian Sea. 
Upper and lower panel: infected Ostreococcus cells (arrow with round head), in which 
the red signal of the VirusFISH labeled viruses can be easily seen. Middle panel: a healthy 
non-infected Ostreococcus cell (asterisk) and a lysed Ostreococcus cell showing the viral 
cloud released from the cell with almost no cytoplasm (arrow with sharp head).  
 
Figure 4. VirusFISH results for Ostreococcus cells abundance and infection by 
Ostreococcus viruses in 2012. A. Surface, B. 50m depth, in coastal (E1), mid-shelf (E2) 
and shelf (E3) waters. Note: April data was not available for surface samples. 
 
Figure 5. Relative abundances of Ostreococcus spp. (OS) transcripts (upper plot) and 
Ostreococcus viruses (OV) transcripts (lower plot) detected in metatranscriptomes from 
the surface waters at the mid-shelf station (E2). Note the difference in y-axis between the 
graphs. Nov.: November. 
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Table 1. Impact of viruses on Ostreococcus populations in the coastal (E1), mid-shelf (E2) and shelf (E3) stations. See Figure 1 for the location 

of the stations. ND: Non-detected; ‘─’: No data available. Color intensity indicates increasing percentage of infected cells. 

E1 E2 E3 

  
Total 

cells/mL 

Infected 

cells/mL 

% of 

infected 

cells 

Total 

cells/mL 

Infected 

cells/mL 

% of 

infected 

cells 

Total 

cells/mL 

Infected 

cells/mL 

% of 

infected 

cells 

January 29 ND ─ 26 ND ─ 21 ND ─ 

February 86 ND ─ 36 ND ─ ND ND ─ 

March ND ND ─ ND ND ─ 11 ND ─ 

April ─ ─ ─ ─ ─ ─ ─ ND ─ 

May 24 ND ─ 75 25 33 109 ND ─ 

June 288 32 11 56 28 50 88 ND ─ 

July 233 78 33 544 36 7 578 ND ─ 

August 1226 ND ─ ND ND ─ ND ND ─ 

September 87 22 25 79 ND ─ 80 ND ─ 

October 81 ND ─ ND ND ─ 44 ND ─ 

November 108 27 25 229 ND ─ 342 86 25 

December 130 78 60 361 ND ─ 59 ND ─ 
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