RCC references

Export 35 results:
Author [ Title(Desc)] Year
Filters: First Letter Of Title is M  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
M
Zhu F, Massana R, Not F, Marie D, Vaulot D.  2005.  Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiology Ecology. 52:79–92.PDF icon Zhu et al_2005_Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S.pdf (220.7 KB)
Groussman R.D, Blaskowski S., Coesel S.N, Armbrust E.V.  2023.  MarFERReT, an open-source, version-controlled reference library of marine microbial eukaryote functional genes. Scientific Data. 10:926.PDF icon Groussman et al_2023_MarFERReT, an open-source, version-controlled reference library of marine.pdf (2.17 MB)
Duanmu D, Bachy C, Sudek S, Wong C-H, Jimenez V, Rockwell NC, Martin SS, Ngan CYee, Reistetter EN, van Baren MJ et al..  2014.  Marine algae and land plants share conserved phytochrome signaling systems. Proceedings of the National Academy of Sciences of the United States of America. 111:15827–15832.
Reddy MM, Jennings L, Thomas OP.  2021.  Marine Biodiscovery in a Changing World. Progress in the Chemistry of Organic Natural Products 116. :1–36.PDF icon Reddy et al_2021_Marine Biodiscovery in a Changing World.pdf (685.24 KB)
Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, E Armbrust V, Archibald JM, Bharti AK, Bell CJ et al..  2014.  The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS biology. 12:e1001889.PDF icon Keeling et al_2014_The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP).pdf (353.97 KB)
Moreau H, Piganeau G, Desdevises Y, Cooke R, Derelle E, Grimsley N.  2010.  Marine Prasinovirus genomes show low evolutionary divergence and acquisition of protein metabolism genes by horizontal gene transfer. Journal of Virology. 84:12555–12563.PDF icon Moreau et al_2010_Marine Prasinovirus genomes show low evolutionary divergence and acquisition of.pdf (2.2 MB)
Weynberg KD, Allen MJ, Wilson WH.  2017.  Marine prasinoviruses and their tiny plankton hosts : A review. Viruses. :1–20.PDF icon Weynberg et al_2017_Marine prasinoviruses and their tiny plankton hosts.pdf (4.59 MB)
Six C, Ratin M, Marie D, Corre E.  2021.  Marine Synechococcus picocyanobacteria: Light utilization across latitudes. Proceedings of the National Academy of Sciences. 118PDF icon Six et al_2021_Marine Synechococcus picocyanobacteria.pdf (1.31 MB)PDF icon Six et al. - 2021 - Marine Synechococcus picocyanobacteria Li.pdf (1.15 MB)
Domínguez-Martín MAgustina, López-Lozano A, Melero-Rubio Y, Gómez-Baena G, Jiménez-Estrada JAndrés, Kukil K, Díez J, García-Fernández JManuel.  2022.  Marine \textit{Synechococcus sp. Strain WH7803 Shows Specific Adaptative Responses to Assimilate Nanomolar Concentrations of Nitrate. Microbiology Spectrum. 10:e00187–22.PDF icon Domínguez-Martín et al. - 2022 - Marine Synechococcus sp. Strain WH7803 Show.pdf (2.07 MB)
Zeng Q, Chisholm SW.  2012.  Marine viruses exploit their host's two-component regulatory system in response to resource limitation. Current Biology. PDF icon Zeng_Chisholm_2012_Marine viruses exploit their host's two-component regulatory system in response.pdf (317.21 KB)
Wang J, Zeng C, Feng Y.  2024.  Meta-analysis reveals responses of coccolithophores and diatoms to warming. Marine Environmental Research. 193:106275.PDF icon Wang et al. - 2024 - Meta-analysis reveals responses of coccolithophore.pdf (6.51 MB)
Nikitashina V, Stettin D, Pohnert G.  2022.  Metabolic adaptation of diatoms to hypersalinity. Phytochemistry. :113267.PDF icon Nikitashina et al. - 2022 - Metabolic adaptation of diatoms to hypersalinity.pdf (1.63 MB)
Stettin D, Poulin RX, Pohnert G.  2020.  Metabolomics benefits from orbitrap GC–MS—Comparison of low- and high-resolution GC–MS. Metabolites. 10:143.PDF icon Stettin et al_2020_Metabolomics benefits from orbitrap GC–MS—Comparison of low- and.pdf (1.6 MB)
Karin ELevy, Mirdita M, Soeding J.  2019.  MetaEuk – sensitive, high-throughput gene discovery and annotation for large-scale eukaryotic metagenomics. bioRxiv. :851964.
Klintzsch T, Langer G, Nehrke G, Wieland A, Lenhart K, Keppler F.  2019.  Methane production by three widespread marine phytoplankton species: release rates, precursor compounds, and potential relevance for the environment. Biogeosciences. 16:4129–4144.PDF icon Klintzsch et al_2019_Methane production by three widespread marine phytoplankton species.pdf (1.79 MB)
Mincer TJ, Aicher AC.  2016.  Methanol production by a broad phylogenetic array of marine phytoplankton.. PloS one. 11:e0150820.PDF icon Mincer_Aicher_2016_Methanol production by a broad phylogenetic array of marine phytoplankton.pdf (1.76 MB)
Barbosa M, Inácio LGarcia, Afonso C, Maranhão P.  2023.  The microalga \textit{Dunaliella and its applications: a review. Applied Phycology. 4:99–120.PDF icon Barbosa et al_2023_The microalga iDunaliella-i and its applications.pdf (1.43 MB)
Dayras P, Bialais C, Sadovskaya I, Lee M-C, Lee J-S, Souissi S.  2021.  Microalgal Diet Influences the Nutritive Quality and Reproductive Investment of the Cyclopoid Copepod Paracyclopina nana. Frontiers in Marine Science. 8:1147.PDF icon Dayras et al. - 2021 - Microalgal Diet Influences the Nutritive Quality a.pdf (1.99 MB)
McDonald SM, Plant JN, Worden AZ.  2010.  The mixed lineage nature of nitrogen transport and assimilation in marine eukaryotic phytoplankton: a case study of Micromonas. Molecular Biology and Evolution. 27:2268–2283.PDF icon McDonald et al_2010_The mixed lineage nature of nitrogen transport and assimilation in marine.pdf (1.23 MB)
Busse H.  2021.  Mixotrophy by Phytoflagellates in the Northern Gulf of Alaska: Impacts of Physico-Chemical Characteristics and Prey Concentration on Feeding by Photosynthetic Nano- and Dinoflagellates. PDF icon Busse - Mixotrophy by Phytoflagellates in the Northern Gul.pdf (3.45 MB)
Koppelle S, López-Escardó D, Brussaard CPD, Huisman J, Philippart CJM, Massana R, Wilken S.  2022.  Mixotrophy in the bloom-forming genus Phaeocystis and other haptophytes. Harmful Algae. 117:102292.PDF icon Koppelle et al. - 2022 - Mixotrophy in the bloom-forming genus Phaeocystis .pdf (5.56 MB)
Yoo YDu, Seong KAh, Jeong HJin, Yih W, Rho JRae, Nam SWon, Kim HSeop.  2017.  Mixotrophy in the marine red-tide cryptophyte Teleaulax amphioxeia and ingestion and grazing impact of cryptophytes on natural populations of bacteria in Korean coastal waters. Harmful Algae. 68:105–117.PDF icon Yoo et al_2017_Mixotrophy in the marine red-tide cryptophyte Teleaulax amphioxeia and.pdf (1.99 MB)
Filatov DA, Bendif EMahdi, Archontikis OA, Hagino K, Rickaby REM.  2021.  The mode of speciation during a recent radiation in open-ocean phytoplankton. Current Biology. PDF icon Filatov et al_2021_The mode of speciation during a recent radiation in open-ocean phytoplankton.pdf (2.65 MB)
Wang T., Chen X., Li J.L., Qin S., Cui Y.L., Xu F..  2021.  The moderating role of population succession in the adaptive responses of Synechococcus assemblages: evidence from light intensity simulation experiment. Photosynthetica. 59:587–599.PDF icon Wang et al. - 2021 - The moderating role of population succession in th.pdf (5.43 MB)
Grébert T, Nguyen AA, Pokhrel S, Joseph KLynn, Ratin M, Dufour L, Chen B, Haney AM, Karty JA, Trinidad JC et al..  2021.  Molecular bases of an alternative dual-enzyme system for light color acclimation of marine \textit{Synechococcus cyanobacteria. Proceedings of the National Academy of Sciences. 118:e2019715118.PDF icon Grébert et al. - 2021 - Molecular bases of an alternative dual-enzyme syst.pdf (909.21 KB)PDF icon Grébert et al. - 2021 - Molecular bases of an alternative dual-enzyme syst.pdf (1.68 MB)

Pages