RCC references

Export 568 results:
Author [ Title(Desc)] Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
P
Latasa M, Scharek R, Le Gall F, Guillou L, Le Gall F.  2004.  Pigment suites and taxonomic groups in Prasinophyceae. Journal of Phycology. 40:1149–1155.PDF icon Latasa et al_2004_Pigment suites and taxonomic groups in Prasinophyceae.pdf (32 KB)
Garrido JL, Brunet C, Rodríguez F.  2016.  Pigment variations in Emiliania huxleyi (CCMP370) as a response to changes in light intensity or quality. Environmental Microbiology. 18:4412–4425.PDF icon Garrido et al_2016_Pigment variations in Emiliania huxleyi (CCMP370) as a response to changes in.pdf (1.75 MB)
Jouenne F, Probert I, Vaulot D.  2008.  Plankton taxonomy in the computer age. Cahiers de Biologie Marine. 49:355–367.PDF icon Jouenne et al_2008_Plankton taxonomy in the computer age.pdf (203.92 KB)
Khan H, Parks N, Kozera C, Curtis BA, Parsons BJ, Bowman S, Archibald JM.  2007.  Plastid genome sequence of the cryptophyte alga Rhodomonas salina CCMP1319: lateral transfer of putative DNA replication machinery and a test of chromist plastid phylogeny. Molecular Biology and Evolution. 24:1832–1842.
Klinger CM, Paoli L, Newby RJ, Wang MYu-Wei, Carroll HD, Leblond JD, Howe CJ, Dacks JB, Bowler C, A Cahoon B et al..  2018.  Plastid transcript editing across dinoflagellate lineages shows lineage-specific application but conserved trends. Genome Biology and Evolution. 10:1019–1038.PDF icon Klinger et al_2018_Plastid transcript editing across dinoflagellate lineages shows.pdf (744.63 KB)
Aveiro SS, Melo T, Figueiredo A, Domingues P, Pereira H, Maia IB, Silva J, M. Domingues R, Nunes C, Moreira ASP.  2020.  The polar lipidome of cultured emiliania huxleyi: A source of bioactive lipids with relevance for biotechnological applications. Biomolecules. 10:1434.PDF icon Aveiro et al_2020_The polar lipidome of cultured emiliania huxleyi.pdf (1.72 MB)
Devic M, Mariac C, Vergé V, Schatt P, Dennu L, Lozano J-C, Bouget F-Y, Sabot F.  2023.  Population dynamics of the cosmopolitan eukaryotic picophytoplankton Bathycoccus during seasonal blooms in the bay of Banyuls sur Mer (North Western Mediterranean sea). PDF icon Devic et al. - 2023 - Population dynamics of the cosmopolitan eukaryotic.pdf (1.73 MB)
Blanc-Mathieu R, Krasovec M, Hebrard M, Yau S, Desgranges E, Martin J, Schackwitz W, Kuo A, Salin G, Donnadieu C et al..  2017.  Population genomics of picophytoplankton unveils novel chromosome hypervariability. Science Advances. 3:e1700239.
Avilan L, Lebrun R, Puppo C, Citerne S, Cuiné S, Li-Beisson Y, Menand B, Field B, Gontero B.  2020.  ppGpp influences protein protection, growth and photosynthesis in Phaeodactylum tricornutum. bioRxiv. :2020.03.05.978130.PDF icon Avilan et al_2020_ppGpp influences protein protection, growth and photosynthesis in Phaeodactylum.pdf (635.67 KB)
Derelle E, Yau S, Moreau H, Grimsley NH.  2017.  Prasinovirus attack of ostreococcus is furtive by day but savage by night. Journal of Virology. 92:JVI.01703–17.PDF icon Derelle et al_2017_Prasinovirus attack of ostreococcus is furtive by day but savage by night.pdf (3.92 MB)
Clerissi C, Desdevises Y, Grimsley N.  2012.  Prasinoviruses of the marine green alga Ostreococcus tauri are mainly species specific. Journal of Virology. 86:4611–4619.PDF icon Clerissi et al_2012_Prasinoviruses of the marine green alga Ostreococcus tauri are mainly species.pdf (894.33 KB)
Morel A, Ahn Y.-W., Partensky F, Vaulot D, Claustre H.  1993.  Prochlorococcus and Synechococcus: a comparative study of their size, pigmentation and related optical properties. Journal of Marine Research. 51:617–649.PDF icon Morel et al_1993_Prochlorococcus and Synechococcus.pdf (3.66 MB)
Morales-Sánchez D, Schulze PSC, Kiron V, Wijffels RH.  2020.  Production of carbohydrates, lipids and polyunsaturated fatty acids (PUFA) by the polar marine microalga Chlamydomonas malina RCC2488. Algal Research. 50:102016.PDF icon Morales-Sanchez et al_2020_Production of carbohydrates, lipids and polyunsaturated fatty acids (PUFA) by.pdf (1.82 MB)
Russo GL, Langellotti AL, Blasco T, Oliviero M, Sacchi R, Masi P.  2021.  Production of Omega-3 Oil by Aurantiochytrium mangrovei Using Spent Osmotic Solution from Candied Fruit Industry as Sole Organic Carbon Source. Processes. 9:1834.PDF icon Russo et al. - 2021 - Production of Omega-3 Oil by Aurantiochytrium mang.pdf (2.12 MB)
Meyer N, Rydzyk A, Pohnert G.  2022.  Pronounced Uptake and Metabolism of Organic Substrates by Diatoms Revealed by Pulse-Labeling Metabolomics. Frontiers in Marine Science. 9:821167.PDF icon Meyer-et-al-2022.pdf (3.81 MB)
Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, Boutte C, Burgaud G, de Vargas C, Decelle J et al..  2013.  The protist ribosomal reference database (PR2): a catalog of unicellular eukaryote small SubUnit rRNA sequences with curated taxonomy. Nucleic Acids Research. 41:D597–D604.PDF icon Guillou et al_2013_The protist ribosomal reference database (PR2).pdf (266.2 KB)
Akita S, Vieira C, Hanyuda T, Rousseau F, Cruaud C, Couloux A, Heesch S, J. Cock M, Kawai H.  2022.  Providing a phylogenetic framework for trait-based analyses in brown algae: Phylogenomic tree inferred from 32 nuclear protein-coding sequences. Molecular Phylogenetics and Evolution. 168:107408.
Percopo I, Ruggiero MValeria, Balzano S, Gourvil P, Lundholm N, Siano R, Tammilehto A, Vaulot D, Sarno D.  2016.  Pseudo-nitzschia arctica sp. nov., a new cold-water cryptic Pseudo-nitzschia species within the P. pseudodelicatissima complex. Journal of Phycology. 52:184–199.PDF icon Percopo et al_2016_Pseudo-nitzschia arctica sp.pdf (771.04 KB)
Greer C.W, Yaphe W..  1984.  Purification and properties of ι-carrageenase from a marine bacterium. Canadian Journal of Microbiology. 30:1500–1506.
Q
Fan X, Batchelor-McAuley C, Yang M, Barton S, Rickaby REM, Bouman HA, Compton RG.  2022.  Quantifying the Extent of Calcification of a Coccolithophore Using a Coulter Counter. Analytical Chemistry. :acs.analchem.2c01971.PDF icon Fan et al. - 2022 - Quantifying the Extent of Calcification of a Cocco.pdf (2.95 MB)
Barton S, Yvon-Durocher G.  2019.  Quantifying the temperature dependence of growth rate in marine phytoplankton within and across species. Limnology and Oceanography.
Biegala IC, Not F, Vaulot D, Simon N.  2003.  Quantitative assessment of picoeucaryotes in the natural environment using taxon specific oligonucleotide probes in association with TSA-FISH (Tyramide Signal Amplification - Fluorescent In Situ Hybridization) and flow cytometry. Applied and Environmental Microbiology. 69:5519–5529.PDF icon Biegala et al_2003_Quantitative assessment of picoeucaryotes in the natural environment using.pdf (1.23 MB)
Limardo AJ, Sudek S, Choi CJae, Poirier C, Rii YM, Blum M, Roth R, Goodenough U, Church MJ, Worden AZ.  2017.  Quantitative biogeography of picoprasinophytes establishes ecotype distributions and significant contributions to marine phytoplankton. Environmental Microbiology. PDF icon Limardo et al_2017_Quantitative biogeography of picoprasinophytes establishes ecotype.pdf (2.02 MB)
Domínguez-Martín MAgustina, Gómez-Baena G, Díez J, López-Grueso MJosé, Beynon RJ, García-Fernández JManuel.  2017.  Quantitative proteomics shows extensive remodeling induced by nitrogen limitation in prochlorococcus marinus SS120. mSystems. 2:e00008–17.PDF icon Dominguez-Martin et al_2017_Quantitative proteomics shows extensive remodeling induced by nitrogen.pdf (3.74 MB)

Pages