The Bay of Bengal exposes abundant photosynthetic picoplankton and newfound diversity along salinity-driven gradients

TitleThe Bay of Bengal exposes abundant photosynthetic picoplankton and newfound diversity along salinity-driven gradients
Publication TypeJournal Article
Year of Publication2023
AuthorsStrauss J, Choi CJae, Grone J, Wittmers F, Jimenez V, Makareviciute-Fichtner K, Bachy C, Jaeger GSpiro, Poirier C, Eckmann C, Spezzano R, Löscher CR, Sarma V.VSS, Mahadevan A, Worden AZ
JournalEnvironmental Microbiology
ISSN1462-2920
KeywordsRCC393, RCC809
Abstract

The Bay of Bengal (BoB) is a 2,600,000 km2 expanse in the Indian Ocean upon which many humans rely. However, the primary producers underpinning food chains here remain poorly characterized. We examined phytoplankton abundance and diversity along strong BoB latitudinal and vertical salinity gradients-which have low temperature variation (27-29°C) between the surface and subsurface chlorophyll maximum (SCM). In surface waters, Prochlorococcus averaged 11.7 ± 4.4 × 104  cells ml-1 , predominantly HLII, whereas LLII and 'rare' ecotypes, HLVI and LLVII, dominated in the SCM. Synechococcus averaged 8.4 ± 2.3 × 104  cells ml-1 in the surface, declined rapidly with depth, and population structure of dominant Clade II differed between surface and SCM; Clade X was notable at both depths. Across all sites, Ostreococcus Clade OII dominated SCM eukaryotes whereas communities differentiated strongly moving from Arabian Sea-influenced high salinity (southerly; prasinophytes) to freshwater-influenced low salinity (northerly; stramenopiles, specifically, diatoms, pelagophytes, and dictyochophytes, plus the prasinophyte Micromonas) surface waters. Eukaryotic phytoplankton peaked in the south (1.9 × 104  cells ml-1 , surface) where a novel Ostreococcus was revealed, named here Ostreococcus bengalensis. We expose dominance of a single picoeukaryote and hitherto 'rare' picocyanobacteria at depth in this complex ecosystem where studies suggest picoplankton are replacing larger phytoplankton due to climate change.

DOI10.1111/1462-2920.16431