RCC references

Export 568 results:
Author [ Title(Asc)] Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B
Probert I, Siano R, Poirier C, Decelle J, Biard T, Tuji A, Suzuki N, Not F.  2014.  Brandtodinium gen. nov. and B. nutricula comb. Nov. (Dinophyceae), a dinoflagellate commonly found in symbiosis with polycystine radiolarians. Journal of Phycology. 50:388–399.PDF icon Probert et al_2014_Brandtodinium gen.pdf (625.03 KB)
Kuwata A, Yamada K, Ichinomiya M, Yoshikawa S, Tragin M, Vaulot D, Santos ALopes dos.  2018.  Bolidophyceae, a sister picoplanktonic group of diatoms – a review. Frontiers in Marine Science. 5:370.PDF icon Kuwata et al_2018_Bolidophyceae, a sister picoplanktonic group of diatoms – a review.pdf (8.84 MB)
Guillou L, Chrétiennot-Dinet M.-J., Medlin LK, Claustre H, S de Goër L-, Vaulot D.  1999.  Bolidomonas: a new genus with two species belonging to a new algal class, the Bolidophyceae (Heterokonta). Journal of Phycology. 35:368–381.PDF icon Guillou et al_1999_Bolidomonas.pdf (518.23 KB)
Abida H, Ruchaud S, Rios L, Humeau A, Probert I, de Vargas C, Bach S, Bowler C.  2013.  Bioprospecting marine plankton. Marine Drugs. 11:4594–4611.PDF icon Abida et al_2013_Bioprospecting marine plankton.pdf (892.28 KB)
Cruz JDiogo, Delattre C, Felpeto ABarreiro, Pereira H, Pierre G, Morais J, Petit E, Silva J, Azevedo J, Elboutachfaiti R et al..  2023.  Bioprospecting for industrially relevant exopolysaccharide-producing cyanobacteria under Portuguese simulated climate. Scientific Reports. 13:13561.PDF icon Cruz et al_2023_Bioprospecting for industrially relevant exopolysaccharide-producing.pdf (2.12 MB)
Park SAh, Jeong HJin, Ok J, Kang H, You J, Eom S, Yoo Y, Lee MJoon.  2021.  Bioluminescence capability and intensity in the dinoflagellate Alexandrium species. ALGAE. 36PDF icon Park et al_2021_Bioluminescence capability and intensity in the dinoflagellate Alexandrium.pdf (6.4 MB)
Dennu L, Devic M, Rigonato J, Falciatore A, Lozano J-C, Vergé V, Mariac C, Jaillon O, Team TDark Edge, Sabot F et al..  2023.  Biological and genomic resources for the cosmopolitan phytoplankton Bathycoccus: Insights into genetic diversity and major structural variations. PDF icon Dennu et al_2023_Biological and genomic resources for the cosmopolitan phytoplankton Bathycoccus.pdf (7.52 MB)
Waterbury JB, Watson SW, Valois FW, Franks DG.  1986.  Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. Photosynthetic picoplankton. 214:71–120.
Churakova Y, Aguilera A, Charalampous E, Conley DJ, Lundin D, Pinhassi J, Farnelid H.  2023.  Biogenic silica accumulation in picoeukaryotes: Novel players in the marine silica cycle. Environmental Microbiology Reports. n/aPDF icon Churakova et al_2023_Biogenic silica accumulation in picoeukaryotes.pdf (454.16 KB)
Letscher RT, J. Moore K, Martiny AC, Lomas MW.  2023.  Biodiversity and stoichiometric plasticity increase pico-phytoplankton contributions to marine net primary productivity and the biological pump. Global Biogeochemical Cycles. n/a:e2023GB007756.PDF icon Letscher et al_Biodiversity and stoichiometric plasticity increase pico-phytoplankton.pdf (1.21 MB)
Everroad C, Six C, Partensky F, Thomas JC, Holtzendorff J, Wood AM.  2006.  Biochemical bases of Type IV chromatic adaptation in marine Synechococcus spp.. Journal of Bacteriology. 188:3345–3356.PDF icon Everroad et al_2006_Biochemical bases of Type IV chromatic adaptation in marine Synechococcus spp.pdf (559.03 KB)
Annunziata R, Ritter A, Fortunato AEmidio, Cheminant-Navarro S, Agier N, Huysman MJJ, Winge P, Bones A, Bouget F-Y, Lagomarsino MCosentino et al..  2018.  A bHLH-PAS protein regulates light-dependent rhythmic processes in the marine diatom Phaeodactylum tricornutum. bioRxiv. :271445.PDF icon Annunziata et al_2018_A bHLH-PAS protein regulates light-dependent rhythmic processes in the marine.pdf (2.83 MB)
Androuin T, Six C, Bordeyne F, de Bettignies F, Noisette F, Davoult D.  2020.  Better off alone? New insights in the symbiotic relationship between the flatworm Symsagittifera roscoffensis and the microalgae Tetraselmis convolutae Symbiosis. PDF icon Androuin et al_2020_Better off alone.pdf (782.21 KB)
Strauss J, Choi CJae, Grone J, Wittmers F, Jimenez V, Makareviciute-Fichtner K, Bachy C, Jaeger GSpiro, Poirier C, Eckmann C et al..  2023.  The Bay of Bengal exposes abundant photosynthetic picoplankton and newfound diversity along salinity-driven gradients. Environmental Microbiology. PDF icon Strauss et al_2023_The Bay of Bengal exposes abundant photosynthetic picoplankton and newfound.pdf (7.31 MB)
Kirkham AR, Jardillier LE, Tiganescu A, Pearman J, Zubkov MV, Scanlan DJ.  2011.  Basin-scale distribution patterns of photosynthetic picoeukaryotes along an Atlantic Meridional Transect. Environmental Microbiology. 13:975–990.PDF icon Kirkham et al_2011_Basin-scale distribution patterns of photosynthetic picoeukaryotes along an.pdf (2.5 MB)
Pollara SB, Becker JW, Nunn BL, Boiteau R, Repeta D, Mudge MC, Downing G, Chase D, Harvey EL, Whalen KE.  2021.  Bacterial Quorum-Sensing Signal Arrests Phytoplankton Cell Division and Impacts Virus-Induced Mortality. mSphere. 6:e00009–21,/msphere/6/3/mSph.00009–21.atom.PDF icon Pollara et al. - 2021 - Bacterial Quorum-Sensing Signal Arrests Phytoplank.pdf (1.49 MB)
Crenn K, Duffieux D, Jeanthon C.  2018.  Bacterial epibiotic communities of ubiquitous and abundant marine diatoms are distinct in short- and long-term associations. Frontiers in Microbiology. 9:1–12.PDF icon Crenn et al_2018_Bacterial epibiotic communities of ubiquitous and abundant marine diatoms are.pdf (670.57 KB)
Abby SS, Touchon M, De Jode A, Grimsley N, Piganeau G.  2014.  Bacteria in Ostreococcus tauri cultures - friends, foes or hitchhikers? Frontiers in microbiology. 5:505.PDF icon Abby et al_2014_Bacteria in Ostreococcus tauri cultures - friends, foes or hitchhikers.pdf (1.03 MB)
Roux P, Siano R, Collin K, Bilien G, Sinquin C, Marchand L, Zykwinska A, Delbarre-Ladrat C, Schapira M.  2021.  Bacteria enhance the production of extracellular polymeric substances by the green dinoflagellate Lepidodinium chlorophorum. Scientific Reports. 11:1–15.PDF icon Roux et al_2021_Bacteria enhance the production of extracellular polymeric substances by the.pdf (2.88 MB)
A
Pan YJu, Déposé E, Souissi A, Hénard S, Schaadt M, Mastro E, Souissi S.  2020.  Assessments of first feeding protocols on the larviculture of California grunion Leuresthes tenuis (Osteichthyes: Atherinopsidae). Aquaculture Research. 51:3054–3058.
Jang SHyeon.  2022.  Assessment of biodiversity, global distribution, and putative ecological niches of suessiacean dinoflagellates by DNA metabarcoding. Frontiers in Ecology and Evolution. 10PDF icon Jang_2022_Assessment of biodiversity, global distribution, and putative ecological niches.pdf (3.56 MB)
Das S, Lizon F, Gevaert F, Bialais C, Duong G, Ouddane B, Souissi S.  2023.  Assessing indicators of arsenic toxicity using variable fluorescence in a commercially valuable microalgae: physiological and toxicological aspects. Journal of Hazardous Materials. :131215.PDF icon Das et al_2023_Assessing indicators of arsenic toxicity using variable fluorescence in a.pdf (2.11 MB)
Bouquet A, Felix C, Masseret E, Reymond C, Abadie E, Laabir M, Rolland JLuc.  2023.  Artificial Substrates Coupled with qPCR (AS-qPCR) Assay for the Detection of the Toxic Benthopelagic Dinoflagellate Vulcanodinium rugosum. Toxins. 15:217.PDF icon Bouquet et al_2023_Artificial Substrates Coupled with qPCR (AS-qPCR) Assay for the Detection of.pdf (1.57 MB)
Ni G, Zimbalatti G, Murphy CD, Barnett AB, Arsenault CM, Li G, Cockshutt AM, Campbell DA.  2017.  Arctic Micromonas uses protein pools and non-photochemical quenching to cope with temperature restrictions on Photosystem II protein turnover. Photosynthesis Research. 131:203–220.PDF icon Ni et al_2017_Arctic Micromonas uses protein pools and non-photochemical quenching to cope.pdf (1.52 MB)
Nissimov JI, Campbell CN, Probert I, Wilson WH.  2020.  Aquatic virus culture collection: an absent (but necessary) safety net for environmental microbiologists. Applied Phycology. 00:1–15.PDF icon Nissimov et al_2020_Aquatic virus culture collection.pdf (1.66 MB)

Pages