RCC references

Export 232 results:
Author [ Title(Desc)] Year
Filters: First Letter Of Last Name is R  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
R
Bendif EMahdi, Probert I, Archontikis OA, Young JR, Beaufort L, Rickaby RE, Filatov D.  2023.  Rapid diversification underlying the global dominance of a cosmopolitan phytoplankton. The ISME Journal. :1–11.PDF icon Bendif et al_2023_Rapid diversification underlying the global dominance of a cosmopolitan.pdf (2.88 MB)
Farhat S, Le P, Kayal E, Noel B, Bigeard E, Corre E, Maumus F, Florent I, Alberti A, Aury J-M et al..  2021.  Rapid protein evolution, organellar reductions, and invasive intronic elements in the marine aerobic parasite dinoflagellate Amoebophrya spp.. BMC Biology. :1–21.PDF icon Farhat et al_2021_Rapid protein evolution, organellar reductions, and invasive intronic elements.pdf (2.01 MB)
Farhat S, Le P, Kayal E, Noel B, Bigeard E, Corre E, Maumus F, Florent I, Alberti A, Aury J-M et al..  2021.  Rapid protein evolution, organellar reductions, and invasive intronic elements in the marine aerobic parasite dinoflagellate Amoebophrya spp.. BMC Biology. :1–21.PDF icon Farhat et al_2021_Rapid protein evolution, organellar reductions, and invasive intronic elements.pdf (2.01 MB)
Farhat S, Le P, Kayal E, Noel B, Bigeard E, Corre E, Maumus F, Florent I, Alberti A, Aury J-M et al..  2021.  Rapid protein evolution, organellar reductions, and invasive intronic elements in the marine aerobic parasite dinoflagellate Amoebophrya spp.. BMC Biology. :1–21.PDF icon Farhat et al_2021_Rapid protein evolution, organellar reductions, and invasive intronic elements.pdf (2.01 MB)
Kawachi M, Nakayama T, Kayama M, Nomura M, Miyashita H, Bojo O, Rhodes L, Sym S, Pienaar RN, Probert I et al..  2021.  Rappemonads are haptophyte phytoplankton. Current Biology. PDF icon Kawachi et al. - 2021 - Rappemonads are haptophyte phytoplankton.pdf (6.09 MB)
Roesler C, Uitz J, Claustre H, Boss E, Xing X, Organelli E, Briggs N, Bricaud A, Schmechtig C, Poteau A et al..  2017.  Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors. Limnology and Oceanography: Methods. 15:572–585.PDF icon Roesler et al_2017_Recommendations for obtaining unbiased chlorophyll estimates from in situ.pdf (686.25 KB)
Roesler C, Uitz J, Claustre H, Boss E, Xing X, Organelli E, Briggs N, Bricaud A, Schmechtig C, Poteau A et al..  2017.  Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors. Limnology and Oceanography: Methods. 15:572–585.PDF icon Roesler et al_2017_Recommendations for obtaining unbiased chlorophyll estimates from in situ.pdf (686.25 KB)
Perez-Sepulveda B, Pitt F, N'Guyen ANgoc, Ratin M, Garczarek L, Millard A, Scanlan DJ.  2018.  Relative stability of ploidy in a marine Synechococcus across various growth conditions. Environmental Microbiology Reports. :inpress.PDF icon Perez-Sepulveda et al_2018_Relative stability of ploidy in a marine Synechococcus across various growth.pdf (198.7 KB)
Arias AH, Souissi A, Glippa O, Roussin M, Dumoulin D, Net S, Ouddane B, Souissi S.  2017.  Removal and biodegradation of phenanthrene, fluoranthene and pyrene by the marine algae rhodomonas baltica enriched from north atlantic coasts. Bulletin of Environmental Contamination and Toxicology. 98:392–399.
Bendif EMahdi, Nevado B, Wong ELY, Hagino K, Probert I, Young JR, Rickaby REM, Filatov DA.  2019.  Repeated species radiations in the recent evolution of the key marine phytoplankton lineage Gephyrocapsa. Nature Communications. 10:4234.PDF icon Bendif et al. - 2019 - Repeated species radiations in the recent evolutio.pdf (830.15 KB)
Rocap G, Distel DL, Waterbury JB, Chisholm SW.  2002.  Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences. Applied and Environmental Microbiology. 68:1180–1191.PDF icon Rocap et al_2002_Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S.pdf (360.24 KB)
Royer C, Gypens N, Cardol P, Borges AV, Roberty S.  2021.  Response of dimethylsulfoniopropionate (DMSP) and dimethylsulfoxide (DMSO) cell quotas to oxidative stress in three phytoplankton species. Journal of Plankton Research. 43:673–690.PDF icon Royer et al. - 2021 - Response of dimethylsulfoniopropionate (DMSP) and .pdf (1.4 MB)
Royer C, Gypens N, Cardol P, Borges AV, Roberty S.  2021.  Response of dimethylsulfoniopropionate (DMSP) and dimethylsulfoxide (DMSO) cell quotas to oxidative stress in three phytoplankton species. Journal of Plankton Research. 43:673–690.PDF icon Royer et al. - 2021 - Response of dimethylsulfoniopropionate (DMSP) and .pdf (1.4 MB)
S
Raghu-Kumar S..  1988.  Schizochytrium mangrovei sp. nov., a thraustochytrid from mangroves in India. Transactions of the British Mycological Society. 90:627–631.PDF icon Raghu-Kumar_1988_Schizochytrium mangrovei sp.pdf (989.12 KB)
Beaufort L, Probert I, de Garidel-Thoron T, Bendif EM, Ruiz-Pino D, Metzl N, Goyet C, Buchet N, Coupel P, Grelaud M et al..  2011.  Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature. 476:80–83.PDF icon Beaufort et al_2011_Sensitivity of coccolithophores to carbonate chemistry and ocean acidification.pdf (621.83 KB)
Beaufort L, Probert I, de Garidel-Thoron T, Bendif EM, Ruiz-Pino D, Metzl N, Goyet C, Buchet N, Coupel P, Grelaud M et al..  2011.  Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature. 476:80–83.PDF icon Beaufort et al_2011_Sensitivity of coccolithophores to carbonate chemistry and ocean acidification.pdf (621.83 KB)
Beaufort L, Probert I, de Garidel-Thoron T, Bendif EM, Ruiz-Pino D, Metzl N, Goyet C, Buchet N, Coupel P, Grelaud M et al..  2011.  Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature. 476:80–83.PDF icon Beaufort et al_2011_Sensitivity of coccolithophores to carbonate chemistry and ocean acidification.pdf (621.83 KB)
Dedman CJ, Barton S, Fournier M, Rickaby REM.  2023.  Shotgun proteomics reveals temperature-dependent regulation of major nutrient metabolism in coastal Synechococcus sp. WH5701. Algal Research. :103279.
Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, Coe A, Ding H, Marttinen P, Malmstrom RR, Stocker R et al..  2014.  Single-cell genomics reveals hundreds of coexisting subpopulations in wild prochlorococcus. Science. 344:416–420.PDF icon Kashtan et al. - Single-Cell Genomics Reveals Hundreds of Coexisting Subpopulations in Wild Prochlorococcus.pdf (2.15 MB)
Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, Coe A, Ding H, Marttinen P, Malmstrom RR, Stocker R et al..  2014.  Single-cell genomics reveals hundreds of coexisting subpopulations in wild prochlorococcus. Science. 344:416–420.PDF icon Kashtan et al. - Single-Cell Genomics Reveals Hundreds of Coexisting Subpopulations in Wild Prochlorococcus.pdf (2.15 MB)
Chauhan N, Rickaby REM.  2024.  Size-dependent dynamics of the internal carbon pool drive isotopic vital effects in calcifying phytoplankton. Geochimica et Cosmochimica Acta. 373:35–51.PDF icon Chauhan et Rickaby - 2024 - Size-dependent dynamics of the internal carbon poo.pdf (5.79 MB)
Riou V, Périot M, Biegala IC.  2017.  Specificity re-evaluation of oligonucleotide probes for the detection of marine picoplankton by tyramide signal amplification-fluorescent in situ hybridization. Frontiers in Microbiology. 8:854.PDF icon Riou et al_2017_Specificity re-evaluation of oligonucleotide probes for the detection of marine.pdf (1.87 MB)

Pages